CN115286410A - 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法 - Google Patents

一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法 Download PDF

Info

Publication number
CN115286410A
CN115286410A CN202211012321.4A CN202211012321A CN115286410A CN 115286410 A CN115286410 A CN 115286410A CN 202211012321 A CN202211012321 A CN 202211012321A CN 115286410 A CN115286410 A CN 115286410A
Authority
CN
China
Prior art keywords
silicon carbide
matrix composite
ceramic matrix
printing
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211012321.4A
Other languages
English (en)
Inventor
刘勇
陈中华
王丽
彭传校
王侃
徐海超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weihai Institute Of Industrial Technology Shandong University
Shandong University
Original Assignee
Weihai Institute Of Industrial Technology Shandong University
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weihai Institute Of Industrial Technology Shandong University, Shandong University filed Critical Weihai Institute Of Industrial Technology Shandong University
Priority to CN202211012321.4A priority Critical patent/CN115286410A/zh
Publication of CN115286410A publication Critical patent/CN115286410A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于打印材料技术领域,尤其涉及一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法。本发明所述浆料包括以下重量份的组分:58‑68份粉体颗粒,31.4‑42.5份溶剂,0.8‑1.2份粘结剂,0.3‑1.2份分散剂,所述粉体颗粒为碳化硅、碳黑、碳纳米管。本发明所述浆料在制备过程中加入碳纳米管,大大提高了碳化硅陶瓷基复合材料的力学性能,所得浆料粘度低、固相含量高、流动性好,能满足直写成型3D打印浆料的需要。

Description

一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制 备方法
技术领域
本发明属于打印材料技术领域,尤其涉及一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法。
背景技术
随着当今社会的不断发展,人们对材料的综合性能要求也越来越高。碳化硅陶瓷作为一种结构材料,因其具有强度硬度高、耐高温、耐磨损、耐腐蚀、抗氧化、弹性模量高、抗压强度大等优点,被广泛应用于车辆机械、微电子、化学工业、航空航天和生物医学工程等领域。但其脆性大、可靠性差和韧性不足等特点却给碳化硅陶瓷的广泛应用和加工成型带来了很多困难。而碳化硅陶瓷基复合材料在保留了碳化硅陶瓷优点的同时,还克服了碳化硅陶瓷可靠性差等缺点,成为了相关领域的研究热点。
碳纳米管的杨氏模量超过1TPa,抗拉强度超过50GPa,超过钢的100倍,而密度却只有钢的1/6,弯曲强度达14GPa,其性能优于当前任何纤维,是理想的增强增韧材料,将其应用到碳化硅陶瓷基复合材料制备中,将大大增强碳化硅陶瓷的强韧性。
随着陶瓷材料的不断广泛应用,人们所需求的陶瓷形状越来越复杂精细,传统陶瓷制备方法难以满足人们的需求。传统的陶瓷制备成型方式主要采用干压成型、等静压成型、注浆成型等方法,由于需要特定形状和尺寸的模具,在制造相对复杂形状和复合结构的产品上具有较大的限制,生产周期长、成本高,并且坯体在脱模过程中很容易受到损坏。因此需要寻找更为可靠的陶瓷成型方式。
浆料直写成型3D打印技术是利用3D结构数据,将陶瓷浆料通过喷嘴挤出进行不断的堆积叠加,得到精细的三维形状,实现预期设定的模型结构成型,具有成型精度高和无模成形等特点,因此浆料直写成型3D打印技术在高性能陶瓷的成型制造领域具有巨大的发展潜力。但这种成型方式对陶瓷浆料的成分和粘度要求较高,需要具有剪切变稀特征的陶瓷浆料。因此我们需要探究合适的浆料配方使浆料满足低粘度、高固相、流动性好的特点来进行直写成型,保证打印精度。
发明内容
为解决上述现有技术中存在的问题,本发明提供了一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,在制备过程中加入碳纳米管,大大提高了碳化硅陶瓷基复合材料的力学性能,所得浆料粘度低、固相含量高、流动性好,能满足直写成型3D打印浆料的需要。
为实现上述目的,本发明采用如下技术方案:
首先,本发明的目的之一是提供一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括58-68份粉体颗粒,31.4-42.5份溶剂,0.8-1.2份粘结剂,0.3-1.2份分散剂。
进一步地,在上述用于3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料中,所述粉体颗粒为碳化硅、碳黑、碳纳米管,碳化硅陶瓷主体是碳化硅,碳化硅粉作为主体,碳粉作为后期反应烧结的反应主体,碳纳米管作为陶瓷增强体,颗粒混合具有陶瓷增韧效果,质量比为8:1:1。
进一步地,在上述用于3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料中,所述碳化硅粉末平均粒径为1微米,纯度>99wt%;所述碳黑粉末平均粒径为3微米,纯度>99wt%;所述碳纳米管粉末平均粒径为3.5纳米,纯度>95wt%,需分散处理后使用。粒径的限定能获得更好的浆料流动性,粒径过大会导致团聚和后期烧结过程中的气孔问题。
进一步地,在上述用于3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料中,所述溶剂为去离子水。
所述粘结剂为海藻酸钠,海藻酸钠粉末加入水中后,微粒间的水合作用使海藻酸钠表面具有粘性,且在同等固相含量下,海藻酸钠作为粘结剂的粘性较为合适,采用海藻酸钠作为粘结剂能够同时满足打印浆料的流动性和塑性要求。
所述分散剂为聚乙二醇400,聚乙二醇400是一种典型的非离子表面活性剂,其分子结构中只有醚基和羟基,易与SiC颗粒表面氢氧键形成较强的氢键,从而在SiC颗粒表面形成吸附层,产生空间位阻效应。获得的效果为选用聚乙二醇400可以使各颗粒表面位阻层间产生空间位阻斥力,阻止颗粒间的碰撞和沉降,从而使SiC颗粒稳定的分散在液相中。
其次,本发明的目的之二是提供一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料的制备方法,包括以下步骤:
步骤一:将溶剂与粘结剂按比例混合,搅拌均匀,静置12小时,制得粘结剂溶液;
步骤二:将碳纳米管与碳纳米管分散剂按质量比1:1加入到分散溶剂中,超声振荡,得到分散处理后的碳纳米管;
步骤三:将碳化硅粉末、炭黑粉末、分散处理后的碳纳米管按质量比8:1:1混合,搅拌均匀,得到预混粉体;
步骤四:在步骤三所得预混粉体中按比例加入分散剂,充分搅拌进行分散,得到分散后粉体;
步骤五:在步骤四得到的分散后粉体中加入步骤一得到的粘结剂溶液,充分搅拌,制得3D打印用碳纳米管增韧碳化硅陶瓷基复合材料浆料。
进一步地,步骤二所述分散溶剂为乙醇,所述碳纳米管分散剂为十二烷基硫酸钠。
进一步地,在上述3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料的制备方法中,步骤一中搅拌速度为200rad/min,搅拌时间为1.5小时;步骤二中振荡时间为30分钟;步骤三中搅拌速度为80rad/min,搅拌时间为30分钟;步骤四中搅拌速度为80rad/min,搅拌时间为30分钟;步骤五中搅拌速度为500rad/min,搅拌时间为3小时。
有益效果
本发明公开了一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法,与现有技术相比本发明的有益效果为:
(1)本发明提供的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,定量的加入粉体颗粒、粘结剂、分散剂和溶剂,所得浆料粘度低、固相含量高、流动性好,能满足直写成型3D打印浆料的需要。
(2)本发明提供的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,在制备过程中加入碳纳米管,大大提高了碳化硅陶瓷基复合材料的力学性能。
附图说明
图1为粘度-分散剂含量变化曲线图;
图2为粘度-固相含量变化曲线图;
图3为本发明所述的碳纳米管增韧碳化硅陶瓷基复合材料浆料用于直写成型3D打印的工艺流程图。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,38.31份溶剂,1.14份粘结剂,0.55份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。
将上述原料按如下方法制备浆料:
步骤一:将去离子水与海藻酸钠按比例混合,以200rad/min速度搅拌1.5小时,静置12小时,制得海藻酸钠溶液;
步骤二:将碳纳米管与十二烷基硫酸钠按质量比1:1加入到乙醇溶液,超声振荡30分钟,得到分散处理后的碳纳米管;
步骤三:将碳化硅粉末、炭黑粉末、处理后的碳纳米管按质量比8:1:1混合,以80rad/min速度搅拌30分钟,得到预混粉;
步骤四:在步骤三预混粉体中按比例加入聚乙二醇400,以80rad/min速度搅拌30分钟进行分散;
步骤五:在步骤四得到的分散后粉体中加入步骤一得到的海藻酸钠溶液,以500rad/min速度搅拌3小时,制得3D打印用碳纳米管增韧碳化硅陶瓷基复合材料浆料,记为样品1。
实施例2
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括65份粉体颗粒,33.42份溶剂,0.98份粘结剂,0.6份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品2。
实施例3
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括65份粉体颗粒,33.71份溶剂,0.99份粘结剂,0.3份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品3。
实施例4
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括58份粉体颗粒,31.4份溶剂,0.8份粘结剂,0.3份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品4。
实施例5
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括68份粉体颗粒,42.5份溶剂,1.2份粘结剂,1.2份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品5。
对比例1
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括75份粉体颗粒,23.59份溶剂,0.71份粘结剂,0.7份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品6。
对比例2
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括70份粉体颗粒,28.48份溶剂,0.87份粘结剂,0.65份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品7。
对比例3
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括65份粉体颗粒,34份溶剂,1份粘结剂,0份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品8。
对比例4
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括55份粉体颗粒,43.3份溶剂,1.2份粘结剂,0.5份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品9。
对比例5
一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,按重量计份,包括50份粉体颗粒,48.3份溶剂,1.25份粘结剂,0.45份分散剂;所述粉体颗粒为碳化硅(d50=1μm,purity>99wt%)、碳黑(d50=3μm,purity>99wt%)、碳纳米管(d50=3.5nm,purity>95wt%),质量比为8:1:1,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品10。
实验例
图1为粘度-分散剂含量变化曲线图,从图1中可以看出随着分散剂浓度的增大,粘度呈现先减小后增大的趋势,是由于分散剂浓度较小时,分散剂浓度升高,碳化硅表面包覆的分散剂变多,粘度下降,分散剂浓度为1wt%时包覆完全,而当分散剂浓度继续增大后,过多的分散剂游离在浆料中,在浆料流动过程中会出现桥连缠绕现象,致使浆料粘度上升。
图2为粘度-固相含量变化曲线图,从图2中可以看出浆料粘度随着固相含量的增大而增加,当固相含量达到一定值时,浆料粘度急剧增大,此时浆料粘度已无法满足打印的流动性要求,无法打印,故65wt%时既能获得较大的固相含量值又能满足打印流动性要求。
本专利所述浆料中,碳化硅、碳黑是陶瓷主体,碳纳米管起增韧效果
将上述实施例1-5所得样品1-5和对比例1-5所得样品6-10作为浆料进行3D打印直写成型,工艺流程图如图3所示,具体工艺为:
得到适用于直写成型 3D 打印的碳化硅陶瓷基复合材料浆料,浆料倒入料筒后安装到挤出机。之后,将预先建模的三维模型放入Simplify3D 软件中按最优参数进行切片,将切片文件导入打印机进行直写成型。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (9)

1.一种3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,包括以下重量份的组分:58-68份粉体颗粒,31.4-42.5份溶剂,0.8-1.2份粘结剂,0.3-1.2份分散剂,所述粉体颗粒为碳化硅、碳黑、碳纳米管。
2.根据权利要求1所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,所述碳化硅、碳黑、碳纳米管的质量比为8:1:1。
3.根据权利要求2所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,所述所述碳化硅粉末平均粒径为1微米,纯度>99wt%;所述碳黑粉末平均粒径为3微米,纯度>99wt%;所述碳纳米管粉末平均粒径为3.5纳米,纯度>95wt%,进行分散处理后使用。
4.根据权利要求1所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,所述粘结剂为海藻酸钠。
5.根据权利要求4所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,所述溶剂为去离子水。
6.根据权利要求5所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料,其特征在于,所述分散剂为聚乙二醇400。
7.权利要求1-6任一所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料的制备方法,其特征在于,包括如下步骤:
步骤一:将溶剂与粘结剂按比例混合,搅拌均匀,静置12小时,制得粘结剂溶液;
步骤二:将碳纳米管与碳纳米管分散剂按质量比1:1加入到分散溶剂中,超声振荡,得到分散处理后的碳纳米管;
步骤三:将碳化硅粉末、炭黑粉末、分散处理后的碳纳米管按质量比8:1:1混合,搅拌均匀,得到预混粉体;
步骤四:在步骤三所得预混粉体中按比例加入分散剂,充分搅拌进行分散,得到分散后粉体;
步骤五:在步骤四得到的分散后粉体中加入步骤一得到的粘结剂溶液,充分搅拌,制得3D打印用碳纳米管增韧碳化硅陶瓷基复合材料浆料。
8.根据权利要求7所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料的制备方法,其特征在于,步骤二所述分散溶剂为乙醇,所述碳纳米管分散剂为十二烷基硫酸钠。
9.根据权利要求7所述的3D打印碳纳米管增韧碳化硅陶瓷基复合材料浆料的制备方法,其特征在于,步骤一中搅拌速度为200rad/min,搅拌时间为1.5小时;步骤二中振荡时间为30分钟;步骤三中搅拌速度为80rad/min,搅拌时间为30分钟;步骤四中搅拌速度为80rad/min,搅拌时间为30分钟;步骤五中搅拌速度为500rad/min,搅拌时间为3小时。
CN202211012321.4A 2022-08-23 2022-08-23 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法 Pending CN115286410A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211012321.4A CN115286410A (zh) 2022-08-23 2022-08-23 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211012321.4A CN115286410A (zh) 2022-08-23 2022-08-23 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法

Publications (1)

Publication Number Publication Date
CN115286410A true CN115286410A (zh) 2022-11-04

Family

ID=83832640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211012321.4A Pending CN115286410A (zh) 2022-08-23 2022-08-23 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法

Country Status (1)

Country Link
CN (1) CN115286410A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008236A1 (en) * 2012-03-02 2017-01-12 Dynamic Material Systems, LLC Additive Manufacturing 3D Printing of Advanced Ceramics
US20180148588A1 (en) * 2016-11-29 2018-05-31 United Technologies Corporation High temperature inks for electronic and aerospace applications
CN109020549A (zh) * 2017-06-08 2018-12-18 中国科学院上海硅酸盐研究所 一种直写型3D打印机用SiC墨水及其制备方法和应用
US20190160704A1 (en) * 2017-09-22 2019-05-30 Goodman Technologies LLC 3D Printing of Silicon Carbide Structures
CN111662091A (zh) * 2020-06-15 2020-09-15 中国科学院上海硅酸盐研究所 一种短碳纤维增强Csf/SiC陶瓷基复合材料及其制备方法
CN113045297A (zh) * 2021-04-08 2021-06-29 昆明理工大学 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法
CN113666764A (zh) * 2021-09-15 2021-11-19 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114163250A (zh) * 2021-11-26 2022-03-11 南京航空航天大学 3d打印连续碳纤维增韧碳化硅陶瓷制备方法及装置
US11274066B1 (en) * 2017-11-30 2022-03-15 Goodman Technologies LLC Ceramic armor and other structures manufactured using ceramic nano-pastes
CN114436657A (zh) * 2022-01-06 2022-05-06 中国科学院上海硅酸盐研究所 一种基于粉体熔融沉积法的3d打印成型复合材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008236A1 (en) * 2012-03-02 2017-01-12 Dynamic Material Systems, LLC Additive Manufacturing 3D Printing of Advanced Ceramics
US20180148588A1 (en) * 2016-11-29 2018-05-31 United Technologies Corporation High temperature inks for electronic and aerospace applications
CN109020549A (zh) * 2017-06-08 2018-12-18 中国科学院上海硅酸盐研究所 一种直写型3D打印机用SiC墨水及其制备方法和应用
US20190160704A1 (en) * 2017-09-22 2019-05-30 Goodman Technologies LLC 3D Printing of Silicon Carbide Structures
US11274066B1 (en) * 2017-11-30 2022-03-15 Goodman Technologies LLC Ceramic armor and other structures manufactured using ceramic nano-pastes
CN111662091A (zh) * 2020-06-15 2020-09-15 中国科学院上海硅酸盐研究所 一种短碳纤维增强Csf/SiC陶瓷基复合材料及其制备方法
CN113045297A (zh) * 2021-04-08 2021-06-29 昆明理工大学 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷
CN113458387A (zh) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 一种3d打印梯度陶瓷金属材料以及制备方法
CN113666764A (zh) * 2021-09-15 2021-11-19 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114163250A (zh) * 2021-11-26 2022-03-11 南京航空航天大学 3d打印连续碳纤维增韧碳化硅陶瓷制备方法及装置
CN114436657A (zh) * 2022-01-06 2022-05-06 中国科学院上海硅酸盐研究所 一种基于粉体熔融沉积法的3d打印成型复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
(美)罗纳德•F•吉布森著: "《复合材料力学基础》", 31 December 2019, 上海交通大学出版社 *
HENG ZHANG: "("The preparation of SiC-based ceramics by one novel strategy combined 3D printing technology and liquid silicon infiltration process",Heng Zhang,《Ceramics International》,第45卷,第10800-10804页", 《CERAMICS INTERNATIONAL》 *
王宝民: "《纳米管增强高性能水泥基复合材料制备与性能》", 31 August 2017, 辽宁科学技术出版社 *

Similar Documents

Publication Publication Date Title
Han et al. A review on the processing technologies of carbon nanotube/silicon carbide composites
CN112047727B (zh) 一种3d打印氧化铝陶瓷材料的制备方法
CN115304389B (zh) 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法
CN110498634B (zh) 一种石墨烯水分散液、石墨烯混凝土及其制备方法
CN107365158B (zh) 一种用于挤出式3d打印的结构陶瓷膏体及其制备方法
WO2023077709A1 (zh) 一种固相烧结碳化硅制品及其制备方法
CN105568027A (zh) 一种微纳米颗粒混杂增强铝基复合材料及其制备方法
CN113105244A (zh) 一种挤出成型3d打印碳化硅陶瓷及其制备方法
CN107216155B (zh) 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法
CN109384437B (zh) 可供3d打印的混杂纤维水泥基复合材料及其制备方法
CN114105650A (zh) 下沉式dlp光固化技术3d打印制备氮化硅陶瓷的方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
CN100429176C (zh) 一种利用原位反应制备纳米复相陶瓷材料的方法
CN116874311B (zh) 光固化3d打印工艺制备硼酸铝多孔陶瓷的方法
CN113582699A (zh) 一种低粘度、高固含量的陶瓷浆料及其制备方法
CN115286410A (zh) 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法
CN116354729B (zh) 一种SiC陶瓷零部件及其制备方法与应用
CN112680636A (zh) 一种微纳复合构型铝基复合材料及其制备方法
CN114085084A (zh) 一种高强度氮化硅陶瓷及其制备方法
CN108178659B (zh) 一种3d打印用成型材料
CN114085073A (zh) 一种光固化3d打印硅基陶瓷型芯及其制备方法
CN113442430A (zh) 一种基于光固化3d打印成型的金刚石复合材料的制备方法及应用
CN113800943A (zh) 基于光固化技术制备孔隙梯度Si3N4基陶瓷材料的方法
CN107573076B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件
Xu et al. Combination of direct ink writing and reaction bonded for rapid fabrication of SiCw/SiC composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 264200 No. 180, Wenhua West Road, Shandong, Weihai

Applicant after: SHANDONG University

Applicant after: Weihai Institute of industrial technology, Shandong University

Address before: No. 27, Shan Dana Road, Ji'nan, Shandong Province, Shandong

Applicant before: SHANDONG University

Applicant before: Weihai Institute of industrial technology, Shandong University

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20221104