CN115304389B - 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法 - Google Patents

一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法 Download PDF

Info

Publication number
CN115304389B
CN115304389B CN202211013354.0A CN202211013354A CN115304389B CN 115304389 B CN115304389 B CN 115304389B CN 202211013354 A CN202211013354 A CN 202211013354A CN 115304389 B CN115304389 B CN 115304389B
Authority
CN
China
Prior art keywords
silicon carbide
matrix composite
ceramic matrix
slurry
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211013354.0A
Other languages
English (en)
Other versions
CN115304389A (zh
Inventor
刘勇
徐海超
王丽
彭传校
王侃
陈中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weihai Institute Of Industrial Technology Shandong University
Shandong University
Original Assignee
Weihai Institute Of Industrial Technology Shandong University
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weihai Institute Of Industrial Technology Shandong University, Shandong University filed Critical Weihai Institute Of Industrial Technology Shandong University
Priority to CN202211013354.0A priority Critical patent/CN115304389B/zh
Publication of CN115304389A publication Critical patent/CN115304389A/zh
Application granted granted Critical
Publication of CN115304389B publication Critical patent/CN115304389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于打印材料技术领域,尤其涉及一种直写成型3D打印用碳化硅陶瓷基复合材料浆料及其制备方法。本发明所述复合材料浆料按重量计份,包括55‑65份粉体颗粒;33.31‑43.56份溶剂;0.87‑1.12份粘结剂;0.27‑0.98份分散剂;其中粉体颗粒为碳化硅、碳黑、碳化硅晶须。本发明提供的碳化硅陶瓷基复合材料3D打印浆料,定量的加入粉体颗粒、粘结剂、分散剂和溶剂,所得浆料具有低粘度、高固相、流动性好等优势,可以制造出高精度、形状复杂和较大结构的碳化硅陶瓷基复合材料器件。

Description

一种直写成型3D打印用碳化硅陶瓷基复合材料浆料及其制备 方法
技术领域
本发明属于打印材料技术领域,尤其涉及一种直写成型3D打印用碳化硅陶瓷基复合材料浆料及其制备方法。
背景技术
碳化硅陶瓷基复合材料保留了碳化硅陶瓷的高温、高强度、抗氧化、耐腐蚀、抗冲击等优点。同时具有增强和增韧碳化硅纤维的作用,克服了碳化硅陶瓷的低断裂韧性、外部冲击负荷阻力差的先天缺陷,广泛应用于航空航天领域高温结构器件。目前广泛应用的复合材料增强体主要是连续纤维和短纤维。出于制造成本、形状的可设计性、制造工艺等原因,在诸多种类的短纤维增强体中,β型碳化硅晶须作为一种原子晶体,它具有低密度、高熔点、高强度、高模量、低的热膨胀率,以及耐磨、耐蚀、耐高温、耐氧化等优良特性受到广泛关注。
碳化硅陶瓷基复合材料的硬度高、脆性大,在加工过程中易产生缺陷,从而制约了复杂结构陶瓷的应用,随着结构陶瓷材料应用领域的不断拓宽,人们对所使用的陶瓷材料部件的形状、尺寸及精度提出了更高的要求陶瓷材料在干燥、脱胶、高温烧结时容易出现尺寸收缩现象。传统的成型方法制备的坯体干燥后尺寸收缩较大,很容易发生变形开裂等问题,从而降低了良品率,增加了生产成本;同时,传统成型方法制备的坯体强度较低,坯体在脱模过程中很容易受到破坏,因此,为提高陶瓷材料的可靠性、降低生产成本和应用场景,需要开发更为先进的陶瓷材料和成型工艺。
浆料直写成型(Direct Ink Writing, DIW)是一种增材制造技术,将高固相含量的陶瓷浆料通过精细的喷嘴挤压并逐层沉积到复杂的宏观结构中。与其他3D打印方法相比,DIW表现出灵活性、低成本、大规模生产和跨多学科边界构建复杂结构的能力。
然而,现有的碳化硅陶瓷基复合材料浆料配方无法满足直写成型要求,因此我们需要探究新的配方使浆料满足低粘度、高固相、流动性好的特点来进行直写成型,保证打印精度。
发明内容
为解决上述现有技术中存在的问题,本发明提供了一种直写成型3D打印用碳化硅陶瓷基复合材料浆料及其制备方法,本发明提供的碳化硅陶瓷基复合材料3D打印浆料,具有低粘度、高固相、流动性好等优势,能够稳定挤出打印复杂结构。
为实现上述目的,本发明采用如下技术方案:
首先,本发明的目的之一是提供一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括55-65份粉体颗粒,33.31-43.56份溶剂,0.87-1.12份粘结剂,0.27-0.98份分散剂。
进一步地,在上述用于直写成型3D打印用碳化硅陶瓷基复合材料浆料中,所述粉体颗粒为碳化硅、碳黑、碳化硅晶须,质量比为7:1:3。炭黑作为反应烧结碳源,碳化硅晶须有“晶须之王”的美誉,晶须的补强增韧作用可以有效的改善陶瓷材料的脆性。
进一步地,在上述用于直写成型3D打印用碳化硅陶瓷基复合材料浆料中,所述碳化硅平均粒径为1微米、碳黑平均粒径为5微米、碳化硅晶须粒径为0.1-2.5微米,合理的粒径比能够降低浆料的粘度、提高素坯密度和反应烧结后材料的力学性能。
进一步地,在上述用于直写成型3D打印用碳化硅陶瓷基复合材料浆料中,所述溶剂为去离子水,所述粘结剂为海藻酸钠,海藻酸钠常用作生物及食品制造上的凝胶添加剂无毒、无味,成本低。海藻酸钠作为粘结剂能够提升浆料的塑性,满足直写成型自支撑要求。
所述分散剂为聚乙二醇400,聚乙二醇400是典型的非离子表面活性剂。在其分子结构中,只有醚基(C-O-C)和羟基(-OH),容易与SiC粒子表面氢氧键结合形成的氢键,从而在SiC粒子表面形成一层吸附膜,产生空间位阻效应。各颗粒表面位阻层间产生的空间位阻斥力可以防止颗粒之间的碰撞与沉降,从而实现SiC颗粒在液相中稳定的分布。
其次,本发明的目的之二是提供一种直写成型3D打印用碳化硅陶瓷基复合材料浆料的制备方法,包括以下步骤:
步骤一:将去离子水与海藻酸钠混合,搅拌均匀,静置12小时,制得海藻酸钠溶液;
步骤二:将碳化硅粉末、炭黑粉末、碳化硅晶须粉末按比例混合,搅拌均匀;
步骤三:在步骤二预混粉体中加入聚乙二醇400,充分搅拌进行分散;
步骤四:在步骤三分散后粉体中加入步骤一配制海藻酸钠溶液,充分搅拌,制得碳化硅陶瓷基复合材料浆料。
进一步地,在上述直写成型3D打印用碳化硅陶瓷基复合材料浆料的制备方法中,步骤一中搅拌速度为150rad/min,搅拌时间为1小时;步骤二和步骤三中搅拌速度为60rad/min,搅拌时间为30分钟;步骤四中搅拌速度为500rad/min,搅拌时间为2小时。
有益效果
本发明公开了一种直写成型3D打印用碳化硅陶瓷基复合材料浆料及其制备方法,与现有技术相比本发明的有益效果为:
(1)本发明提供的直写成型3D打印用碳化硅陶瓷基复合材料浆料,定量的加入粉体颗粒、粘结剂、分散剂和溶剂,所得浆料粘度低、固相高、流动性好SiC晶须加入浆料后粘度略微降低。因为晶须的长径比大于SiC颗粒,晶须在浆料中存在架桥现象使得颗粒间距离变远,引力减小,从而使浆料在剪切力的作用下更易发生滑动。所以SiC晶须的加入使得浆料的粘度略微减小。
(2)本发明提供的直写成型3D打印用碳化硅陶瓷基复合材料浆料,可以制造出高精度、形状复杂和较大结构的碳化硅陶瓷基复合材料器件。
(3)本发明提供的直写成型3D打印用碳化硅陶瓷基复合材料浆料制备方法,具有操作简单、成本低、效率高的优点。
附图说明
图1为不同分散剂聚乙二醇400含量粘度变化曲线图;
图2为不同固相含量粘度变化曲线图;
图3为直写式3D打印机图:(a)整体结构示意图;(b)俯视结构示意图;(c)挤出机结构示意图;
图4为实施例2中样品2的直写成型件3D打印成品图;
图5为实施例3中样品2的直写成型件3D打印成品图;
图6为实施例3中样品2的直写成型件及成型精度分析图;
图7为本发明实施例的碳化硅陶瓷基复合材料3D打印方法的流程示意图。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,38.71份溶剂,0.99份粘结剂,0.3份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。
将上述原料按如下方法制备浆料:
步骤一:将去离子水与海藻酸钠混合,搅拌均匀;搅拌速度为150rad/min,搅拌时间为1小时;静置12小时,制得海藻酸钠溶液。;
步骤二:将碳化硅粉末、炭黑粉末、碳化硅晶须粉末按比例混合,搅拌均匀;搅拌速度为60rad/min,搅拌时间为30分钟;
步骤三:在步骤二预混粉体中加入分散剂聚乙二醇400,搅拌均匀;搅拌速度为60rad/min,搅拌时间为30分钟;
步骤四:在步骤三分散后粉体中加入步骤一配制海藻酸钠溶液,充分搅拌;搅拌速度为500rad/min,搅拌时间为2小时,制得碳化硅陶瓷基复合材料浆料,记为样品1。
实施例2
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,38.41份溶剂,0.99份粘结剂,0.6份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品2。
实施例3
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,38.12份溶剂,0.98份粘结剂,0.9份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品3。
实施例4
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括55份粉体颗粒,33.31份溶剂,0.87份粘结剂,0.27份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品4。
实施例5
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括65份粉体颗粒,43.56份溶剂,1.12份粘结剂,0.98份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品5。
对比例1
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,39份溶剂,1份粘结剂,0份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品6。
对比例2
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括60份粉体颗粒,37.83份溶剂,0.97份粘结剂,1.2份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品7。
对比例3
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括50份粉体颗粒,48.26份溶剂,1.24份粘结剂,0.5份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品8。
对比例4
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括70份粉体颗粒,28.57份溶剂,0.73份粘结剂,0.7份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品9。
对比例5
一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,按重量计份,包括75份粉体颗粒,23.64份溶剂,0.61份粘结剂,0.75份分散剂;所述粉体颗粒为碳化硅(d50=1μm)、碳黑(d50=5μm)、碳化硅晶须(d=0.1-2.5μm),质量比为7:1:3,所述溶剂为去离子水;所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。上述原料按照实施例1的方法制备浆料,记为样品10。
实验例
将上述实施例1-5所得样品1-5,和对比例1-5所得样品6-10进行性能测试。
为了探究分散剂含量改变时SiC陶瓷浆料的粘度变化,我们保证浆料固相含量不变,调整分散剂PEG400的含量从0逐渐增加到2.0wt.%,用粘度计测量出相应的浆料粘度,将实验结果列表并整理为折线图,如图1所示。由图1可知,随着聚乙二醇400分散剂的含量从0(不添加)不断增加到质量分数为2.0wt.%的过程中,浆料的粘度是先减小后增大的。总体来看,当聚乙二醇400的含量为相对于SiC、C粉体颗粒质量的1.0wt.%(样品2)时,浆料的粘度降到最小。
聚乙二醇400是典型的非离子表面活性剂。在其分子结构中,只有醚基(C-O-C)和羟基(-OH),容易与SiC粒子表面氢氧键结合形成的氢键,从而在SiC粒子表面形成一层吸附膜,产生空间位阻效应。各颗粒表面位阻层间产生的空间位阻斥力可以防止颗粒之间的碰撞与沉降,从而实现SiC颗粒在液相中稳定的分布。当分散剂加入量低于1.0wt.%的时候,粉体颗粒表面不能被分散剂完全覆盖,颗粒间容易相互吸引产生聚集,阻碍陶瓷浆料的流动粘度较高,随着分散剂加入量增加,颗粒之间的位阻斥力不断增大,阻碍颗粒团聚,因此粘度随着分散剂含量增加而减小。当分散剂加入量为1wt.%时,分散剂刚好能完全覆盖住SiC颗粒表面,形成均匀单层吸附,空间位阻斥力达到最大,此时浆料粘度降到最低。当分散剂加入量高于1wt.%时,陶瓷颗粒会被过饱和吸附,多余的分散剂以游离状态存在于液相中,游离的分散剂在浆料流动时易产生桥连、缠绕或空缺絮凝,导致浆料的粘度增加。综上,当分散剂聚乙二醇400的含量为1.0wt.%左右时,SiC陶瓷浆料的粘度最小,流动性最佳。
图2为不同固相含量粘度变化曲线图,由图2所示,在一定情况下,浆料中固相含量越高,浆料的粘度也会越高。在固含量低于60wt.%时,浆料的粘度随着固含量的增加缓慢增长,当固含量超过60wt.%时,粘度有了较快的增长,几乎呈指数增长。随着浆料中固含量的增多,在相同体积的浆料中粉体颗粒数量增多,颗粒间距离缩短,颗粒间作用力增强,颗粒之间的接触概率增大,颗粒间趋于团聚,浆料流动过程中的内部阻力增大从而粘度增大。同时,陶瓷浆料颗粒周围受到流动变形的影响,浆料的流动阻力也会增加因此浆料的流变性下降。当固相含量超过一定值后,浆料中粘结剂、分散剂、分散介质无法完全将粉体颗粒粘结,浆料中会存在未溶于液相的粉体颗粒,浆料失去流动性,无法形成流体。
综上,为了制备出流动性好的高密度陶瓷,必须尽可能增加固体含量,然而,过多的固相会导致陶瓷浆料的粘度增加和流动性降低。由图2可知,当固相含量为60wt.%时最适合配制直写成型的浆料,此时固相含量较高,浆料的粘度较低,有较好的流动性,满足气压、螺杆联动挤出机挤出条件。当固相含量过高使得粘度过高时,料筒支持的最大气压压力无法将浆料连续稳定的送至挤出机,导致断丝或无法出丝无法打印。
碳化硅晶须的加入使得素坯经反应烧结后弯曲强度从239.3MPa提升至301.6MPa,断裂韧性从3.4MPa·m1/2提升至4.02MPa·m1/2
将上述实施例2、实施例3所得样品2、3作为浆料进行3D打印直写成型,具体工艺为:
直写成型打印机如图3所示。首先,将预先建模的三维模型放入Simplify3D软件中按最优参数进行切片,将切片文件导入打印机。然后,将配制好的浆料倒入料筒内,连接空气压缩机提供压力将浆料从料筒挤入挤出机内,直写成型时,气压、螺杆联动将浆料从挤出机喷嘴挤出。最后选择切片文件进行打印。
实施例2、3中样品2、3的直写成型件3D打印成品图如图4、图5、图6所示。
对直写成型件3D打印成品进行性能测试,具体测试结果如下:
坯体打印层次分明,整体表面粗糙度较低,浆料线条挤出连续且流畅,分别测量了圆柱体和长方体的尺寸大小,X和Y方向平均尺寸误差为0.2mm,Z方向平均尺寸误差为0.1mm。浆料从喷嘴中挤出堆叠在上一层时,为了使层与层之间粘结更为紧密,圆柱形的喷嘴将圆柱形出丝压为扁平状,扁平状使得X、Y方向产生尺寸误差而Z向由于喷嘴挤压较为平坦,所以X、Y方向尺寸误差会较大于Z方向。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (4)

1.一种直写成型3D打印用碳化硅陶瓷基复合材料浆料,其特征在于,包括以下重量份的组分:55-65份粉体颗粒、33.31-43.56份溶剂、0.87-1.12份粘结剂、0.27-0.98份分散剂,所述粉体颗粒为碳化硅、碳黑、碳化硅晶须;
所述碳化硅、碳黑、碳化硅晶须的质量比为7:1:3;
所述碳化硅平均粒径为1微米、碳黑平均粒径为5微米、碳化硅晶须粒径为0.1-2.5微米;
所述粘结剂为海藻酸钠;所述分散剂为聚乙二醇400。
2.根据权利要求1所述的直写成型3D打印用碳化硅陶瓷基复合材料浆料,其特征在于,所述溶剂为去离子水。
3.权利要求1或2所述的直写成型3D打印用碳化硅陶瓷基复合材料浆料的制备方法,其特征在于,包括以下步骤:
步骤一:将溶剂与粘结剂混合,搅拌均匀,静置12小时,制得粘结剂溶液;
步骤二:将粉体颗粒按比例混合,搅拌均匀,得到预混粉体;
步骤三:在步骤二所得预混粉体中加入分散剂,充分搅拌进行分散,得到分散后粉体;
步骤四:在步骤三所得分散后粉体中加入步骤一配制的粘结剂溶液,充分搅拌,制得碳化硅陶瓷基复合材料浆料。
4.根据权利要求3所述的直写成型3D打印用碳化硅陶瓷基复合材料浆料的制备方法,其特征在于,步骤一中搅拌速度为150rad/min,搅拌时间为1小时;步骤二和步骤三中搅拌速度为60rad/min,搅拌时间为30分钟;步骤四中搅拌速度为500rad/min,搅拌时间为2小时。
CN202211013354.0A 2022-08-23 2022-08-23 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法 Active CN115304389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211013354.0A CN115304389B (zh) 2022-08-23 2022-08-23 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211013354.0A CN115304389B (zh) 2022-08-23 2022-08-23 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法

Publications (2)

Publication Number Publication Date
CN115304389A CN115304389A (zh) 2022-11-08
CN115304389B true CN115304389B (zh) 2023-07-28

Family

ID=83864695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211013354.0A Active CN115304389B (zh) 2022-08-23 2022-08-23 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法

Country Status (1)

Country Link
CN (1) CN115304389B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239385A (zh) * 2023-02-10 2023-06-09 中国科学院金属研究所 一种适用于墨水直写技术的3d打印碳化硅浆料及其制备
CN116675539A (zh) * 2023-06-16 2023-09-01 山田新材料集团有限公司 一种挤出成型3d打印高固含量高导热碳化硅陶瓷制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252753A (ja) * 1987-04-10 1988-10-19 Riken Corp ドツトプリンタ用印字ピン
CN101560105A (zh) * 2009-06-01 2009-10-21 浙江大学 二元纳米协同强化增韧碳化硅陶瓷及其制备方法
CN106431411A (zh) * 2016-07-06 2017-02-22 南通苏源化纤有限公司 T6型碳纳米‑改性碳化硅陶瓷基复合材料
US11149108B1 (en) * 2018-06-26 2021-10-19 National Technology & Engineering Solutions Of Sandia, Llc Self-assembly assisted additive manufacturing of thermosets
CN110330348A (zh) * 2019-05-15 2019-10-15 中南大学 一种直写成型的SiCw/SiC复合材料及其制备方法
CN111151761A (zh) * 2020-01-14 2020-05-15 山东建筑大学 一种基于3d打印的耐磨耐高温数控刀具材料及制备方法
CN113666764B (zh) * 2021-09-15 2022-05-20 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法

Also Published As

Publication number Publication date
CN115304389A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN115304389B (zh) 一种直写成型3d打印用碳化硅陶瓷基复合材料浆料及其制备方法
CN111233485B (zh) 基于高固含量硅系浆料3d打印直写成型复杂结构陶瓷的方法
CN107651963B (zh) 先驱体转化陶瓷的直写成型方法
Zhu et al. Additive manufacturing of SiO2–Al2O3 refractory products via direct ink writing
CN107365158B (zh) 一种用于挤出式3d打印的结构陶瓷膏体及其制备方法
Edirisinghe et al. Flow behaviour of ceramic injection moulding suspensions
Ananthakumar et al. Rheology and packing characteristics of alumina extrusion using boehmite gel as a binder
Ye et al. Study on 3D-Direct Ink Writing based on adding silica submicron-particles to improve the rheological properties of alumina ceramic ink
CN108484131B (zh) 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用
JP5399897B2 (ja) 射出成形又は押出成形のためのマスターバッチの製造方法
US5043118A (en) Whisker-reinforced ceramic matrix composite by injection molding
Ananthakumar et al. Extrusion characteristics of alumina–aluminium titanate composite using boehmite as a reactive binder
CN116354729B (zh) 一种SiC陶瓷零部件及其制备方法与应用
He et al. The effect of surfactants on the performances of ceramic slurry by material extrusion and photo-polymerization combined molding process
CN113878113B (zh) 一种陶瓷-不锈钢复合材料及其制备方法
CN111675536B (zh) 一种高强度3d陶瓷打印组合物
CN115286410A (zh) 一种3d打印碳纳米管增韧碳化硅陶瓷基复合材料浆料及其制备方法
CN117401971A (zh) 可3d挤出打印的柔性陶瓷墨水材料及其制备和打印方法
Xu et al. Combination of direct ink writing and reaction bonded for rapid fabrication of SiCw/SiC composites
Liu et al. Direct Ink Writing of Graphene Oxide Reinforced PDMS Matrix Composites for Improved Mechanical Properties
JP7344998B2 (ja) 三次元印刷に使用できるセラミックスラリーの調製方法及びセラミック製品の製造方法
JP4047956B2 (ja) 炭化ケイ素粉末の成形方法
Çetinel et al. Nanoparticle assisted coagulation of aqueous alumina suspensions
CN115057702B (zh) 用于增材制造氧化锆粉成型材料及其制备方法与施工工艺
CN115819091A (zh) 一种高固含量低粘度微纳多尺度水基陶瓷浆料、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 264200 No. 180, Wenhua West Road, Shandong, Weihai

Applicant after: SHANDONG University

Applicant after: Weihai Institute of industrial technology, Shandong University

Address before: No. 27, Shan Dana Road, Ji'nan, Shandong Province, Shandong

Applicant before: SHANDONG University

Applicant before: Weihai Institute of industrial technology, Shandong University

GR01 Patent grant
GR01 Patent grant