CN103665368B - 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法 - Google Patents

一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法 Download PDF

Info

Publication number
CN103665368B
CN103665368B CN201310613616.1A CN201310613616A CN103665368B CN 103665368 B CN103665368 B CN 103665368B CN 201310613616 A CN201310613616 A CN 201310613616A CN 103665368 B CN103665368 B CN 103665368B
Authority
CN
China
Prior art keywords
ketone
nano
micron
synthetic method
grouped resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310613616.1A
Other languages
English (en)
Other versions
CN103665368A (zh
Inventor
张祥成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHANGJIAGANG XIANGCHENG MEDICAL MATERIAL TECHNOLOGY CO.,LTD.
Original Assignee
Zhangjiagang Xiang Cheng Medical Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Xiang Cheng Medical Mstar Technology Ltd filed Critical Zhangjiagang Xiang Cheng Medical Mstar Technology Ltd
Priority to CN201310613616.1A priority Critical patent/CN103665368B/zh
Publication of CN103665368A publication Critical patent/CN103665368A/zh
Priority to EP14866467.5A priority patent/EP3075756A4/en
Priority to PCT/CN2014/091791 priority patent/WO2015078330A1/zh
Priority to US15/100,541 priority patent/US10106652B2/en
Priority to JP2016535086A priority patent/JP6663349B2/ja
Application granted granted Critical
Publication of CN103665368B publication Critical patent/CN103665368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4093Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚芳醚酮无机复合材料的低温制备方法。目的是将纳米/微米尺度无机物颗粒(氧化铝,氧化硅,羟基磷灰石等单元或多元)添加到聚芳醚酮类高分子聚合物反应体系中,在一步聚合反应完成的同时实现了无机物高比列(>50%)与有机物共混,避免了通常的熔融共混热加工过程引起有机材料的热降解问题.该复合材料适用于航空航天以及工业和医用等技术领域。

Description

一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法
技术领域
本发明涉及一种聚芳醚酮无机复合材料的低温制备方法。该复合材料适用于航空航天以及工业和医用等技术领域。
背景技术
聚芳醚酮(PEAK)是一系列亚苯基环通过醚键和羰基连接而成的聚合物。聚芳醚酮按分子链中醚键、酮基与苯环连接次序和比例的不同,可形成许多不同的聚合物,主要包含5大类:聚醚酮、聚醚醚酮、聚醚醚酮酮、聚醚酮酮、聚醚酮醚酮酮。作为热塑性耐热高分子材料,其具有较高的玻璃化温度和熔点,可在250℃下长期使用,瞬间使用温度可达300℃,在400℃下短时间几乎不分解。因优异的机械力学性能,抗化学腐蚀性能、抗辐射和阻燃性能,耐磨耐冲击性能等,聚芳醚酮在替代金属制造机械零件和工程构件方面得到快速发展,其产品广泛应用于航空航天和核工业等领域。同时,聚芳醚酮还具有良好的生物相容性和抗生物反应能力,它在生物医学领域也有可期待的应用前景。
聚芳醚酮复合材料是以聚芳醚酮为高分子相,通过填充其他功能材料来改善其作为工程材料的性能和扩展应用范围,如热力学性能、耐摩擦磨损性能、生物医用性能等,因为各种材料在性能上互相取长补短,产生协同效应,使聚芳醚酮复合材料的综合性能优于原组成材料而满足各种不同的要求,受到广泛的重视,因而发展极快。聚芳醚酮复合材料的主要制备方法包括无机填料填充改性、纤维增强改性、聚合物共混改性及表面改性。常见的关于聚芳醚酮复合材料报道及专利多为玻璃纤维、碳纤维、碳粉、碳纳米管、石墨或碳化硅、氮化硅等加强型聚醚醚酮,或是与氧化铝、碳酸钙、二氧化硅、沸石等无机材料共混模压型聚醚醚酮。如专利“一种聚芳醚酮基耐磨复合材料及其制备方法”(201310210216.5),就是用350℃左右的高温,通过物理混合的方法把制备好的高分子与碳纤维,润滑剂,纳米石墨粉等按照不同的比例和聚芳醚酮混合。又如专利“复合材料,成型体,具有成型体的电子装置以及制造成型体的方法”(201180038632.1),同样采用物理混合的方法把无机材料和高分子进行混合。但是物理混合的方法通常会带来以下两点问题:1)无机纳米/微米颗粒混合时分散性不均匀的问题;2)熔融共混热加工过程而引起有机材料的热降解。在此我们提出了一种在纳米/微米尺度无机种床上的聚芳醚酮树脂的制备方法。其特点是:利用纳米/微米尺度无机物颗粒表面作为载体,在低温,如低于0℃,通过亲电取代法进行聚合反应;无机纳米/微粒材料与聚合物的单体组成比可任意设定。特别是适用于高含量无机复合材料,如无机材料重量达到50%以上,最高可达90%以上。解决了聚芳醚酮类化合物因熔点高的物性,在高温条件下与无机纳米/微米粉粒混合时降解的问题;解决了聚芳醚酮类化合物与无机纳米/微米颗粒混合时分散性不均匀的问题。
发明内容
本发明描述了一种在纳米/微米尺度无机种床上的低温聚芳醚酮树脂合成方法,目的是将纳米/微米尺度无机物颗粒(氧化铝,氧化硅,羟基磷灰石等单元或多元)添加到聚芳醚酮类高分子聚合物反应体系中,在一步聚合反应完成的同时实现了无机物高比列(>50%)与有机物共混,避免了通常的熔融共混热加工过程引起有机材料的热降解问题。
本发明的目的通过如下措施来实现:
本发明中,合成制备步骤为:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入纳米/微米尺度无机颗粒(陶瓷,玻璃,磷酸钙),AlCl3,二氯乙烷,通高纯氮气1-2小时,低温冷却到-5至-20℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将N-甲基吡咯烷酮与二氯乙烷混液,二苯醚及对苯二甲酞氯等三种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入二苯醚反应3小时,最后将甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂复合材料,产率达到90%以上。
本发明中,纳米/微米尺度无机颗粒直径的范围分别在20nm至50μm之间。
本发明中,纳米/微米尺度无机颗粒种类包括陶瓷,玻璃或磷酸钙等。
本发明中,聚芳醚酮树脂至少包括以下聚芳醚酮中的一种:聚醚酮、聚醚醚酮、聚醚醚酮酮、聚醚酮酮、聚醚酮醚酮酮等。
本发明中,陶瓷至少包括一种以下主要成分:Al2O3,BeO,ZrO2,MgO,TiO2,BC,SiC,WC。
本发明中,玻璃至少包括一种以下组分SiO2,Na2O,K2O,CaO,MgO,BaO,PdO,Al2O3,ZnO,B2O3,P2O5等。
本发明中,磷酸钙至少包括一个以下组分Ca(H2PO4)2,Ca3(PO4)2,Ca3(PO4)2,Ca5(PO4)3(OH),Ca5(PO4)3(OH),Ca10(PO4)6(OH,F,Cl,Br)2,Ca8H2(PO4)6.5H2O等。
本发明中,将纳米/微米尺度无机颗粒添加到聚芳醚酮类高分子聚合物单体反应体系中,一步聚合反应得到最终产物。
本发明中,反应物组成比可任意设定,最终获得的复合产物中无机材料含量可在50-90%(wt)之间。
本发明中,聚芳醚酮树脂的聚合温度控制在在0至-20℃。
附图说明
图1为聚芳醚酮无机复合材料电镜表征照片;图中:1、Al2O3颗粒载体,2、生长了聚醚酮酮(PEKK)的Al2O3颗粒。
具体实施方案
实施例1:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入5g粒径为300nm的Al2O3,4~5g AlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25ml N-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-陶瓷类复合材料。
实施例2:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入5g粒径为20μm的Al2O3,4~5g AlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25mlN-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-陶瓷类复合材料。
实施例3:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入7g粒径为50nm的SiO2,4~5g AlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25mlN-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-玻璃类复合材料。
实施例4:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入7g粒径为20μm的SiO2,4~5gAlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25mlN-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-玻璃类复合材料。
实施例5:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入7g粒径为20nm的HAP,4~5g AlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25mlN-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-磷酸钙类复合材料。
实施例6:
在装有机械搅拌、温度计、氮气导管的500ml三口瓶中分别加入7g粒径为20μm的HAP,4~5g AlCl3,10ml二氯乙烷,通高纯氮气1-2小时,低温冷却到-10至-15℃时开启搅拌器,在此温度下保持反应器中的固体全部溶解。将1.25mlN-甲基吡咯烷酮与5ml二氯乙烷混液,1.6ml二苯醚及2.03g对苯二甲酞氯3种反应试剂分别滴依次加到三口瓶中,在此温度下(-5至-15℃)反应1-2小时后,将反应体系温度升至15-26℃继续反应10-15小时,再向三口瓶中加入400μl二苯醚反应3小时,最后将100ml甲醇加入三口瓶中,析出白色固体。用蒸馏水,甲醇,蒸馏水依次洗涤白色固体,最后产物在80-120℃干燥10-20小时,得到本专利所述的聚芳醚酮树脂-磷酸钙类复合材料。

Claims (10)

1.一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其中纳米/微米尺度无机材料作合成发生高分子聚合反应的种子床,聚芳醚酮树脂在此基底表面聚合。
2.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,纳米/微米尺度无机颗粒直径的范围分别在30nm至50μm之间。
3.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,纳米/微米尺度无机颗粒种类包括陶瓷,玻璃或磷酸钙。
4.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,聚芳醚酮树脂至少包括以下聚芳醚酮中的一种:聚醚酮、聚醚醚酮、聚醚醚酮酮、聚醚酮酮、聚醚酮醚酮酮。
5.按权利要求3所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,陶瓷至少包括一种以下主要成分:Al2O3,BeO,ZrO2,MgO,TiO2,BC,SiC,WC。
6.按权利要求3所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,玻璃至少包括一种以下组分SiO2,Na2O,K2O,CaO,MgO,BaO,PdO,Al2O3,ZnO,B2O3,P2O5
7.按权利要求3所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,磷酸钙至少包括一个以下组分Ca(H2PO4)2,Ca3(PO4)2,Ca3(PO4)2,Ca5(PO4)3(OH),Ca5(PO4)3(OH),Ca10(PO4)6(OH,F,Cl,Br)2,Ca8H2(PO4)6.5H2O。
8.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,将纳米/微米尺度无机颗粒添加到聚芳醚酮类高分子聚合物单体反应体系中,一步聚合反应得到最终产物。
9.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,反应物组成比可任意设定,最终获得的复合产物中无机材料含量可在50-90%(wt)之间。
10.按权利要求1所述的在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法,其特征在于,聚芳醚酮树脂的聚合温度控制在0至-20摄氏度。
CN201310613616.1A 2013-11-28 2013-11-28 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法 Active CN103665368B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310613616.1A CN103665368B (zh) 2013-11-28 2013-11-28 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法
EP14866467.5A EP3075756A4 (en) 2013-11-28 2014-11-20 Method for low-temperature synthesis of polyaryletherketone resin on nano/micron-scale inorganic seedbed
PCT/CN2014/091791 WO2015078330A1 (zh) 2013-11-28 2014-11-20 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法
US15/100,541 US10106652B2 (en) 2013-11-28 2014-11-20 Low-temperature synthesis of polyaryletherketone resin onto nano/micron-scale inorganic seedbed
JP2016535086A JP6663349B2 (ja) 2013-11-28 2014-11-20 ナノ/マイクロサイズ無機種床上でのポリアリールエーテルケトン樹脂の合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310613616.1A CN103665368B (zh) 2013-11-28 2013-11-28 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法

Publications (2)

Publication Number Publication Date
CN103665368A CN103665368A (zh) 2014-03-26
CN103665368B true CN103665368B (zh) 2017-01-11

Family

ID=50304215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310613616.1A Active CN103665368B (zh) 2013-11-28 2013-11-28 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法

Country Status (5)

Country Link
US (1) US10106652B2 (zh)
EP (1) EP3075756A4 (zh)
JP (1) JP6663349B2 (zh)
CN (1) CN103665368B (zh)
WO (1) WO2015078330A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665368B (zh) 2013-11-28 2017-01-11 张家港祥成医用材料科技有限公司 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法
FR3039157B1 (fr) * 2015-07-22 2019-06-28 Arkema France Composition a base de polyarylene-ether-cetone (paek) stable a l'etat fondu et procede de stabilisation d'une telle composition
CN108659206A (zh) * 2017-03-27 2018-10-16 张家港祥成医用材料科技有限公司 一种高钙磷无机材料含量的有机无机纳米仿生复合材料的制备方法
CN108690189A (zh) * 2017-04-07 2018-10-23 中国科学院苏州纳米技术与纳米仿生研究所 聚醚酮酮/羟基磷灰石复合材料、其制备方法与应用
CN109364305B (zh) * 2018-11-27 2021-05-04 中国科学院兰州化学物理研究所 一种纳米或微米陶瓷颗粒填充的聚醚醚酮基人工关节材料
JP6901530B2 (ja) * 2019-08-07 2021-07-14 株式会社フジクラ 光通信部品用樹脂組成物及びこれを用いた光通信部品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956240A (en) * 1973-07-12 1976-05-11 Raychem Corporation Novel polyketones
US4361693A (en) * 1981-07-08 1982-11-30 Raychem Corporation Preparation of poly(arylene ketones) using thio- and dithiocarbonic acid derivatives
DE3416455A1 (de) * 1984-05-04 1985-11-07 Lorenz-Polygon-Ausbau Gmbh, 4600 Dortmund Fuer aus stahlprofilen, insbesondere aus gi-profilen zusammengesetzte tuerstoecke des streckenausbaus im berg- und tunnelbau zur kraftschluessigen verbindung je eines kappenendes mit einem schraeggeneigten stempel vorgesehener sicherheitskappschuh
CA1246297A (en) * 1985-03-11 1988-12-06 Robert A. Clendinning Process for preparing poly(aryl ether ketones)
JPH04202526A (ja) * 1990-11-30 1992-07-23 Toyobo Co Ltd 芳香族ポリケトン類およびその製造方法
DE4420784A1 (de) * 1994-06-15 1995-12-21 Basf Ag Verfahren zur Reinigung von Polyarylenetherketonen
DE4424039A1 (de) * 1994-07-11 1996-01-18 Basf Ag Amphotere Metalloxide als Cokatalysator bei der elektrophilen Synthese von Polyaryletherketonen
CN101067021A (zh) * 2006-09-19 2007-11-07 张驰 纳米氧化铝改性聚芳醚酮聚合物及其纳米瓷膜漆
TW200705740A (en) * 2006-10-20 2007-02-01 Univ Nat Central Manufacture method of nano-composite-proton semipermeable membrane with adjustable pores
GB0625484D0 (en) * 2006-12-21 2007-01-31 Victrex Mfg Ltd Composite material
CN101519399B (zh) * 2009-03-27 2012-05-23 武汉工程大学 芳香环状聚醚酮齐聚物及其制备方法
DE102010038986A1 (de) 2010-08-05 2012-02-09 Endress + Hauser Gmbh + Co. Kg Kompositwerkstoff, Formkörper, elektronisches Gerät mit Formkörper, und Verfahren zur Herstellung für einen Formkörper
CN103278886B (zh) 2013-05-30 2015-05-13 上海理工大学 太赫兹双波长环路耦合器
CN103665368B (zh) 2013-11-28 2017-01-11 张家港祥成医用材料科技有限公司 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法

Also Published As

Publication number Publication date
JP2016538399A (ja) 2016-12-08
US10106652B2 (en) 2018-10-23
CN103665368A (zh) 2014-03-26
EP3075756A1 (en) 2016-10-05
WO2015078330A1 (zh) 2015-06-04
US20160297929A1 (en) 2016-10-13
EP3075756A4 (en) 2017-07-26
JP6663349B2 (ja) 2020-03-11

Similar Documents

Publication Publication Date Title
CN103665368B (zh) 一种在纳米/微米尺度无机种床上的聚芳醚酮树脂低温合成方法
CN110494467A (zh) 固化树脂用组合物、该组合物的固化物、该组合物及该固化物的制造方法、以及半导体装置
TW200806749A (en) Curable silicone resin composition and cured body thereof
KR102427036B1 (ko) 경화 수지용 조성물, 상기 조성물의 경화물, 상기 조성물 및 상기 경화물의 제조방법, 및 반도체 장치
CN103772926A (zh) 高性能阻燃pla/石墨烯纳米片复合材料及其制备方法
EP3530701A1 (en) Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
CN108424605B (zh) 一种聚醚醚酮3d打印材料及其3d打印成型方法
Hernandez-Padron et al. Development of hybrid materials consisting of SiO2 microparticles embedded in phenolic-formaldehydic resin polymer matrices
Deng et al. Nanodiamond as an efficient nucleating agent for polyphenylene sulfide
CN113416305B (zh) 长纤维增强聚芳醚酮复合材料及其制备方法
EP3875540A1 (en) Powder mixture, method for producing same, powder composition and method for producing three-dimensional model
CN104559048B (zh) 一种硅藻土/聚醚醚酮复合材料及其制备方法
CN1054780A (zh) 聚亚芳基硫醚组合物及其制备方法
CN106189220B (zh) 一种石墨烯改性玻璃纤维增强树脂复合材料及其制备方法
CN104356589B (zh) 碳纤维增强耐摩擦聚甲醛复合材料及制备方法
CN105940036A (zh) 聚合物材料
CN105524448A (zh) 一种聚合物加工助剂在3d打印中的应用
CN111500014B (zh) 一种聚醚醚酮复合材料及其制备方法
CN101982487A (zh) 一种专用于聚乙烯轮胎包装膜的耐热新材料及其制备方法
CN102993990B (zh) 一种厌氧胶黏剂
CN102181025B (zh) 一种纳米二氧化硅和橡胶协同改性酚醛树脂的制备方法
CN108547151A (zh) 一种水性环氧树脂碳纤维上浆剂
CN107541011A (zh) 一种高性能聚醚醚酮复合材料配方及其制备方法
JPH09216938A (ja) フェノール樹脂硬化エポキシ樹脂とその製造法
JPH08259782A (ja) 熱硬化性樹脂と金属酸化物の複合体及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100015 Beijing Chaoyang District, East Jiuxianqiao Road, building M2, floor 1, No. 5

Applicant after: BEIJING YICHENG BIOELECTRONICS TECHNOLOGY Co.,Ltd.

Address before: 100015 Beijing Chaoyang District, East Jiuxianqiao Road, building M2, floor 1, No. 5

Applicant before: BEIJING YICHENG BIOELECTRONICS TECHNOLOGY Co.,Ltd.

COR Change of bibliographic data
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161117

Address after: 215600 building A, building 309B, emerging industry incubation center, Zhangjiagang Free Trade Zone, Suzhou, Jiangsu

Applicant after: ZHANGJIAGANG XIANGCHENG MEDICAL MATERIAL TECHNOLOGY CO.,LTD.

Address before: 100015 Beijing Chaoyang District, East Jiuxianqiao Road, building M2, floor 1, No. 5

Applicant before: BEIJING YICHENG BIOELECTRONICS TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: ZHANGJIAGANG XIANGCHENG MEDICAL MATERIAL TECHNOLOGY CO.,LTD.

Document name: Review Business Special Letter