CN103664942A - 一种分子印迹与超声耦合提取苦参碱的方法 - Google Patents

一种分子印迹与超声耦合提取苦参碱的方法 Download PDF

Info

Publication number
CN103664942A
CN103664942A CN201310679956.4A CN201310679956A CN103664942A CN 103664942 A CN103664942 A CN 103664942A CN 201310679956 A CN201310679956 A CN 201310679956A CN 103664942 A CN103664942 A CN 103664942A
Authority
CN
China
Prior art keywords
matrine
molecular imprinting
extracting
ultrasonic
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310679956.4A
Other languages
English (en)
Other versions
CN103664942B (zh
Inventor
王立升
蒋敏捷
刘旭
江俊
杨华
周永红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201310679956.4A priority Critical patent/CN103664942B/zh
Publication of CN103664942A publication Critical patent/CN103664942A/zh
Application granted granted Critical
Publication of CN103664942B publication Critical patent/CN103664942B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供一种从山豆根或苦参中提取苦参碱的方法,该方法是以苦参碱分子印迹材料与超声提取耦合提取苦参碱,超声条件下提取的苦参碱吸附于分子印迹聚合物上,从而降低苦参碱在溶液中的分配,提高提取效率;本发明工艺环保,没有用到任何有机试剂,既能提高提取效率,又容易获得纯度较高的苦参碱水溶液。

Description

一种分子印迹与超声耦合提取苦参碱的方法
技术领域
本发明属于医药加工生产领域,涉及一种苦参碱的提取方法,尤其是从山豆根中提取苦参碱。
背景技术
苦参碱来源于山豆根、苦参、苦豆子等植物,是一类具有抗肿瘤、抗菌和抗病毒等多种药理作用与功效的生物碱。由于苦参碱作为抗癌药物而具有重大的开发价值,近年来备受关注。
分子印迹技术是目前研究的热点,是一种比较具有产业化价值的技术。目前,全世界至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的几十个国家、上百个学术机构和企事业团体在从事分子印迹聚合物(molecular imprinting polymers, MIPs)的研究和开发,发展如此迅速,主要因为它具有构效预定性、特异识别性的特点,分子印迹技术一般是将目标分子作为模板分子,选择在官能团结构上与之相匹配的功能单体,让两者间发生共价作用或非共价作用,再加入交联剂通过热聚合或光聚合,在引发剂的致孔剂的诱发下产生聚合反应,从而形成包裹有目标分子的高聚物,即分子印迹聚合物(MIPs),随后,利用物理或者化学方法,将目标分子从聚合物内部洗脱出来,以此获得具有与目标分子形状相同且官能团位置一定的记忆空穴。
目前苦参碱的生产工艺主要是溶剂提取法,其工艺繁琐,收率低,污染严重。超声波提取(也称为超声波萃取)以其提取温度低、提取率高、提取时间短的独特优势被应用于中药材和各种动、植物有效成分的提取,是替代传统工艺方法实现高效、节能、环保式提取的现代高新技术手段。关于超声提取苦参碱的报道,目前只涉及相关参数的调整,如超声功率、频率、溶剂和时间等,而且提取往往要经过数次才能尽可能提取出目标物质。
发明内容
本发明的目的在于克服上述技术问题,提供一种从山豆根或苦参中提取苦参碱的方法。该方法是以苦参碱分子印迹材料与超声提取耦合提取苦参碱,超声条件下提取的苦参碱吸附于分子印迹聚合物上,从而降低苦参碱在溶液中的分配,提高提取效率。
本发明是通过如下技术方案实现:
    一种分子印迹与超声耦合提取苦参碱的方法,其特征在于利用超声提取设备进行提取,水作为提取媒介,同时利用分子印迹材料吸附提取液中的苦参碱以降低提取液中苦参碱的浓度,从而提高提取效率;
分子印迹材料的制备:
将1~1.5mmol苦参碱与6mmol甲基丙烯酸溶解在5~10ml氯仿中,置于0℃下保持30min,然后加入15~30mmol二甲基丙烯酸乙二醇酯与15~30mmol N-异丙基丙烯酰胺和40~100mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得。
优选为:将1mmol苦参碱与6mmol甲基丙烯酸溶解在6ml氯仿中,置于0℃下保持30min,然后加入25mmol二甲基丙烯酸乙二醇酯与25mmol N-异丙基丙烯酰胺和50mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得。
在超声提取苦参碱的同时,在提取液中加入苦参碱分子印迹材料,以吸附苦参碱,降低提取液中苦参碱的浓度,使得提取效率提高;
提取完毕,先用热水(38℃以上)洗脱吸附在分子印迹上的杂质,再用冷水(低于38℃)冲洗,使聚合物发生溶胀,从而对于苦参碱的特异性吸附转变为非特异性吸附,利于苦参碱的解吸。
本发明制备的印迹材料最低临界溶解温度(LCST)为38℃左右,超声提取因为会积热,温度很容易达到38℃以上,不用外加热源,节能环保;不同温度下水溶液中的溶胀度见图1,激光粒度仪(Malvern Mastersizer 2000 Worcester, UK)。
本发明公开的一种分子印迹与超声耦合提取苦参碱的方法,工艺环保,没有用到任何有机试剂,既提高了超声提取效率,又容易获得纯度较高的苦参碱水溶液(仅通过调节洗脱剂温度,即能释放得到纯度较高的苦参碱水溶液)。
本发明还以相同的制备方法,考察了不同含量的的二甲基丙烯酸乙二醇酯与N-异丙基丙烯酰胺对吸附的影响,制备了四组聚合物比较其吸附情况,具体为:
                                                 
Figure 2013106799564100002DEST_PATH_IMAGE001
各聚合物在8mmol/L 50℃苦参碱溶液中的吸附情况见图2,可见本发明制备条件下,二甲基丙烯酸乙二醇酯与N-异丙基丙烯酰胺的比例为1:1时,特异性吸附最大。
附图说明
图1 本发明优选法制备的MIP在不同温度下的水溶液中的溶胀度
图2 各组聚合物在8mmol/L 50℃苦参碱溶液中的吸附情况                      
图3 水提与MIP耦合提取对比图
图4 水作提取媒介和5%亚硫酸氢钠溶液作为提取媒介的液相色谱对比图
图5 为不同溶剂量洗脱液相色谱图
具体实施方式
实施例1
分子印迹的制备
将1.5mmol苦参碱与6mmol甲基丙烯酸溶解在10ml氯仿中,置于0℃下保持30min,然后加入30mmol二甲基丙烯酸乙二醇酯与30mmol N-异丙基丙烯酰胺和100mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得。
实施例2
分子印迹的制备
将1.2mmol苦参碱与6mmol甲基丙烯酸溶解在5ml氯仿中,置于0℃下保持30min,然后加入15mmol二甲基丙烯酸乙二醇酯与15mmol N-异丙基丙烯酰胺和40mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得。
实施例3
分子印迹的制备
    将1mmol苦参碱与6mmol甲基丙烯酸溶解在6ml氯仿中,置于0℃下保持30min,然后加入25mmol二甲基丙烯酸乙二醇酯与25mmol N-异丙基丙烯酰胺和50mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得MIP。
同时制备未添加苦参碱模板分子的空白对照聚合物NIP。
MIP与NIP在8mmol/L时,在不同温度下的吸附情况见图2 。
实施例4
超声与分子印迹耦合提取苦参碱
取山豆根6g,作为6份,每份1g,用尼龙膜(75μm,使药材不能与分子印迹聚合物直接接触)包裹,分别置于含有10ml蒸馏水的试管中,试管中包含0.5g分子印迹聚合物,启动超声设备(250W,40MHz),初始温度40℃,分别于5、10、15、20、30、60min停止超声,取出分子印迹材料,用25℃ 50ml水冲洗,计算分子印迹材料吸附的苦参碱及溶液中的苦参碱,二者相加即为提取脱离山豆根药材的苦参碱,见图3(solution contain MIP );
同样制备不包含分子印迹聚合物的空白对照样品6份,于相同时间点取样,计算溶液中苦参碱的量;见图3(solution without MIP);通过对比得知,在存在分子印迹聚合物的情况下,能极大的提高提取效率。
实施例5
    同实施例4,用5%亚硫酸氢钠溶液代替水作为提取溶剂,可将苦参碱的类似物氧化苦参碱(OMT)和氧化槐果碱(OSC)以及槐果碱(SC),还原为苦参碱,从而提高收率。
图4(a)为1g山豆根药材,10ml水作为提取溶剂,超声提取30min。图4(b)为相同条件,以5%亚硫酸氢钠溶液代替水作为提取溶剂。可见氧化苦参碱(OMT)及氧化槐果碱(OSC)及槐果碱(SC)完全还原为苦参碱(MT)。仪器及色谱条件为:岛津LC-20A,LC-20AT泵,SPD-20A检测器,SIL-20进样器;LCsoluton色谱工作站;KQ5200B型超声清洗器;甲醇:乙腈:乙醇:0.1%磷酸溶液(42:36:10:12);色谱柱:GL Sciences Inertsil ODS-SP 5μm 4.6×250mm。
 
实施例6
    同实施例5,用5%亚硫酸氢钠溶液代替水作为提取溶剂,提取毕,将吸附了苦参碱的分子印迹聚合物3份,装载SPE柱,分别用20、40、60倍MIP干重的50℃的水冲洗(即20ml、40ml、60ml),再用30倍 25℃水冲洗,即通过热水洗脱杂质后,再用冷水使聚合物发生溶胀,即能得到纯度较高的苦参碱溶液,见图5,20倍 50℃水洗脱,见(A),再用30倍 25℃水洗脱,见(a);40倍 50℃水洗脱,见(B),再用30倍 25℃水洗脱,见(b);60倍 50℃水洗脱,见(C),再用30倍 25℃水洗脱,见(c)。为了得到较高的纯度或较高的收率,可以调节洗脱剂的用量,这不限制本发明的范围。

Claims (5)

1.一种分子印迹与超声耦合提取苦参碱的方法,其特征在于以山豆根或苦参作为药材来源,利用超声提取设备进行提取,水作为提取媒介,同时利用分子印迹材料吸附提取液中的苦参碱以降低提取液中苦参碱的浓度,从而提高提取效率,提取毕,洗脱分子印迹上吸附的苦参碱即可;
    所述分子印迹材料由如下方法制得:将1-1.5mmol苦参碱与6mmol甲基丙烯酸溶解在5-10ml氯仿中,置于0℃下保持30min,然后加入15-30mmol二甲基丙烯酸乙二醇酯与15-30mmol N-异丙基丙烯酰胺和40-100mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即可得到分子印迹材料。
2.根据权利要求1所述的一种分子印迹与超声耦合提取苦参碱的方法,其特征在于所述分子印迹材料由如下方法制得:
将1mmol苦参碱与6mmol甲基丙烯酸溶解在6ml氯仿中,置于0℃下保持30min,然后加入25mmol二甲基丙烯酸乙二醇酯与25mmol N-异丙基丙烯酰胺和50mg偶氮二异丁腈,混合后,通入氮气,搅拌至完全溶解,通氮气10min,封口,在65℃条件反应直至聚合完全,粉碎,过200目筛,用甲醇:乙酸(9:1)洗脱苦参碱,即得。
3.根据权利要求1或2所述的一种分子印迹与超声耦合提取苦参碱的方法,其特征在于所述提取媒介为5%亚硫酸氢钠溶液。
4.根据权利要求1或2所述的一种分子印迹与超声耦合提取苦参碱的方法,其特征在于所述超声提取设备设置为250W,40MHz。
5.根据权利要求1或2所述的一种分子印迹与超声耦合提取苦参碱的方法,其特征在于提取完毕,先用60倍印迹材料重量的50℃水洗脱吸附在印记材料上的杂质,再用30倍25℃的水洗脱即可得到纯度较高的苦参碱溶液。
CN201310679956.4A 2013-12-16 2013-12-16 一种分子印迹与超声耦合提取苦参碱的方法 Expired - Fee Related CN103664942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310679956.4A CN103664942B (zh) 2013-12-16 2013-12-16 一种分子印迹与超声耦合提取苦参碱的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310679956.4A CN103664942B (zh) 2013-12-16 2013-12-16 一种分子印迹与超声耦合提取苦参碱的方法

Publications (2)

Publication Number Publication Date
CN103664942A true CN103664942A (zh) 2014-03-26
CN103664942B CN103664942B (zh) 2015-10-21

Family

ID=50303808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310679956.4A Expired - Fee Related CN103664942B (zh) 2013-12-16 2013-12-16 一种分子印迹与超声耦合提取苦参碱的方法

Country Status (1)

Country Link
CN (1) CN103664942B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045823A (zh) * 2016-06-30 2016-10-26 卢月莲 连钱草酚的提取方法
CN106074629A (zh) * 2016-06-30 2016-11-09 卢月莲 分子印迹与超声耦合提取灵芝三萜的方法
CN106117298A (zh) * 2016-06-30 2016-11-16 卢月莲 分子印迹与超声耦合提取灵芝酸的办法
CN106117386A (zh) * 2016-06-30 2016-11-16 卢月莲 分子印迹与超声耦合提取灵芝多糖的方法
CN106279488B (zh) * 2016-08-15 2018-05-01 西藏自治区农牧科学院 砂生槐三种生物碱同时提取的分子印迹聚合物的制备及萃取方法
CN111574347A (zh) * 2020-05-27 2020-08-25 广西大学 一种从茉莉花渣中提取茉莉酮和茉莉内酯的分子印迹方法
CN112174963A (zh) * 2020-10-13 2021-01-05 石家庄正道动物药业有限公司 一种苦参碱的加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793143A (zh) * 2005-12-27 2006-06-28 中国科学院山西煤炭化学研究所 一种生产高纯度氧化苦参碱的方法
CN101337960A (zh) * 2008-08-29 2009-01-07 西安交通大学 一种从苦参中提取苦参碱的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793143A (zh) * 2005-12-27 2006-06-28 中国科学院山西煤炭化学研究所 一种生产高纯度氧化苦参碱的方法
CN101337960A (zh) * 2008-08-29 2009-01-07 西安交通大学 一种从苦参中提取苦参碱的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045823A (zh) * 2016-06-30 2016-10-26 卢月莲 连钱草酚的提取方法
CN106074629A (zh) * 2016-06-30 2016-11-09 卢月莲 分子印迹与超声耦合提取灵芝三萜的方法
CN106117298A (zh) * 2016-06-30 2016-11-16 卢月莲 分子印迹与超声耦合提取灵芝酸的办法
CN106117386A (zh) * 2016-06-30 2016-11-16 卢月莲 分子印迹与超声耦合提取灵芝多糖的方法
CN106279488B (zh) * 2016-08-15 2018-05-01 西藏自治区农牧科学院 砂生槐三种生物碱同时提取的分子印迹聚合物的制备及萃取方法
CN111574347A (zh) * 2020-05-27 2020-08-25 广西大学 一种从茉莉花渣中提取茉莉酮和茉莉内酯的分子印迹方法
CN112174963A (zh) * 2020-10-13 2021-01-05 石家庄正道动物药业有限公司 一种苦参碱的加工方法
CN112174963B (zh) * 2020-10-13 2022-02-01 石家庄正道动物药业有限公司 一种苦参碱的加工方法

Also Published As

Publication number Publication date
CN103664942B (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
CN103664942B (zh) 一种分子印迹与超声耦合提取苦参碱的方法
CN103134871B (zh) 高效液相色谱法检测乌头类生物碱用的供试品溶液的制备方法
CN103408602B (zh) 一种从藏茵陈中分离制备四种苷类化学对照品的方法
CN103497277B (zh) 黄芩素分子印迹聚合物及其制备方法和应用
CN102093456B (zh) 一种从黄芪中提取黄芪甲苷iv的方法
CN105548392B (zh) 利用高效液相色谱同时检测畜禽粪便中多种抗生素的方法
CN103739602A (zh) 一种苦参碱的提取方法
CN104415573A (zh) 一种延胡索提取物中叔胺碱和季铵碱的分类制备方法
CN102631414A (zh) 地不容总生物碱提取纯化工艺
CN101791491A (zh) 一种在线低、中、高压结合的二维制备液相色谱系统
CN101177499A (zh) 一种雌二醇分子印迹聚合物的制备方法
CN104997840A (zh) 一种异叶青兰五环三萜类组分的样品前处理方法及其应用
CN103396512A (zh) 混合模板分子印迹聚合物及其固相萃取柱的制备方法和应用
CN102070753B (zh) 一种抗凝血鼠药大隆分子印迹聚合物及其作为固相萃取剂的应用
CN102135527B (zh) 利用基质固相分散技术检测土壤中抗生素残留的方法
CN103784480B (zh) 黄绿蜜环菌抗氧化活性组分的制备方法及其应用
CN105092744A (zh) 广金钱草总黄酮提取物的特征图谱及其建立方法和应用
CN103145775B (zh) 高纯度棒柄花苷a的制备及其质量控制方法
CN101880269B (zh) 二萜单体及从大青中分离制备二萜单体的方法
CN103512975A (zh) Hplc法分析蛹虫草子实体和残基中有效物含量的方法
CN104710501A (zh) 一种从雷公藤提取物中快速制备雷公藤红素化学对照品的方法
CN103641949A (zh) 用于苦参碱分离提纯的分子印迹材料及其制备方法
CN103235067A (zh) 一种从芒果中富集具抗氧化活性的没食子单宁的方法
CN202870045U (zh) 一种三段式二维液相色谱系统
CN101825611A (zh) 一种检测天麻多糖中单糖组成的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151021