CN103647063B - Ni-MH二次电池用贮氢电极合金及其制备方法 - Google Patents

Ni-MH二次电池用贮氢电极合金及其制备方法 Download PDF

Info

Publication number
CN103647063B
CN103647063B CN201310645999.0A CN201310645999A CN103647063B CN 103647063 B CN103647063 B CN 103647063B CN 201310645999 A CN201310645999 A CN 201310645999A CN 103647063 B CN103647063 B CN 103647063B
Authority
CN
China
Prior art keywords
alloy
rare earth
preparation
earth element
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310645999.0A
Other languages
English (en)
Other versions
CN103647063A (zh
Inventor
张羊换
李保卫
任慧平
张胤
胡锋
刘卓成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN201310645999.0A priority Critical patent/CN103647063B/zh
Publication of CN103647063A publication Critical patent/CN103647063A/zh
Application granted granted Critical
Publication of CN103647063B publication Critical patent/CN103647063B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种Ni-MH二次电池用贮氢电极合金及其制备方法,化学式组成为:RE1-xMgxTiyNizAlmSin;0.2≤x≤0.3,0.02≤y≤0.08,3.0≤z≤3.5,0.05≤m≤0.15,0.05≤n≤0.15。稀土元素除含有镧以外,还必须含有钐、钇、钕、镨中的至少一种。制备方法是在惰性气体保护下采用感应加热熔炼,将熔融合金直接注入水冷铜模,在惰性气体保护下随炉冷却至室温,获得合金铸锭,在真空热处理炉中均匀退火;本发明合金中添加钛及硅,提高合金的耐蚀性,改善合金的电化学循环稳定性。充分利用稀土元素,使合金具有良好的综合电化学性能。合金的制备工艺易于掌握,适用于规模化生产。

Description

Ni-MH二次电池用贮氢电极合金及其制备方法
技术领域
本发明属于贮氢合金材料技术领域,特别是提供了一种Ni-MH二次电池用高容量长寿命RE-Mg-Ti-Ni-Al-Si系A2B7型贮氢电极合金及其制备方法。
背景技术
Ni-MH电池由于其优良的性能被广泛地应用于小型电子设备及混合动力汽车,特别是稀土基AB5型贮氢合金已经在中国及日本实现了大规模产业化。然而,由于这种合金的容量偏低(其理论电化学容量也只有372mAh/g),正在受到锂离子电池的挑战,特别是在小型电子设备领域,Ni-MH电池所占份额日渐减少。
因此,研究一种高容量的新型电极合金迫在眉睫。
1997年,日本研究者Kadir.K和Kohno等发现La0.7Mg0.3Ni2.8Co0.5合金的最大放电容量可达410mAh/g,被认为是最具应用前景的新型电极材料。然而,合金的电化学循环稳定性较差,难以满足Ni-MH电池的使用要求。
围绕如何提高合金的电化学循环稳定性的关键问题,国内众多研究单位在国家“863计划”等项目的支持下做了大量的卓有成效的工作,特别是浙江大学、钢铁研究总院、有色金属研究院等单位的工作尤为突出。
研究发现,导致合金容量衰退的主要原因是合金在吸放氢过程中的粉化及电解液的腐蚀氧化,由于合金中含有极易腐蚀的元素镁,因此,提高合金的耐蚀性成为问题的核心。
元素替代及通过制备工艺技术改善合金的组织结构被认为是提高合金性能的有效方法。
发明内容
本发明需要解决的技术问题就在于克服现有技术的缺陷,提供一种Ni-MH二次电池用贮氢电极合金及其制备方法,通过本发明,使贮氢电极合金在保持高容量的前提下电化学循环稳定性得到很大提高。
为解决上述问题,本发明采用如下技术方案:
本发明提供了一种Ni-MH二次电池用贮氢电极合金,所述合金含有钛、硅及多种稀土元素,其化学式组成为:RE1-xMgxTiyNizAlmSin,式中x、y、z、m、n为原子比,且0.2≤x≤0.3,0.02≤y≤0.08,3.0≤z≤3.5,0.05≤m≤0.15,0.05≤n≤0.15;稀土元素除含有原子比为0.4-0.6的镧以外,还必须含有钐、钇、钕或镨中的至少一种。
优选的,本发明所述化学式组成的原子比为x:y:z:m:n=0.22:0.03:3.4:0.10:0.07。
本发明同时提供了一种所述的Ni-MH二次电池用贮氢电极合金的制备方法,制备方法是在惰性气体保护下采用感应加热熔炼,将熔融合金直接注入水冷铜模,在惰性气体保护下随炉冷却至室温,获得合金铸锭,然后在真空热处理炉中进行均匀化退火;
具体地,其制备步骤包括:
A、按化学式组成RE1-xMgxTiyNizAlmSin进行配料,式中0.2≤x≤0.3,0.02≤y≤0.08,3.0≤z≤3.5,0.05≤m≤0.15,0.05≤n≤0.15;RE为除镧以外钐、钇、钕或镨中的至少一种;其中,所述化学式组成中的镁和稀土在配比时增加5%-10%的质量烧损量,原材料的金属纯度≥99.5%;
B、用感应加热熔炼配比好的原材料,首先抽真空至1×10-2-5×10-5Pa,充入0.01-0.1MPa的惰性气体作为保护气体,保护气体为纯氦气或者氦气+氩气混合气体,所述混合气体的体积比为1:1,熔融温度1300-1600℃,获得熔融的RE1-xMgxTiyNizAlmSin液态母合金;
C、在熔融状态下保持5分钟后,在保护气体气氛下,将液态母合金直接注入水冷铜模,在惰性气体保护下随炉冷却至室温,获得合金铸锭;
D、将合金铸锭放入真空热处理炉,抽真空至10-2-10-4Pa,加热到800-1100℃,保温5-10小时,保温后随炉冷却至室温,获得退火态合金;
E、将获得的上述合金通过机械粉碎,过200目筛,获得直径≤74μm的合金粉末,将合金粉与颗粒直径2.5μm的羰基镍粉按质量比1:4混合均匀,在35MPa的压力下冷压成直径为15mm的圆柱状电极片。
本发明制备方法中,所述感应加热方式包括电弧熔炼,感应加热熔炼或可使原材料完全熔化的其它加热熔炼方式。
本发明的特点在于,在成分设计上采用添加少量钛及硅元素,在提高合金的耐腐蚀性能的同时,能保持合金的电化学容量;添加多元稀土元素,有利于发挥不同稀土元素的综合作用。在工艺技术方面,采用惰性气体保护可以抑制镁在熔炼过程中的挥发;采用与AB5型储氢合金常用的感应熔炼冶炼方法制备,制备方法简单,易于大规模产业化生产。特别是已有的AB5型贮氢合金的生产厂家,在不增加设备投入的条件下,可以实现该合金的产业化。铸态合金经真空退火后,其组织和结构均匀,合金的电化学容量大于380mAh/g,电化学循环稳定性完全满足Ni-MH电池的使用要求。
附图说明
图1为本发明通过快淬和退火后,各实施例合金的XRD衍射谱。
具体实施方式
以下结合附图以及示例性实施例,进一步详细描述本发明的设计思想以及形成机理,以使本发明的技术解决方案更加清楚。
本发明经过研究发现,通过成分设计及改善合金的微观结构可以显著提高合金的综合电化学性能,特别是使合金的电化学循环稳定性显著提高。在成分设计上采用添加钛及硅在合金表面形成保护膜从而提高其抗腐蚀氧化性能。在合金中添加稀土多组元,发挥了不同稀土元素的综合优势,进一步提高合金的电化学循环稳定性。
本发明应用感应炉熔炼加氦气保护,基本上避免了金属镁的挥发损失,保证所制备的贮氢合金成分符合设计组份摩尔配比。通过退火处理,可以消除合金的成分偏析及消除铸造应力,使合金的综合电化学性能进一步提升。
通过下面的实施例对本发明所涉及的动力电池贮氢合金成分以及制备方法作进一步的说明。
本发明的Ni-MH电池用贮氢电极合金中添加了钛及硅元素,并含有多种稀土元素,其成分化学式为:RE1-xMgxTiyNizAlmSin,式中x,y,z,m,n为原子比,且0.2≤x≤0.3,0.02≤y≤0.08,3.0≤z≤3.5,0.05≤m≤0.15,0.05≤n≤0.15。优选的原子比x:y:z:m:n=0.22:0.03:3.4:0.10:0.07。稀土元素除含有原子比为0.4-0.6的镧以外,还必须含有钐、钇、钕、镨中的至少一种。
本发明Ni-MH电池用高容量、长寿命贮氢电极合金的制备方法包括以下步骤:
A、按所设计的化学式原子比进行称重配比。由于镁和稀土元素熔点较低易于挥发,因此,在配比时增加5%-10%比例的烧损量,其中,镁以8%及稀土以5%为佳;
B、采用感应加热进行熔炼,将配好的原料置于氧化镁坩埚中,除镁置于坩埚顶层外,其他材料加入坩埚不分先后。盖好炉盖后抽真空至1×10-2-5×10-5Pa,然后充入0.01-0.1MPa惰性保护气体,即氦气或者氩气+氦气混合气体,其混合气体体积比约为1:1;熔炼温度1300-1600℃,视合金的成分进行温度调整,以确保金属原料完全熔化;在惰性气体气氛保护下,获得熔融的RE1-xMgxTiyNizAlmSin液态母合金;
C在熔融状态下保持5分钟后,在保护气体气氛下,,将液态合金直接注入水冷铜模,在惰性气体保护下随炉冷却至室温,获得合金铸锭。
D将合金铸锭放入真空热处理炉,抽真空至10-2-10-4Pa,加热到800-1100℃,保温5-10小时,保温后随炉冷却至室温,获得退火态合金。其加热温度可优选950℃左右,保温时间可优选6小时左右。
然后对上述制备的合金进行结构表征和性能测试,采用x射线衍射仪(XRD)测试合金的结构,用SEM观察合金的形貌,用模拟电池测试仪测试合金的电化学放电容量及循环稳定性。
本发明具体实施例的化学成分及比例选择如下:
实施例1:La0.6Sm0.15Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例2:La0.6Nd0.15Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例3:La0.6Y0.15Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例4:La0.6Pr0.15Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例5:La0.55Pr0.1Sm0.1Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例6:La0.55Y0.1Sm0.1Mg0.22Ti0.03Ni3.4Al0.1Si0.07
实施例7:La0.55Y0.1Nd0.1Mg0.22Ti0.03Ni3.3Al0.15Si0.05
实施例8:La0.55Y0.1Pr0.1Mg0.20Ti0.08Ni3.4Al0.1Si0.1
按各实施例的化学式组成选取块状稀土金属、金属镁、金属镍、金属铝、金属钛、硅。这些金属及硅的纯度≥99.5%,将金属打磨除去表面氧化层后,按化学剂量比称重。其中,金属镁及稀土金属在配比时增加5%-10%比例的烧损量,镁及稀土烧损量分别为8%和5%;在制备过程中,各阶段技术参数如:感应加热时真空至1×10-2-5×10-5Pa,施加0.01-0.1MPa的纯氦气或者氦气+氩气混合气体,混合气体的体积比约为1:1;熔融温度为1300-1600℃。将熔融合金直接注入水冷铜模中,随炉冷却至室温,获得合金铸锭。将合金铸锭加热到800-1100℃,保温5-10小时后,随炉冷却至室温,所有工艺参数均可在上述范围内进行适当选择,制备出合格的贮氢电极合金。因此,本发明虽然仅举了一个典型的实施例,但该实施例适用于不同参数的制备方法。
实施例1的工艺技术参数:将按照化学式组成称好的金属原料置于中频感应炉的氧化镁坩埚中,然后盖好炉盖,抽真空至真空度为1×10-2Pa以上,再充入压力为0.04MPa的氩气+氦气混合气体,调节功率使金属全部熔化,温度控制在1500℃左右,在熔融条件下保持5分钟,然后将液态合金注入水冷铜模中,获得直径为30mm的圆柱状铸锭。将合金铸锭放入真空热处理炉,抽真空至5×10-3Pa,加热到950℃,保温6小时后,随炉冷却至室温,获得退火态合金。
图1为实施例1-8退火合金的x-射线(XRD)衍射谱。用Jade6.0软件分析XRD数据发现,所有实施例的合金均具有多相结构,包括主相(La,Mg)2Ni7和LaNi5以及少量的LaNi2相。元素替代及退火处理并没有改变合金的相组成,但合金中各相的含量发生了明显改变。
将获得的上述各不同成分实施例的合金通过机械粉碎,过200目筛,获得直径≤74μm的合金粉末。将合金粉与羰基镍粉(颗粒直径≤2.5μm)按质量比1:4混合均匀后,在35MPa的压力下冷压成直径为15mm的圆柱状电极片,然后采用标准的三电极测试方法测试其电化学性能。
测试合金的活化性能与最大放电容量所采用的放电制度为:充放电电流密度为60mA/g,充电时间480min,放电截止电压为-0.5V;测试合金的电化学循环稳定性所采用的放电制度为:充放电电流密度为300mA/g,充电时间80min,放电截止电压为-0.6V。当充放电电流密度为300mA/g时,用S500表示500次循环后合金容量的保持率,即S500=C500,300/Cmax,300×100%。Cmax,300-充放电流密度为300mA/g时的最大放电容量;C500,300-充放电流密度为300mA/g时经500次充放循环后的放电容量。
上述实施例所制备的合金经测试的结果列于表1中。
测试结果表明,合金的电化学性能特别是放电容量远远高于目前市场销售的稀土基AB5型合金(330mAh/g),其综合电化学性能明显高于相似成分的铸态+退火态合金。
尽管本发明已对其优选实施方案作了说明,很显然本领域技术人员可采取其它实施方式,例如改变成分含量,加热温度等技术参数,在不脱离本发明设计思想的范围内,可以进行各种变形和修改,这些变化均属于本发明的保护范围。
表1实施例合金的电化学性能
实验合金 最大放电容量 (mAh/g) S500 (%)
实施例1 392.4 64.1
实施例2 394.6 68.5
实施例3 388.5 66.2
实施例4 391.7 61.7
实施例5 395.2 69.4
实施例6 391.7 67.3
实施例7 388.6 63.8
实施例8 378.5 71.4
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (1)

1.一种Ni-MH二次电池用贮氢电极合金的制备方法,其特征在于:Ni-MH电池用贮氢电极合金中添加了钛及硅元素,并含有多种稀土元素,其成分化学式为:RE1-xMgxTiyNizAlmSin,式中x:y:z:m:n=0.22:0.03:3.4:0.10:0.07;RE为稀土元素,所述稀土元素除含有原子比为0.4-0.6的镧以外,还必须含有钐、钇、钕或镨中的至少一种;
制备方法包括以下步骤:
A、按所设计的化学式原子比进行称重配比;在配比时增加镁和稀土元素5%-10%重量比例的烧损量;
B、采用感应加热进行熔炼,将配好的原料置于氧化镁坩埚中,除镁置于坩埚顶层外,其他材料加入坩埚不分先后;盖好炉盖后抽真空至1×10-2-5×10-5Pa,然后充入0.01-0.1MPa惰性保护气体,即氦气或者氩气+氦气混合气体,其混合气体体积比为1:1;熔炼温度1300-1600℃,视合金的成分进行温度调整,以确保金属原料完全熔化;在惰性气体气氛保护下,获得熔融的RE1-xMgxTiyNizAlmSin液态母合金;
C在熔融状态下保持5分钟后,在保护气体气氛下,将液态合金直接注入水冷铜模,在惰性气体保护下随炉冷却至室温,获得合金铸锭;
D将合金铸锭放入真空热处理炉,抽真空至10-2-10-4Pa,加热到800-1100℃,保温5-10小时,保温后随炉冷却至室温,获得退火态合金。
CN201310645999.0A 2013-12-05 2013-12-05 Ni-MH二次电池用贮氢电极合金及其制备方法 Expired - Fee Related CN103647063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310645999.0A CN103647063B (zh) 2013-12-05 2013-12-05 Ni-MH二次电池用贮氢电极合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310645999.0A CN103647063B (zh) 2013-12-05 2013-12-05 Ni-MH二次电池用贮氢电极合金及其制备方法

Publications (2)

Publication Number Publication Date
CN103647063A CN103647063A (zh) 2014-03-19
CN103647063B true CN103647063B (zh) 2016-07-06

Family

ID=50252254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310645999.0A Expired - Fee Related CN103647063B (zh) 2013-12-05 2013-12-05 Ni-MH二次电池用贮氢电极合金及其制备方法

Country Status (1)

Country Link
CN (1) CN103647063B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894413A (zh) * 2015-04-16 2015-09-09 新疆大学 一种铜及铜合金控温-调压熔化方法
CN113430441B (zh) * 2021-06-30 2022-08-26 包头中科轩达新能源科技有限公司 一种含钕贮氢合金及其制备方法
CN117821829B (zh) * 2024-01-15 2024-08-13 中稀(微山)稀土新材料有限公司 一种Ni-MH电池用Ti-Fe基电极合金及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660431B1 (en) * 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery
CN103165873A (zh) * 2013-02-28 2013-06-19 钢铁研究总院 一种动力电池贮氢电极合金及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660431B1 (en) * 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery
CN103165873A (zh) * 2013-02-28 2013-06-19 钢铁研究总院 一种动力电池贮氢电极合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Si对La-Mg-Ni系A2B7型储氢合金相结构与电化学性能影响的研究;宋春红;《中国优秀硕士学位论文全文数据库工程科技辑》;20130115(第01期);第B022-33页 *

Also Published As

Publication number Publication date
CN103647063A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
CN103165873B (zh) 一种动力电池贮氢电极合金及其制备方法
CN100457954C (zh) 一种高容量Mg2Ni型贮氢合金非晶带材及其制备方法
CN103290293B (zh) 锂铝合金及其生产方法和用途
CN100478466C (zh) 一种RE-Mg-Ni-M系贮氢合金的制备方法
CN105063457B (zh) 一种纳米石墨复合的高容量RE‑Mg‑Ni基贮氢材料及其制备方法
CN102104146B (zh) 一种镍氢电池用无钴ab3.5型储氢合金负极材料及其制备方法
CN101353733A (zh) La-Mg-Ni系储氢合金的制备方法
CN101597711B (zh) 一种稀土-镁-过渡金属基储氢合金的制备方法
CN108172807A (zh) 一种多元素单相a5b19型超晶格储氢合金电极材料及其制备方法
CN103667837A (zh) 一种纳米TiF3催化的高容量贮氢合金及其制备方法
CN110257649A (zh) 一种高性能单相La0.6R0.15Mg0.25Ni3.5电极合金及其制备方法
CN103647063B (zh) Ni-MH二次电池用贮氢电极合金及其制备方法
CN101552337A (zh) 超晶格贮氢合金及其制备方法
CN103456927B (zh) 含氧钒钛基贮氢电极合金及其制备方法
CN108893656A (zh) La-Mg-Ni系A2B7型储氢合金及其制备方法
CN101599545B (zh) RE-Mg-Ni型金属氢化物二次电池用储氢合金及其制备方法
CN108149073A (zh) 低温镍氢电池用La-Mg-Ni系储氢合金及其制备方法
CN103741004B (zh) CoS2催化的高容量贮氢合金及其制备方法
CN103682288B (zh) Ni-MH电池用贮氢电极合金及其制备方法
CN103667836B (zh) MoS2催化的高容量贮氢合金及其制备方法
CN1754972A (zh) 一种MH-Ni电池用高容量稀土-镁基多相贮氢合金及其制备方法
CN103855370A (zh) 一种Ni-MH二次电池用低镁RE-Mg-Ti-Ni-Al-B系贮氢合金及制备方法
CN103633301A (zh) 一种用于Ni-MH二次电池的RE-Mg-Ni-Zr-B系电极合金及其制备方法
CN103682285B (zh) Ni-MH电池用高容量贮氢电极合金及其制备方法
CN103938052B (zh) 高容量贮氢电极合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160706