CN103626489B - 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法 - Google Patents

一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法 Download PDF

Info

Publication number
CN103626489B
CN103626489B CN201310570899.6A CN201310570899A CN103626489B CN 103626489 B CN103626489 B CN 103626489B CN 201310570899 A CN201310570899 A CN 201310570899A CN 103626489 B CN103626489 B CN 103626489B
Authority
CN
China
Prior art keywords
powder
barium titanate
thermal sensitive
ceramics
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310570899.6A
Other languages
English (en)
Other versions
CN103626489A (zh
Inventor
傅邱云
周东祥
胡云香
郑志平
罗为
赵俊
祖昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201310570899.6A priority Critical patent/CN103626489B/zh
Publication of CN103626489A publication Critical patent/CN103626489A/zh
Application granted granted Critical
Publication of CN103626489B publication Critical patent/CN103626489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,钛酸钡陶瓷材料的化学组成通式为:(Ba1-xLax)1.005TiO3,其中1‰≤x≤10‰。该方法通过溶胶凝胶法制备的掺镧的纳米钛酸钡粉体,经流延成型、切片、排胶,然后通过还原再氧化烧结制得PTC热敏电阻器。该方法采用溶胶凝胶法制备纳米或亚微米原料粉体,并在制备粉体的过程中同时引入微量掺杂的纳米半导化元素等,并采用还原再氧化的工艺制备陶瓷元件;目的在于实现分子级微量元素的均匀掺杂,在制备出细晶陶瓷的同时降低材料电阻率,制备得到晶粒细小、室温电阻率低并具有较大升阻比的PTC热敏陶瓷;本发明还可以降低陶瓷的烧结温度,改善陶瓷与电极的收缩匹配性能。

Description

一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法
技术领域
本发明属于电子陶瓷元件制备技术领域,涉及一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,具体是利用溶胶凝胶法制备纳米钛酸钡粉体,再利用该纳米粉体通过还原再氧化工艺制备叠层片式细晶钛酸钡热敏陶瓷。
背景技术
随着现代电子技术的进步,继片式阻容元件之后,各类敏感元件的片式化也在迅速发展。在电子机器的小型化、低功耗化以及高密度组装技术等的驱使下,片式热敏元件,特别是过载保护用钛酸钡基多层片式PTC陶瓷热敏电阻元件的应用需求急剧增加。多层片式PTC陶瓷热敏电阻主要在电子电路、电子机器、晶体振荡器及液晶显示器中用作温度补偿、浪涌吸收;对IC器件、锂电池、开关电源及汽车电机等的过热过电流保护等。在移动通信、蓝牙技术、高清晰度彩电、局域网、计算机、汽车电子等方面都有广阔的应用市场。经过多年的探索和技术进步,目前片式PTC陶瓷热敏元件多采用类似于多层片式陶瓷电容(MLCC)的独石结构,具有体积小、室温电阻低、通流量大等优点。
PTC陶瓷热敏元件导电的物理机制是晶粒和晶界的共同作用,晶粒的半导体化决定了材料的电阻率,而晶界上存在的势垒层则决定了材料的PTC特性。为保证获得尺寸小以及室温电阻低的多层片式PTC陶瓷热敏元件,必须首先制备尽可能薄的瓷片。当瓷片厚度一定的前提下,如果晶粒尺寸过大(常规块状PTC元件的平均晶粒尺寸约在5~10μm左右)每层瓷片中晶粒个数必然很少,结果将会降低甚至失去PTC效应。相反若保证晶粒个数,必须减小晶粒尺寸,但晶粒尺寸的减小则会显著增大材料电阻率。研究表明,同样组分的PTC材料,如果晶粒尺寸10μm时的室温电阻率为50Ω·cm,当通过控制烧成温度使晶粒尺寸下降到2μm时,其室温电阻率将猛增到5000Ω·cm,增大了近百倍。显而易见,与常规块状PTC材料相比,片式PTC热敏元件用陶瓷材料降低电阻率与瓷体的细晶化(提高PTC效应)成了一对十分难解的矛盾。
BaTiO3基PTC陶瓷热敏元件的烧结温度较高,一般在1320℃以上,这给陶瓷与金属内电极共烧带来极大困难,为了避免金属内电极氧化必须在还原气氛中共烧。但是经典理论和实验均证明BaTiO3基PTC陶瓷在还原气氛下烧结不具有PTC效应。为了获得优良的PTC效应,还必须在氧化或空气中于较低温度下进行热处理,对陶瓷晶界进行氧化,即采用还原再氧化的工艺。此外,在共烧过程中瓷料与电极都会产生很大收缩,如果瓷体和内电极的收缩匹配不好,将会导致元件破裂。
目前的相关专利多采用固相法制备,烧结温度较高,日本的HirokazuShimooka和Makoto Kuwabara通过溶胶凝胶方法制备了钛酸钡的单体凝胶,并在1100℃左右烧结得到粒径~1μm,相对密度>98%的致密钛酸钡陶瓷。但该文献没有研究陶瓷的PTC特性,也没有采用还原再氧化工艺。
发明内容
本发明提出采用溶胶凝胶法制备纳米或亚微米(50~200nm)原料粉体,并在制备粉体的过程中同时引入微量掺杂的纳米半导化元素等,并采用还原再氧化的工艺制备陶瓷元件;目的在于实现分子级微量元素的均匀掺杂,在制备出细晶陶瓷的同时降低材料电阻率,制备得到晶粒细小、室温电阻率低并具有较大升阻比的PTC热敏陶瓷;本发明还可以降低陶瓷的烧结温度,改善陶瓷与电极的收缩匹配性能。
本发明提供的一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,该方法通过溶胶凝胶法制备的掺镧的纳米钛酸钡粉体,经流延成型、切片、排胶,然后通过还原再氧化烧结制得PTC热敏电阻器。
作为上述技术方案的优化,该方法具体包括下述步骤:
(1)将Ba(CH3COO)2、Ti(OC4H9)4和La(NO3)3·6H2O分别按(Ba1-xLax)1.005TiO3的化学计量比称取,其中1‰≤x≤10‰,Ba(CH3COO)2配置成浓度为1.3mol/L~1.6mol/L的Ba(CH3COO)2水溶液,Ti(OC4H9)4溶于无水乙醇和乙酸的混合溶液配制成浓度为1.0mol/L~1.3mol/L的Ti(OC4H9)4溶液,其中无水乙醇和乙酸的体积比为(2~4):1;
(2)将La(NO3)3·6H2O溶解于Ba(CH3COO)2水溶液,再将该溶液逐滴加入Ti(OC4H9)4溶液中得到透明的溶胶;
(3)将步骤(2)制得的溶胶静置得到湿凝胶;
(4)将湿凝胶经过烘干、捣碎、研磨、过筛,然后预烧合成含半导化元素镧的纳米BaTiO3粉体;
(5)将预烧后的含半导化元素镧的纳米BaTiO3粉体和去离子水混合球磨,球磨后干燥、过筛;
(6)制备半导化元素镧的纳米BaTiO3粉体浆料;
(7)将步骤(6)制得的浆料经流延机流延成型,压片,然后再进行等静压;
(8)将等静压后的生坯切片,在温度高于280℃条件下排胶;
(9)将排胶后的生坯在N2/H2的气氛中于1100℃~1200℃条件下烧结,然后置于600℃~800℃再氧化,得到叠层片式钛酸钡热敏陶瓷。
本发明采用溶胶凝胶法制备纳米或亚微米(50~200nm)原料粉体,并在制备粉体的过程中同时引入微量掺杂的纳米半导化元素等,并采用还原再氧化的工艺制备陶瓷元件。目的在于实现分子级微量元素的均匀掺杂,在制备出细晶陶瓷的同时降低材料电阻率,制备得到晶粒细小、室温电阻率低并具有较大升阻比的PTC热敏陶瓷;本发明还可以降低陶瓷的烧结温度,改善陶瓷与电极的收缩匹配性能。跟现有的工艺相比,本发明具有如下优点:
(1)采用廉价的Ba(CH3COO)2、Ti(OC4H9)4分别作为钡源和钛源。采用Ba(CH3COO)2作为钡源材料,其易溶于水、可减少形成凝胶过程中引入的杂质、不会产生气泡有利于得到均匀的凝胶。
(2)采用溶胶-凝胶方法,避免了制备过程中Ba的大量流失而使成份比例难以控制的问题,获得的含半导化元素BaTiO3纳米粉体具有组分均匀的特点,可以实现分子级微量元素的均匀掺杂,有利于在控制烧结后陶瓷细小晶粒的同时实现低电阻率。
(3)获得的含半导化元素BaTiO3纳米粉体具有组分均匀、粒径小活性高,相对于传统的固相法有效降低了烧结温度。
(4)瓷片相对密度在75%~90%范围内,通过还原再氧化工艺,获得具有较好的PTC效应的细晶PTC陶瓷片。
具体实施方式
下面结合实例对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明涉及的钛酸钡陶瓷材料的化学组成通式为:(Ba1-xLax)1.005TiO3,其中1‰≤x≤10‰。
通过溶胶凝胶法制备的掺镧的纳米钛酸钡粉体,经流延成型、切片、排胶,然后通过还原再氧化工艺烧结制得PTC热敏电阻器的方法,依次包括下述步骤:
(1)将Ba(CH3COO)2、Ti(OC4H9)4和La(NO3)3·6H2O分别按(Ba1-xLax)1.005TiO3的化学计量比称取,其中1‰≤x≤10‰。将Ba(CH3COO)2溶解于去离子水配置成浓度为1.3mol/L~1.6mol/L的Ba(CH3COO)2水溶液,Ti(OC4H9)4溶于无水乙醇和乙酸的混合溶液配制成浓度为1.0mol/L~1.3mol/L的Ti(OC4H9)4溶液,其中无水乙醇和乙酸的体积比为(2~4):1;
(2)将La(NO3)3·6H2O溶解于Ba(CH3COO)2水溶液,再将该溶液逐滴加入Ti(OC4H9)4溶液中得到透明的溶胶;
(3)将步骤(2)制得的溶胶在室温下静置得到湿凝胶;
(4)将湿凝胶经过烘干、捣碎、研磨、过筛,然后在700℃~1000℃预烧合成含半导化元素镧的纳米BaTiO3粉体;
(5)将预烧后的含半导化元素镧的纳米BaTiO3粉体和去离子水混合球磨,球磨后干燥、过筛。
(6)制备半导化元素镧的纳米BaTiO3粉体浆料;
称取一定量步骤(5)制得的BaTiO3粉体与溶剂、分散剂、消泡剂混合球磨,混合物中各组分的质量比是:0.1-10‰分散剂、0.1-10‰消泡剂、5-40%乙醇、5-40%甲苯、5-40%粘合剂,余量为BaTiO3粉体,然后将得到的混合物与粘合剂再球磨得到流延用浆料;其中溶剂为甲苯、无水乙醇混合物,所述分散剂为磷酸三丁酯、丙三醇或丙烯酸,所述消泡剂是硬脂酸、聚氧丙基聚氧乙基甘油醚、二甲基硅油混合物,所述粘合剂为乙基纤维素、PVA或PVB;
混合物中各组分优选的质量比为:3‰分散剂、3‰消泡剂、18%乙醇、30%甲苯、28%粘合剂,余量为BaTiO3粉体。
(7)将步骤(6)制得的浆料经流延机流延成型,单片厚度为20~60μm,取一定量的生坯片通过层压机压片,然后再进行等静压;
(8)将等静压后的生坯切片,在温度高于280℃条件下排胶;
(9)将排胶后的生坯在N2/H2气氛中于1100℃~1200℃条件下烧结,然后置于600℃~800℃再氧化。N2/H2的体积比为(99.9~50)/(0.1~50)。
实例:
实施例1:
按(Ba0.9965La0.0035)1.005TiO3,即按照配方(Ba1-xLax)1.005TiO3,使x=3.5‰,称量0.50074mol Ba(CH3COO)2、0.0018mol La(NO3)3·6H2O和0.5mol Ti(OC4H9)4。用0.4L的去离子水依次溶解Ba(CH3COO)2和La(NO3)3·6H2O得到掺有La(NO3)3·6H2O的浓度为1.25mol/L的Ba(CH3COO)2溶液,先后将0.1L的乙酸和0.3L的无水乙醇的混合液溶解Ti(OC4H9)4,获得浓度为1.25mol/L的Ti(OC4H9)4溶液。把La(NO3)3·6H2O和Ba(CH3COO)2混合溶液缓慢的滴进Ti(OC4H9)4溶液中,快速搅拌Ti(OC4H9)4溶液即为溶胶。将溶胶在室温下静置12h得到湿凝胶,将其在90℃下干燥24h得到干凝胶。将干凝胶捣碎、研磨、过筛,然后在800℃预烧2h,合成掺La纳米BaTiO3粉体。
将所得粉体与去离子水混合后球磨、烘干、过筛,取100g备用。称取18g无水乙醇、30g甲苯、3g分散剂、3g消泡剂,与上述粉体混合球磨7h,再加入28g粘合剂,球磨混合得到的浆料再球磨8h制成流延浆料。将流延浆料经流延机流延成42μm厚的生坯片,取25片经层压机压片,再经过等静压处理,最终得到厚度约为1mm的生坯。
将等静压处理后的生坯切片,并在温度高于280℃的条件下排胶处理,然后在N2/H2体积比为97/3的气氛中1110℃条件下烧结2h,然后将制得的瓷片分别在空气中600℃、700℃、800℃条件下再氧化处理。所得瓷片晶粒尺寸约为1.2μm,其电性能如下:
1)未经过再氧化处理工艺制得的瓷片室温电阻率为64.2Ω·cm,但没有升阻比;
2)600℃再氧化处理,所得瓷片室温电阻率为160.3Ω·cm,升阻比R250/R25=20.9;
3)700℃再氧化处理,所得瓷片室温电阻率为320.5Ω·cm,升阻比R250/R25=1.50×103;
4)800℃再氧化处理,所得瓷片室温电阻率为360.2Ω·cm,升阻比R250/R25=3.89×103
实施例2:
将如实施例1中所述经过排胶的生坯在N2/H2体积比为97/3的气氛中1135℃条件下烧结2h制得瓷片,并在分别在600℃、700℃、800℃条件下进行再氧化处理,所得瓷片晶粒尺寸约为2μm,其电性能如下:
1)未经过再氧化处理所得瓷片室温电阻率为48.7Ω·cm,但没有升阻比;
2)600℃再氧化处理,所得瓷片室温电阻率为104.6Ω·cm,升阻比R250/R25=51.9;
3)700℃再氧化处理,所得瓷片室温电阻率为240.3Ω·cm,升阻比R250/R25=7.66×102
4)800℃再氧化处理,所得瓷片室温电阻率为264.1Ω·cm,升阻比R250/R25=2.41×103
实施例3:
将如实施例1中所述经过排胶的生坯在N2/H2体积比为97/3的气氛中1160℃条件下烧结2h制得瓷片,并在600℃、700℃、800℃条件下进行再氧化处理,瓷片的晶粒尺约为2.8μm,其电性能如下:
1)未经过再氧化处理所得瓷片室温电阻率为32.2Ω·cm,但没有升阻比;
2)600℃再氧化处理,所得瓷片室温电阻率为74.4Ω·cm,升阻比R250/R25=2.5;
3)700℃再氧化处理,所得瓷片室温电阻率为214.4Ω·cm,升阻比R250/R25=3.24×102
4)800℃再氧化处理,所得瓷片室温电阻率为256.5Ω·cm,升阻比R250/R25=1.75×103
以上所述几则实施例仅为本发明的部分实施方案,但并不能因此理解为对本发明范围的限制。凡是应当指出的是:在不脱离本发明构思的前提下所完成的若干变形和改进,都属于本发明保护的范围。因此,本发明的保护范围应以所附的权利要求为准。

Claims (3)

1.一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,该方法通过溶胶凝胶法制备的掺镧的纳米钛酸钡粉体,经流延成型、切片、排胶,然后通过还原再氧化烧结,实现分子级微量元素的均匀掺杂,使得在控制烧结后陶瓷细小晶粒的同时实现低电阻率,制得PTC热敏电阻器;该方法具体包括下述步骤:
(1)将Ba(CH3COO)2、Ti(OC4H9)4和La(NO3)3·6H2O分别按(Ba1-xLax)1.005TiO3的化学计量比称取,其中1‰≤x≤10‰,Ba(CH3COO)2配置成浓度为1.3mol/L~1.6mol/L的Ba(CH3COO)2水溶液,Ti(OC4H9)4溶于无水乙醇和乙酸的混合溶液配制成浓度为1.0mol/L~1.3mol/L的Ti(OC4H9)4溶液,其中无水乙醇和乙酸的体积比为(2~4):1;
(2)将La(NO3)3·6H2O溶解于Ba(CH3COO)2水溶液,再将该溶液逐滴加入Ti(OC4H9)4溶液中得到透明的溶胶;
(3)将步骤(2)制得的溶胶静置得到湿凝胶;
(4)将湿凝胶经过烘干、捣碎、研磨、过筛,然后预烧合成50~200nm含半导化元素镧的纳米BaTiO3粉体;
(5)将预烧后的含半导化元素镧的纳米BaTiO3粉体和去离子水混合球磨,球磨后干燥、过筛;
(6)制备半导化元素镧的纳米BaTiO3粉体浆料;
(7)将步骤(6)制得的浆料经流延机流延成型,压片,然后再进行等静压;
(8)将等静压后的生坯切片,在温度高于280℃条件下排胶;
(9)将排胶后的生坯在N2/H2的气氛中于1100℃~1200℃条件下进行烧结,N2/H2的体积比为99.9~50:0.1~50,然后置于600℃~800℃再氧化,得到相对密度在75%至90%的细晶叠层片式钛酸钡热敏陶瓷。
2.根据权利要求1所述的低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,其特征在于,该方法具体包括下述步骤:第6步的具体过程为:
将步骤(5)制得的BaTiO3粉体与溶剂、分散剂、消泡剂混合球磨,混合物中各组分的质量比是:0.1-10‰分散剂、0.1-10‰消泡剂、5-40%乙醇、5-40%甲苯、5-40%粘合剂,余量为BaTiO3粉体,然后将得到的混合物与粘合剂再球磨得到流延用浆料;其中溶剂为甲苯、无水乙醇混合物,所述分散剂为磷酸三丁酯、丙三醇或丙烯酸,所述消泡剂是硬脂酸、聚氧丙基聚氧乙基甘油醚、二甲基硅油混合物,所述粘合剂为乙基纤维素、PVA或PVB。
3.根据权利要求2所述的低温烧结叠层片式钛酸钡热敏陶瓷的制备方法,其特征在于,混合物的中各组分的质量比为:3‰分散剂、3‰消泡剂、18%乙醇、30%甲苯、28%粘合剂,余量为BaTiO3粉体。
CN201310570899.6A 2013-11-13 2013-11-13 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法 Active CN103626489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310570899.6A CN103626489B (zh) 2013-11-13 2013-11-13 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310570899.6A CN103626489B (zh) 2013-11-13 2013-11-13 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN103626489A CN103626489A (zh) 2014-03-12
CN103626489B true CN103626489B (zh) 2015-11-04

Family

ID=50207985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310570899.6A Active CN103626489B (zh) 2013-11-13 2013-11-13 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN103626489B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866135B (zh) * 2017-03-13 2019-12-06 中国地质大学(北京) 一种无铅高居里温度BaTiO3基正温度系数热敏陶瓷的制备方法
CN109485409B (zh) * 2017-09-12 2022-09-27 德州迈特新材料研究中心 一种片式钛酸钡陶瓷材料的流延成型方法
CN108793995A (zh) * 2018-07-11 2018-11-13 肇庆学院 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法
CN109761602B (zh) * 2019-02-28 2020-11-24 华中科技大学 一种低阻热敏陶瓷材料及其制备方法与应用
CN112315038A (zh) * 2019-07-31 2021-02-05 湖北中烟工业有限责任公司 一种复合型金属陶瓷发热体及其制备方法和用途
CN113800902B (zh) * 2021-09-18 2022-08-09 福建火炬电子科技股份有限公司 一种具有高介电常数的bme瓷介电容器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781119A (zh) * 2010-01-22 2010-07-21 华中科技大学 一种钛酸钡ptc陶瓷的溶胶凝胶制备方法
CN102531574A (zh) * 2011-12-14 2012-07-04 华中科技大学 一种用于叠层片式热敏电阻的陶瓷材料密度调节方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781119A (zh) * 2010-01-22 2010-07-21 华中科技大学 一种钛酸钡ptc陶瓷的溶胶凝胶制备方法
CN102531574A (zh) * 2011-12-14 2012-07-04 华中科技大学 一种用于叠层片式热敏电阻的陶瓷材料密度调节方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
掺镧改性BaTiO3 纳米多晶粉体的综合性实验设计;朱志斌;《现代技术陶瓷》;20081231(第4期);第28-31页 *

Also Published As

Publication number Publication date
CN103626489A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN103626489B (zh) 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法
CN101183610B (zh) 化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料
CN100393624C (zh) 溶胶-凝胶法低温合成单相纳米CaTiO3粉体的制备方法
CN105036734B (zh) 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN105732025B (zh) 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN103787653B (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN103408301A (zh) 一种超高压陶瓷电容器介质及其制备方法
CN106518052B (zh) 一种制备细晶钛酸钡热敏陶瓷的方法及其产品
CN103408302B (zh) 一种高介高温度稳定陶瓷电容器介质及其制备方法
CN103664163B (zh) 一种高介晶界层陶瓷电容器介质及其制备方法
CN102992756B (zh) 一种高介电常数x8r型电容器陶瓷材料及其制备方法
CN109665839A (zh) 一种高储能密度plzt基反铁电陶瓷材料及其制备方法和应用
CN104557024B (zh) 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
CN101265086B (zh) 一种片式正温度系数热敏陶瓷的水基流延成型方法
CN104311002A (zh) 一种BaTiO3基陶瓷及其制备方法
CN104058741A (zh) 一种超宽温稳定的介质陶瓷及其制备方法
CN102963928B (zh) 锆钛酸钡基y5v粉体材料及其制备方法
CN103113100B (zh) 一种高温度稳定陶瓷电容器介质
CN100570771C (zh) 贱金属电极多层陶瓷电容器介质材料及其制备方法
CN103508732B (zh) 一种低温度系数晶界层陶瓷电容器介质及其制备方法
CN103319171B (zh) 环形压敏电阻器瓷料、制备方法与环形压敏电阻器及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN107500755A (zh) 一种低温烧结的mlcc用陶瓷介质材料及其制备方法
CN105254295B (zh) 一种钕掺杂钛酸钡纳米陶瓷粉体的制备方法
CN103319170A (zh) 环形压敏电阻器瓷料、制备方法与环形压敏电阻器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant