CN108793995A - 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法 - Google Patents

一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法 Download PDF

Info

Publication number
CN108793995A
CN108793995A CN201810759159.XA CN201810759159A CN108793995A CN 108793995 A CN108793995 A CN 108793995A CN 201810759159 A CN201810759159 A CN 201810759159A CN 108793995 A CN108793995 A CN 108793995A
Authority
CN
China
Prior art keywords
sample
ptc
resistance
thermal sensitive
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810759159.XA
Other languages
English (en)
Inventor
程绪信
崔海宁
陈晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing University
Original Assignee
Zhaoqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing University filed Critical Zhaoqing University
Priority to CN201810759159.XA priority Critical patent/CN108793995A/zh
Publication of CN108793995A publication Critical patent/CN108793995A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法。该样品的组成化学式为Ba m (Ti1‑x Nb x )O3+y SiO2,其中m=0.994mol%~1.018mol%;x=0.2mol%~0.8mol%;y=0.01mol%~0.10mol%。本发明采用湿法流延工艺技术制备出Nb2O5掺杂BaTiO3基片式PTC生坯体,通过还原‑再氧化的共烧结工艺制备出片式PTC热敏陶瓷。而且通过B位施主替换法,引入Nb2O5作为施主掺杂剂,对样品进行掺杂改性和性能优化,得到了较低电阻的片式PTC热敏电阻,且还原气氛烧结有利于拓宽施主掺杂剂的半导化区间。采用优化和调控样品的化学计量比,制作出高偏化学计量比(Ba/Ti比位于1.003~1.006范围内)的片式PTC热敏陶瓷,这样不仅可以获得较低的室温电阻而且还可以获得较大的升阻比,解决了该样品的低电阻和高升阻比难以同时匹配的相互矛盾难题。

Description

一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法
技术领域
本发明属于功能陶瓷材料技术领域,其具体涉及Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法。
背景技术
随着微电子技术和表面贴装技术(SMT)的快速地发展,促进了电子陶瓷材料及其元器件朝着微型化、片式化和集成化方向发展,目前,片式PTC热敏材料与器件已成为一个研究热点,它已广泛地应用于低压电路中起过流和过热保护作用。首先,德国西门子公司首先提出制造片式热敏电阻元件,其次,日本的村田公司成功地制备出了多层片式PTC热敏电阻,并且实现了产业化生产。而我国学者在该领域的研究起步较晚,涌现出了一些研究机构,如:华中科技大学教育部敏感陶瓷工程研究中心、中国科学院上海硅酸盐研究所、中国科学院新疆理化技术研究所等。直到如今,国内在片式PTC热敏电阻领域还尚未实现产业化,但市场对该类器件的需求量是日益剧增。
近年来,在美国专利US20080204187A1中他们采用流延法制备出了钛酸钡基片式PTC热敏陶瓷,研究了Ba位和Ti位的原子比值(0.996至1.008)对样品的电性能以及PTC效应的影响,同时还研究了在不同的施主掺杂剂对样品PTC特性的影响,如:Y2O3, Sm2O3, Eu2O3等A位施主添加剂。该实验得出样品的相对密度为70%,并且获得了较好的PTC效应。但该未明确最佳的化学计量比值的范围,也未指出施主掺杂含量的最佳半导化区域,尤其是没提到B位施主掺杂剂对BaTiO3基片式PTC陶瓷样品的电性能的影响。在化学计量比的实验研究方面,Hideaki Niimi等人(J. Am. Ceram. Soc., 2007, 90(6): 1817–1821)研究了Ba/Ti比对CaCO3掺杂半导体BaTiO3基陶瓷[(Bam-0.202Ca0.2La0.002)TiO3 + 0.01SiO2] 的PTC效应的影响,他采用了水基流延法制备出了片式PTC样品(样品的尺寸:3.2mm × 2.5mm ×0.8mm),然后把样品在还原气氛(氧分压为1.0 × 10-19 MPa)中1350℃烧结2 h,并在空气中800℃再氧化热处理1 h。结果表明:当1.005 ≤ {(Ba+Ca+La) / Ti} ≤ 1.010时,该样品可以展示出较好的PTC效应,其中m为1.005的样品的PTC效应是最好的,其升阻比为2个数量级。然而,该研究存在着升阻比不高的问题。为了解决室温电阻与升阻比矛盾的问题,我们需要更加深入地研究Ba/Ti比和施主掺杂剂对BaTiO3基片式热敏陶瓷的电性能和PTC效应的影响。
综上所述,为了解决钛酸钡基片式PTC热敏陶瓷的室温电阻和升阻比相互矛盾的问题,我们必须寻找一些新的制备方法。为此,我们提出了添加B位施主掺杂剂,以及深入地研究基于B位施主掺杂剂的不通化学计量比来调控该片式PTC热敏陶瓷的室温电阻和升阻比。
发明内容
本发明要解决的技术问题在于,针对钛酸钡基片式PTC热敏陶瓷的室温电阻和升阻比相互矛盾的缺陷,提供一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法。
本发明解决其技术问题所采用的技术方案是: 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷,其特征在于,该样品的组成化学式为Ba m (Ti1-x Nb x )O3 + y SiO2,其中m = 0.994mol ~ 1.018 mol;x = 0.2 mol% ~ 0.8 mol%;y = 0.01mol% ~ 0.10 mol%。
一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷的制备方法,包括以下步骤:
1.按照化学式Ba m (Ti1-x Nb x )O3 + y SiO2来配置样品粉体,将其置于高能球磨机中球磨90 min,球磨机的转速为2400 r/min,接着经过干燥、过筛后将粉体装进坩埚内,再置于箱式高温炉中1150℃预烧2 h,生成BaTiO3基粉体材料;
2.将预烧后的粉体再次进行行星式球磨5 h,接着经过干燥、过筛;
3.在粉体中加入粘合剂、分散剂、增塑剂和消泡剂,然后置于卧室球磨机上球磨18 h,形成流延浆料;
4.采用流延成型工艺方法将浆料制成厚度为50 μm的生坯片,交错地印刷Ni内电极,叠层压片和切片,在样品的二端形成一种并联结构,如图1所示,制备出片式PTC热敏陶瓷材料的生坯体;
5.将生坯体置于管式气氛炉内在3% H2/N2还原气氛中1190℃烧结0.5~6 h,获得片式PTC陶瓷;
6.将烧结后的片式PTC陶瓷放在箱式炉内在空气中600~900℃进行再氧化热处理,已重新获得PTC效应;
7.在样品的二端表面上涂上一层电极,利用低阻数字万用表和电阻-温度测试系统来测试样品的PTC效应。
本发明具有如下优点:
1.采用湿法流延工艺技术制备出Nb2O5掺杂BaTiO3基片式PTC生坯体,通过还原-再氧化的共烧结工艺制备出片式PTC热敏陶瓷。
2.通过B位施主替换法,引入Nb2O5作为施主掺杂剂,对样品进行掺杂改性和性能优化,得到了较低电阻的片式PTC热敏电阻,且还原气氛烧结有利于拓宽施主掺杂剂的半导化区间。
3.采用优化和调控样品的化学计量比,制作出高偏化学计量比(Ba/Ti比位于1.003~1.006范围内)的片式PTC热敏陶瓷,这样不仅可以获得较低的室温电阻而且还可以获得较大的升阻比,解决了该样品的低电阻和高升阻比难以同时匹配的相互矛盾难题。
附图说明
图1 具有二对Ni内电极的片式PTC热敏陶瓷的结构示意图;
图2 典型样品的电阻-温度特性曲线。
符号说明:1a ~ 1b:BaTiO3基材料; 2a ~ 2b:Ni内电极;3b:In-Ga端电极 。
具体实施方式
下面对本发明作详细的描述。
实施例1
(1)BaTiO3基片式PTC热敏材料粉体的制备
BaTiO3基片式PTC热敏材料的组分按照下面的公式:
Ba m (Ti1-x Nb x )O3 + y SiO2,其中m = 0.994 、0.997、1.000、1.003、1.006、1.012、1.018mol;x = 0.35 mol%;y = 0.05 mol%。对应样品分别用SP1、SP2、SP3、SP4、SP5、SP6和SP7来标记。按上式比例依次称量BaCO3、SiO2、Nb2O5和TiO2,称量时还需考虑这些物质的纯度。BaCO3、SiO2、Nb2O5和TiO2的纯度校正方法分别为:高温酌减量法、重量法、高温酌减量法和氧化还原滴定法,得出他们相应的纯度分别为:99.8%、99.99%、99.99%和99.8%。以ZrO2球作为球磨介质,加入适量的去离子水,水的电阻应高于1MΩ以上,将称量好的混合物放入高能球磨机内球磨和混合90 min,球磨机的转速为2400 rpm。将球磨后的浆料放入115℃的烘箱内干燥16 ~ 18 h,水分控制在4~10%范围内,如果浆料过稀,那烘干时间会更长。而一旦过度洪干那混好的浆料会因润湿性或密度差别而分离,可能会出现表层结皮现象等。因而,烘干后的料应进行过筛,筛子的网孔径应选择45目。将过筛后的粉料装入坩埚内,用坩埚圆盖挤压结实,然后用细玻璃棒在粉料中均匀地打7个小孔,先在箱式炉的底部放置一些V型锆条,然后将坩埚都置于二根锆条的上面,接着这些粉料需在1150℃下预烧2 h,预烧升温速率应控制在250℃/h为宜。如果升温速率过快,粉体内的CO2气体就来不及流出而形成灰色或者黑色心。
将预烧后的粉体倒入研钵内打碎和研细,再倒入聚氨酯球磨罐内,以ZrO2球作为球磨介质,加入适量的去离子水,使得料:球:水的质量比是1 : 2 : 1.3,在南大行星式球磨机上球磨5小时,再次将球磨后的浆料放入烘箱内在115℃干燥16 ~ 18 h, 再过60目的筛子,最后钛酸钡基片式PTC热敏材料的粉体就制备好了。
(2)制备流延浆料
本发明采用了湿法流延工艺技术,将(1)中制备好的300g粉末装入尼龙罐中,加入54g无水乙醇、0.90g消泡剂、90g甲苯和0.90g分散剂,以ZrO2球作为球磨介质,在卧式球磨机上混料5 ~ 8 h,球磨机的转速控制在120 rpm;然后加入84g粘合剂,再次放在卧式球磨机上继续球磨8~10 h,制成流延浆料。
(3)流延片和生坯体样品的制备
为了除去浆料内残留的少量气泡,需将(2)中制备好的流延浆料过300目尼农筛,以便于流延制备出稳定的、无气孔的和均匀的薄生坯片。利用大型钢带流延机制备出厚为55 µm的生坯片,在50℃下先在钢板上用15 MPa的压力压一层生粉膜,再用相同的压力压三层生坯片,作为Ni电极的保护层,然后用丝网印刷Ni电极浆料,拿到50℃烘箱中烘3 min,紧接着在其上面再压一层生坯片,在纵向方向上平移一下丝网的位置,与前一个电极的位置相比可以形成一个错位,再次印刷Ni电极浆料,在50℃烘箱中再烘3 min,然后继续交替地压生坯片和印Ni电极,多层叠压在一起,最上面还需要连续地压3层生坯体,以形成保护层,最后进行等静压,然后将之切成长宽厚分别为:3.8 mm、1.6 mm和1.4 mm的生坯体样品,制备出片式PTC热敏材料生坯体。
(4)共烧结成型技术
将生坯体样品整齐地排在锆板上面,再将之放入烘箱内从室温经过32 h后才加热至330℃,并在330℃保温6 h,而后在2 h内降至室温。这时我们就可以很容易地除去样品表面上的一层生粉膜。
接下来,我们将样品放入刚玉氧化铝真空管式炉内,抽完真空后,通入3% H2/N2还原气体在1190℃烧结2 h,气体流速在1个标准大气压下控制在200 cm3/min以内,升温和降温速率分别均为200℃/h,当温度降至800℃时就随炉冷却了。将烧结后的样品放入箱式炉内在600℃下再氧化热处理1 h,升温速率和降温速率均为300℃/h。
(5)涂电极和性能测试
用砂纸研磨片式PTC热敏陶瓷元件的二端,除去样品表面上Ni被氧化的层面,用棉签清理样品表面上的灰尘,在样品的二个端面上涂In-Ga电极,用低电阻测试仪表测量其室温电阻,使用华中科技大学研究的电阻-温度特性测试系统来测试样品的阻温特性曲线,它以1.6 ℃/min的速率从室温升至250℃,每个测试温度点需要保温2 min。
该Nb2O5掺杂BaTiO3基片式PTC热敏材料在还原气氛中1190℃烧结2 h,并在空气中600℃再氧化热处理1 h后样品的室温电阻随着Ba/Ti比的增加而呈现出先减小后增大的变化趋势,其升阻比(Rmax/Rmin))则呈现出相反的变化趋势。尤其是Ba/Ti比为1.006的片式PTC热敏陶瓷展示一个最好的PTC效应,其室温电阻和升阻比分别为0.11 Ω和1.08 × 103,该样品的平均晶粒尺寸大小为1.1 μm。具体的电性能如表所示。
实施例2
(1)BaTiO3基片式PTC热敏材料粉体的制备
基于例1我们可以得出m为1.006时片式样品可以获得较好的PTC特性,所以,本发明的样品的组分按照下面的公式Ba m (Ti1-x Nb x )O3 + y SiO2,其中m = 1.006 mol;x = 0.35mol%;y = 0.05 mol%。对应样品用SP5标记。按上式比例依次称量BaCO3、SiO2、Nb2O5和TiO2,以ZrO2球作为球磨介质,加入适量的去离子水,将称量好的混合物放入高能球磨机内球磨和混合90 min,球磨机的转速为2400 rpm。将球磨后的浆料放入115℃的烘箱内干燥16 ~18 h,经烘干、再将过45目筛后的粉料装入坩埚内,用坩埚圆盖挤压结实,然后用细玻璃棒在粉料中均匀地打7个小孔,先在箱式炉的底部放置一些V型锆条,然后将坩埚都置于二根锆条的上面,接着这些粉料需在1150℃下预烧2 h,预烧升温速率应控制在250℃/h为宜。
将预烧后的粉体倒入研钵内打碎和研细,再倒入聚氨酯球磨罐内,以ZrO2球作为球磨介质,加入适量的去离子水,使得料:球:水的质量比是1 : 2 : 1.3,在行星式球磨机上球磨5小时,再次将球磨后的浆料放入烘箱内在115℃干燥16 ~ 18 h, 再过60目的筛子,最后钛酸钡基片式PTC热敏材料的粉体就制备好了。
(2)制备流延浆料
本发明采用了湿法流延工艺技术,将(1)中制备好的300g粉末装入尼龙罐中,加入54g无水乙醇、0.90g消泡剂、90g甲苯和0.90g分散剂,以ZrO2球作为球磨介质,在卧式球磨机上混料5 ~ 8 h,球磨机的转速控制在120 rpm;然后加入84g粘合剂,再次放在卧式球磨机上继续球磨8~10 h,制成流延浆料。
(3)流延片和生坯体样品的制备
为了除去浆料内残留的少量气泡,需将(2)中制备好的流延浆料过300目尼农筛,以便于流延制备出稳定的、无气孔的和均匀的薄生坯片。利用大型钢带流延机制备出厚为55 µm的生坯片,在50℃下先在钢板上用15 MPa的压力压一层生粉膜,再用相同的压力压三层生坯片,作为Ni电极的保护层,然后用丝网印刷Ni电极浆料,拿到50℃烘箱中烘3 min,紧接着在其上面再压一层生坯片,在纵向方向上平移一下丝网的位置,与前一个电极的位置相比可以形成一个错位,再次印刷Ni电极浆料,在50℃烘箱中再烘3 min,然后继续交替地压生坯片和印Ni电极,多层叠压在一起,最上面还需要连续地压3层生坯体,以形成保护层,最后进行等静压,然后将之切成长宽厚分别为:3.8 mm、1.6 mm和1.4 mm的生坯体样品,制备出片式PTC热敏材料生坯体。
(4)共烧结成型技术
将生坯体样品整齐地排在锆板上面,再将之放入烘箱内从室温经过32 h后才加热至330℃,并在330℃保温6 h,而后在2 h内降至室温。这时我们就可以很容易地除去样品表面上的一层生粉膜。
接下来,我们将样品放入刚玉氧化铝真空管式炉内,抽完真空后,通入3% H2/N2还原气体在1190℃烧结0.5 h、1 h、2 h、4 h和6 h(分别用SP8、SP9、SP10、SP11、SP12),气体流速在1个标准大气压下控制在200 cm3/min以内,升温和降温速率分别均为200℃/h,当温度降至800℃时就随炉冷却了。将烧结后的样品放入箱式炉内在800℃下再氧化热处理1 h,升温速率和降温速率均为300℃/h。
(5)涂电极和性能测试
用砂纸研磨片式PTC热敏陶瓷元件的二端,除去样品表面上Ni被氧化的层面,用棉签清理样品表面上的灰尘,在样品的二个端面上涂In-Ga电极,用低电阻测试仪表测量其室温电阻,使用华中科技大学研究的电阻-温度特性测试系统来测试样品的阻温特性曲线,它以1.6 ℃/min的速率从室温升至250℃,每个测试温度点需要保温2 min。
该BaTiO3基片式PTC陶瓷的平均晶粒尺寸和相对密度随着烧结时间的增加而增大,而其室温电阻随着烧结时间的增大而减小,升阻比则呈现出先增大后减小的变化趋势。尤其是在1190℃烧结2 h的片式PTC热敏陶瓷展示一个最好的PTC特性,其室温电阻和升阻比分别为0.14 Ω和4.0 × 103(如图2所示);该样品的相对密度为84.9%。具体的电性能如表所示。
实施例3
(1)BaTiO3基片式PTC热敏材料粉体的制备
基于例1和例2,本发明的样品的组分按照下面的公式Ba m (Ti1-x Nb x )O3 + y SiO2,其中m= 1.006 mol;x = 0.35 mol%;y = 0.05 mol%。对应样品用SP5标记。按上式比例依次称量BaCO3、SiO2、Nb2O5和TiO2,以ZrO2球作为球磨介质,加入适量的去离子水,将称量好的混合物放入高能球磨机内球磨和混合90 min,球磨机的转速为2400 rpm。将球磨后的浆料放入115℃的烘箱内干燥16 ~ 18 h,经烘干、再将过45目筛后的粉料装入坩埚内,用坩埚圆盖挤压结实,然后用细玻璃棒在粉料中均匀地打7个小孔,先在箱式炉的底部放置一些V型锆条,然后将坩埚都置于二根锆条的上面,接着这些粉料需在1150℃下预烧2 h,预烧升温速率应控制在250℃/h为宜。
将预烧后的粉体倒入研钵内打碎和研细,再倒入聚氨酯球磨罐内,以ZrO2球作为球磨介质,加入适量的去离子水,使得料:球:水的质量比是1 : 2 : 1.3,在行星式球磨机上球磨5小时,再次将球磨后的浆料放入烘箱内在115℃干燥16 ~ 18 h, 再过60目的筛子,最后钛酸钡基片式PTC热敏材料的粉体就制备好了。
(2)制备流延浆料
本发明采用了湿法流延工艺技术,将(1)中制备好的300g粉末装入尼龙罐中,加入54g无水乙醇、0.90g消泡剂、90g甲苯和0.90g分散剂,以ZrO2球作为球磨介质,在卧式球磨机上混料5 ~ 8 h,球磨机的转速控制在120 rpm;然后加入84g粘合剂,再次放在卧式球磨机上继续球磨8~10 h,制成流延浆料。
(3)流延片和生坯体样品的制备
为了除去浆料内残留的少量气泡,需将(2)中制备好的流延浆料过300目尼农筛,以便于流延制备出稳定的、无气孔的和均匀的薄生坯片。利用大型钢带流延机制备出厚为55 µm的生坯片,在50℃下先在钢板上用15 MPa的压力压一层生粉膜,再用相同的压力压三层生坯片,作为Ni电极的保护层,然后用丝网印刷Ni电极浆料,拿到50℃烘箱中烘3 min,紧接着在其上面再压一层生坯片,在纵向方向上平移一下丝网的位置,与前一个电极的位置相比可以形成一个错位,再次印刷Ni电极浆料,在50℃烘箱中再烘3 min,然后继续交替地压生坯片和印Ni电极,多层叠压在一起,最上面还需要连续地压3层生坯体,以形成保护层,最后进行等静压,然后将之切成长宽厚分别为:3.8 mm、1.6 mm和1.4 mm的生坯体样品,制备出片式PTC热敏材料生坯体。
(4)共烧结成型技术
将生坯体样品整齐地排在锆板上面,再将之放入烘箱内从室温经过32 h后才加热至330℃,并在330℃保温6 h,而后在2 h内降至室温。这时我们就可以很容易地除去样品表面上的一层生粉膜。
接下来,我们将样品放入刚玉氧化铝真空管式炉内,抽完真空后,通入3% H2/N2还原气体在1190℃烧结2 h,气体流速在1个标准大气压下控制在200 cm3/min以内,升温和降温速率分别均为200℃/h,当温度降至800℃时就随炉冷却了。将烧结后的样品放入箱式炉内在650℃下再氧化热处理0 h、1 h、2 h、6 h、8 h(分别用SP13、SP14、SP15、SP16、SP17),升温速率和降温速率均为300℃/h。
(5)涂电极和性能测试
用砂纸研磨片式PTC热敏陶瓷元件的二端,除去样品表面上Ni被氧化的层面,用棉签清理样品表面上的灰尘,在样品的二个端面上涂In-Ga电极,用低电阻测试仪表测量其室温电阻,使用华中科技大学研究的电阻-温度特性测试系统来测试样品的阻温特性曲线,它以1.6 ℃/min的速率从室温升至250℃,每个测试温度点需要保温2 min。
该BaTiO3基片式PTC陶瓷的室温电阻随着再氧化时间的增加而增大,而其升阻比则呈现出先增大后减小的变化趋势。尤其是在650℃再氧化6 h的片式PTC热敏陶瓷展示一个最好的PTC特性,其室温电阻和升阻比分别为0.23 Ω和1.5 × 103。具体的电性能如表所示:

Claims (2)

1.一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷,其特征在于,该样品的组成化学式为Ba m (Ti1-x Nb x )O3 + y SiO2,其中m = 0.994 mol% ~ 1.018 mol%;x = 0.2 mol% ~ 0.8 mol%;y= 0.01mol% ~ 0.10 mol%。
2.一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷的制备方法,其特征在于,所述方法包括以下具体步骤:
1) 按照化学式Ba m (Ti1-x Nb x )O3 + y SiO2来配置样品粉体,将其置于高能球磨机中球磨90 min,球磨机的转速为2400 r/min,接着经过干燥、过筛后将粉体装进坩埚内,再置于箱式高温炉中1150℃预烧2 h,生成BaTiO3基粉体材料;
2)将预烧后的粉体再次进行行星式球磨5 h,接着经过干燥、过筛;
3)在粉体中加入粘合剂、分散剂、增塑剂和消泡剂,然后置于卧室球磨机上球磨18 h,形成流延浆料;
4)采用流延成型工艺方法将浆料制成厚度为50 μm的生坯片,交错地印刷Ni内电极,叠层压片和切片,在样品的二端形成一种并联结构,如图1所示,制备出片式PTC热敏陶瓷材料的生坯体;
5)将生坯体置于管式气氛炉内在3% H2/N2还原气氛中1190℃烧结0.5~6 h,获得片式PTC陶瓷;
6)将烧结后的片式PTC陶瓷放在箱式炉内在空气中600~900℃进行再氧化热处理,已重新获得PTC效应;
7)在样品的二端表面上涂上一层电极,利用低阻数字万用表和电阻-温度测试系统来测试样品的PTC效应。
CN201810759159.XA 2018-07-11 2018-07-11 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法 Pending CN108793995A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810759159.XA CN108793995A (zh) 2018-07-11 2018-07-11 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810759159.XA CN108793995A (zh) 2018-07-11 2018-07-11 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN108793995A true CN108793995A (zh) 2018-11-13

Family

ID=64075869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810759159.XA Pending CN108793995A (zh) 2018-07-11 2018-07-11 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108793995A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065966A (zh) * 2019-05-08 2019-07-30 广东石油化工学院 一种黑化钛酸钡材料的制备方法
CN114591078A (zh) * 2021-10-19 2022-06-07 肇庆学院 一种BaTiO3基片式PTC热敏陶瓷及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626489A (zh) * 2013-11-13 2014-03-12 华中科技大学 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626489A (zh) * 2013-11-13 2014-03-12 华中科技大学 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG, X. ET AL.: "Influence of sintering conditions on the electrical properties and the PTCR effect of the multilayer Ba1.005(Ti1-xNbx)O3 ceramics with Ni internal electrode", 《J MATER SCI: MATER ELECTRON》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065966A (zh) * 2019-05-08 2019-07-30 广东石油化工学院 一种黑化钛酸钡材料的制备方法
CN114591078A (zh) * 2021-10-19 2022-06-07 肇庆学院 一种BaTiO3基片式PTC热敏陶瓷及其制备方法
CN114591078B (zh) * 2021-10-19 2022-10-28 肇庆学院 一种BaTiO3基片式PTC热敏陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN106866135B (zh) 一种无铅高居里温度BaTiO3基正温度系数热敏陶瓷的制备方法
CN101325105B (zh) 层叠型ptc热敏电阻器及其制造方法
CN105732025B (zh) 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN102005273B (zh) 一种高性能无铅负温度系数热敏厚膜及其制备方法
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN104016675B (zh) BaTiO3基PTC陶瓷粉料、片式热敏电阻及其制备方法
CN108793995A (zh) 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法
CN107840655A (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN103626489A (zh) 一种低温烧结叠层片式钛酸钡热敏陶瓷的制备方法
CN109665839A (zh) 一种高储能密度plzt基反铁电陶瓷材料及其制备方法和应用
CN109608194A (zh) 一种锆钛酸铅厚膜陶瓷及其制备方法和应用
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN103664173A (zh) 一种高温厚膜热敏电阻的制备方法
CN104496467A (zh) 高居里温度bt-bkt体系无铅ptcr陶瓷材料及制备和应用
CN101693617A (zh) 一种高电阻率低b值负温度系数热敏电阻材料
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法
CN115368128A (zh) 一种ZnO压敏电阻材料的制备方法
CN115583833A (zh) 一种大电容耐高温的氧化锌压敏陶瓷材料及其制备方法
CN102285797B (zh) 一种knn基压电织构厚膜的制备方法
CN112759384B (zh) 陶瓷组成物用于热敏电阻器的用途、陶瓷烧结体用于热敏电阻器的用途及热敏电阻器
CN102509601B (zh) 一种钛酸钡ptc陶瓷的制备方法
CN116655367B (zh) 一种负温度系数热敏陶瓷材料及其制备方法
Wang et al. Preparation and electrical properties of semiconducting strontium—lead titanate PTCR ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181113

WD01 Invention patent application deemed withdrawn after publication