CN110065966A - 一种黑化钛酸钡材料的制备方法 - Google Patents

一种黑化钛酸钡材料的制备方法 Download PDF

Info

Publication number
CN110065966A
CN110065966A CN201910378209.4A CN201910378209A CN110065966A CN 110065966 A CN110065966 A CN 110065966A CN 201910378209 A CN201910378209 A CN 201910378209A CN 110065966 A CN110065966 A CN 110065966A
Authority
CN
China
Prior art keywords
barium
melanism
titanate material
preparation
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910378209.4A
Other languages
English (en)
Inventor
段林海
孟秀红
周如金
程丽华
林存辉
张尤华
曹水
秦慧博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201910378209.4A priority Critical patent/CN110065966A/zh
Publication of CN110065966A publication Critical patent/CN110065966A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种黑化钛酸钡材料的制备方法,包括如下步骤:(1)将硝酸钡和硫酸钛混合,充分搅拌得到混合溶液;(2)在混合溶液中缓慢中加入KOH,得到前驱体溶液,冷却至室温;(3)将前驱体溶液转移到聚四氟乙烯内衬中,反应后得到钛酸钡材料;(4)在高温、无氧的条件下,采用金属铝作为还原剂进行还原反应,得到黑化钛酸钡材料粉体。本发明通过在高温‑真空‑金属铝作为还原剂的条件下对水热合成的钛酸钡分体进行黑化处理,在物质表面引入空穴。通过系统表征,验证处理前后物质没有发生改变,形成了一种晶体外部包裹一层非结晶物质的球壳结构,所得黑化钛酸钡在可见光条件下对亚甲基蓝和甲基橙有很好的降解效果。

Description

一种黑化钛酸钡材料的制备方法
技术领域
本发明涉及一种黑化钛酸钡材料的制备技术。
背景技术
随着工业发展,能源的消耗和环境的污染一度制约经济的发展和人类生存的环境,探索绿色化学是当今科研领域所面临的一项巨大挑战。太阳能作为清洁能源,通过光催化的研究不尽可以提供环保的清洁能源,也可以对有机污染物进行分解和降解。
钛酸钡作为一种介电、压电和铁电材料广泛应用在压电换能器、电容器等电子元件,有“电子陶瓷工业的支柱”的美誉,但是其作为光催化材料还很少有人报道。钛酸钡属于铁电材料,其内建电场会影响光催化活性。但是由于其禁带宽度较宽,在可见光的条件下没有明显效果。
发明内容
本发明的目的在于克服现有技术钛酸钡存在的不足,提供一种黑化钛酸钡材料的制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种黑化钛酸钡材料的制备方法,包括如下步骤:
(1)将硝酸钡和硫酸钛混合,充分搅拌得到混合溶液;
(2)在混合溶液中缓慢中加入KOH,得到均一稳定的前驱体溶液,不断搅拌冷却至室温;
(3)将前驱体溶液转移到聚四氟乙烯内衬中,装入高压反应釜转移到鼓风干燥机中,反应后得到钛酸钡材料;
(4)在高温、无氧的条件下,采用金属铝作为还原剂进行还原反应,得到黑化钛酸钡材料粉体。
作为优选的,在上述的黑化钛酸钡材料的制备方法中,硝酸钡和硫酸钛的摩尔比为1:1。
作为优选的,在上述的黑化钛酸钡材料的制备方法中,步骤(3)所述反应的温度为180℃,反应的时间为12小时。
作为优选的,在上述的黑化钛酸钡材料的制备方法中,步骤(4)所述高温为600-800℃。
作为优选的,在上述的黑化钛酸钡材料的制备方法中,步骤(4)所述还原反应的时间为6-18小时。
作为优选的,在上述的黑化钛酸钡材料的制备方法中,步骤(4)所述高温为800℃,所述还原反应的时间为18小时。
与现有技术相比,本发明具有如下有益效果:
本发明通过在高温-真空-金属铝作为还原剂的条件下对水热合成的钛酸钡分体进行黑化处理,在物质表面引入空穴。通过系统表征,验证处理前后物质没有发生改变,形成了一种晶体外部包裹一层非结晶物质的球壳结构,所得黑化钛酸钡在可见光条件下对亚甲基蓝和甲基橙有很好的降解效果。
附图说明
图1为纯相钛酸钡和在不同温度下铝还原钛酸钡XRD谱图;
图2为钛酸钡光学照片(a);黑化后钛酸钡光学照片(b);800℃黑化前后紫外-可见-近红外漫反射吸收光谱(c)以及对应的价带曲线(d)。
图3为不同还原温度的黑化钛酸钡降解亚甲基蓝(a)和降解甲基橙(b)的光降解曲线,图内比色皿为不同时间内染料颜色变化。图3中,BTO-600为实施例1,BTO-700为实施例2,BTO-800为实施例3。
图4为实施例3降解亚甲基蓝(a)和甲基橙(b)吸收曲线图。
具体实施方式
实施例1 黑化钛酸钡材料的制备
取用15mL、0.2M的硝酸钡和15mL、0.2M的硫酸钛在烧杯中混合,充分搅拌15分钟;然后缓慢加入20g KOH于混合溶液中,得到均一稳定的前驱体溶液,不断搅拌冷却至室温;迅速将前驱体溶液转移到50mL聚四氟乙烯内衬中,填充量70%,装入高压反应釜转移到鼓风干燥机中,反应温度180℃反应12小时。反映结束将反应釜冷却到室温,用去离子水超声清洗4次,洗净表面附着的氢氧化物和未反应的原料,后用无水乙醇清洗3次,在80℃鼓风干燥机中烘干表面溶剂,得到钛酸钡粉体。
将钛酸钡粉体至于瓷舟中,周围用装有金属铝的瓷舟包围,放置于真空管式炉内,调节炉内气压至0.5Pa以下;金属铝和钛酸钡粉体同时加热,加热温度为600℃,加热时间为6h。待反应结束后,将管式炉在真空条件下冷却直室温,得到黑色钛酸钡粉体。
:实施例2 黑化钛酸钡材料的制备
取用15mL、0.2M的硝酸钡和15mL、0.2M的硫酸钛在烧杯中混合,充分搅拌15分钟;然后缓慢加入20g KOH于混合溶液中,得到均一稳定的前驱体溶液,不断搅拌冷却至室温;迅速将前驱体溶液转移到50mL聚四氟乙烯内衬中,填充量70%,装入高压反应釜转移到鼓风干燥机中,反应温度180℃反应12小时。反映结束将反应釜冷却到室温,用去离子水超声清洗3次,洗净表面附着的氢氧化物和未反应的原料,后用无水乙醇清洗2次,在80℃鼓风干燥机中烘干表面溶剂,得到钛酸钡粉体。
将钛酸钡粉体至于瓷舟中,周围用装有金属铝的瓷舟包围,放置于真空管式炉内,调节炉内气压至0.5Pa以下;金属铝和钛酸钡粉体同时加热,加热温度为700℃,加热时间为12h。待反应结束后,将管式炉在真空条件下冷却直室温,得到黑色钛酸钡粉体。
实施例3 黑化钛酸钡材料的制备
取用15mL、0.2M的硝酸钡和15mL、0.2M的硫酸钛在烧杯中混合,充分搅拌15分钟;然后缓慢加入20g KOH于混合溶液中,得到均一稳定的前驱体溶液,不断搅拌冷却至室温;迅速将前驱体溶液转移到50mL聚四氟乙烯内衬中,填充量70%,装入高压反应釜转移到鼓风干燥机中,反应温度180℃反应12小时。反映结束将反应釜冷却到室温,用去离子水超声清洗5次,洗净表面附着的氢氧化物和未反应的原料,后用无水乙醇清洗3次,在80℃鼓风干燥机中烘干表面溶剂,得到钛酸钡粉体。
将钛酸钡粉体至于瓷舟中,周围用装有金属铝的瓷舟包围,放置于真空管式炉内,调节炉内气压至0.5Pa以下;金属铝和钛酸钡粉体同时加热,加热温度为800℃,加热时间为18h。待反应结束后,将管式炉在真空条件下冷却直室温,得到黑色钛酸钡粉体。
实施例4:
通过图1可以看到,未经黑化的钛酸钡(BTO)与各个温度下经过铝热还原,冷却至室温的钛酸钡其晶形结构没有发生明显的变化。各个衍射峰非常尖锐,表明得到的产品具有良好的结晶度。铝热还原后的钛酸钡(BTO-B)的Bragg衍射峰都能被很好地检索出来,结果为四方结构(空间群P4mm),通过与准谱卡JCPSB No.05-0626中纯钛酸钡的峰位相比,可发现与纯的钛酸钡对应的峰位相一致。水热反应得到了较好结晶度的钛酸钡纳米粉体。通过Scherrer公式计算得到平均粒径t=(Kλ)/(βcosθ),其中t为粒子的平均直径,K是Scherrer常数0.9,λ为衍射峰的波长为0.154056nm,β为实测样品衍射峰半高宽度,θ为衍射角,为了得到平均尺寸,选取不同衍射方向的XRD图谱样品,求其平均值为210nm。
BTO的颜色经过还原之后由白色变为黑色,而且还原温度越高,样本颜色越深,这可以说明光吸收的范围变大。BTO和BTO-B紫外可见光谱如图2,值得注意的是,BTO-B在可见光区和红外光区的吸收增强显著,而在原始纯净的BTO的紫外可见吸收光谱中,只能吸收395nm至紫外光区。如果一种材料可以吸收百分之百的光,则其在可见光的照射下呈现黑色。在可见光区和红外光区增强光吸收可以归结为在还原的过程中有存在非晶态的形成过程,表面上含有的Ti3+和氧空穴组成的无定形非晶球壳,黑色的变化是由于还原或者其他晶体晶格引起的变化过程,以及相对应的电子结构的改变。在氧化物的结构中,表面引入电子来改晶体表面的晶格结构可以间接使光学属性进行了改变,与HRTEM所得到的结果相匹配,非晶态的存在改变了物质的颜色。还原BTO的颜色为灰色,没有像还原TiO2一样变成黑色,其原因在于这种物质电子结构和光学性能的差别, TiO2改变大部分的晶体结构、化学键和电子结构。导致了表面“侵蚀”均匀程度和“侵蚀”深度的不同。
在400nm以上的吸收与BTO内在的带隙有关,通过吸光度与光照的关系对带隙进行进一步测定,如图2(d)。通过外推(ahv)与hv的图像的吸收关系,可以确定两种样品的带隙,这与通常报道的BTO的带隙相一致。由于晶体BaTiO3与Al还原后的BaTiO3-x所形成的非晶体同时共存,BTO-B所表现出来的复杂带隙结构与从TEM分析中得到的核/壳结构有必要的联系。
实施例4:实施例1-3的光催化实验
本发明应用0.05g催化剂(实施例1-3的黑色钛酸钡粉体)降解100mL,10mg/L的染料的效率来比较光催化活性的效果, 空白对照组为其他条件相同时无催化剂时染料的自降解情况。
(a)降解亚积极蓝
将0.05g催化剂置于100mL,10mg/L的亚积极蓝染料中,在暗处磁力搅拌30分钟,使染料达到吸附平衡,再在500W的氙灯下照射,每30分钟取样一次,经过离心机离心收集上层清夜,在UV-3100紫外-可见分光光度计上测最大吸收波长时的吸光度,然后进行分析讨论。
(b)降解甲基橙
将0.05g催化剂置于100mL,10mg/L的甲基橙染料中,在暗处磁力搅拌30分钟,使染料达到吸附平衡,再在500W的氙灯下照射,每30分钟取样一次,经过离心机离心收集上层清夜,在UV-3100紫外-可见分光光度计上测最大吸收波长时的吸光度。
以t时刻的染料浓度Ct与吸附-脱附平衡时的亚积极蓝浓度C0的比值随时间下降的曲线来表征光催化降解的过程。得到如图3的光催化降解曲线。在曲线中可以观察到,在太阳光照射下,染料自降解和在BTO原始样品做催化剂的条件下降解效果很弱,几乎没有发生光催化效果。与未经黑化的钛酸钡的BTO相比,实施例1-3的光催化活性明显提高,对于实施例3的催化剂,MB染料的降解效率达到62.4%,而对于BTO降解MB染料,其降解效率只有7.7%。
为了检验降解染料的普遍性,染料选用比较难降解的甲基橙(MO),通过Al还原后得到的黑化钛酸钡,显著提高了光催化活性,五小时的降解效率由6.4%提升至38.7%。结果表明在高温退火过程中,较高的还原温度可导致较短的降解时间,这一点与长时间、高温度的绝氧还原所增加的表面缺陷有关。在相同还原温度的条件下,还原时间越长,反应的光催化效果越好;在相同还原时间的条件下,还原温度越高,还原效果越好。这是由于氧空位的增加可以提高光催化效果。选催化效果最好的实施例3作为代表,绘制了反应进程中染料吸收光谱,如图4所示。

Claims (6)

1.一种黑化钛酸钡材料的制备方法,其特征在于包括如下步骤:
(1)将硝酸钡和硫酸钛混合,充分搅拌得到混合溶液;
(2)在混合溶液中缓慢中加入KOH,得到均一稳定的前驱体溶液,不断搅拌冷却至室温;
(3)将前驱体溶液转移到聚四氟乙烯内衬中,装入高压反应釜转移到鼓风干燥机中,反应后得到钛酸钡材料;
(4)在高温、无氧的条件下,采用金属铝作为还原剂进行还原反应,得到黑化钛酸钡材料粉体。
2.如权利要求1所述的黑化钛酸钡材料的制备方法,其特征在于,硝酸钡和硫酸钛的摩尔比为1:1。
3.如权利要求1所述的黑化钛酸钡材料的制备方法,其特征在于,步骤(3)所述反应的温度为180℃,反应的时间为12小时。
4.如权利要求1所述的黑化钛酸钡材料的制备方法,其特征在于,步骤(4)所述高温为600-800℃。
5.如权利要求1所述的黑化钛酸钡材料的制备方法,其特征在于,步骤(4)所述还原反应的时间为6-18小时。
6.如权利要求1所述的黑化钛酸钡材料的制备方法,其特征在于,步骤(4)所述高温为800℃,所述还原反应的时间为18小时。
CN201910378209.4A 2019-05-08 2019-05-08 一种黑化钛酸钡材料的制备方法 Pending CN110065966A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910378209.4A CN110065966A (zh) 2019-05-08 2019-05-08 一种黑化钛酸钡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910378209.4A CN110065966A (zh) 2019-05-08 2019-05-08 一种黑化钛酸钡材料的制备方法

Publications (1)

Publication Number Publication Date
CN110065966A true CN110065966A (zh) 2019-07-30

Family

ID=67370465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910378209.4A Pending CN110065966A (zh) 2019-05-08 2019-05-08 一种黑化钛酸钡材料的制备方法

Country Status (1)

Country Link
CN (1) CN110065966A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400168A (zh) * 2002-08-15 2003-03-05 山东大学 钛酸钡粉体的制备方法
JP2005129259A (ja) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd 光電変換素子及び太陽電池
CN1715243A (zh) * 2004-06-30 2006-01-04 北京化工大学 一种制备四方相钛酸钡粉体的方法
CN104497357A (zh) * 2014-11-28 2015-04-08 深圳先进技术研究院 杂化颗粒及其制备方法、绝缘复合材料
CN108793995A (zh) * 2018-07-11 2018-11-13 肇庆学院 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400168A (zh) * 2002-08-15 2003-03-05 山东大学 钛酸钡粉体的制备方法
JP2005129259A (ja) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd 光電変換素子及び太陽電池
CN1715243A (zh) * 2004-06-30 2006-01-04 北京化工大学 一种制备四方相钛酸钡粉体的方法
CN104497357A (zh) * 2014-11-28 2015-04-08 深圳先进技术研究院 杂化颗粒及其制备方法、绝缘复合材料
CN108793995A (zh) * 2018-07-11 2018-11-13 肇庆学院 一种Nb2O5掺杂BaTiO3基片式PTC热敏陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING LI ET AL.: "Enhanced solar absorption and visible-light photocatalytic and photoelectrochemical properties of aluminium-reduced BaTiO3 nanoparticles", 《CHEMICAL COMMUNICATIONS》 *

Similar Documents

Publication Publication Date Title
Wu et al. Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution
Babitha et al. Enhanced antibacterial activity and photo-catalytic properties of ZnO nanoparticles: Pedalium murex plant extract-assisted synthesis
CN102060330B (zh) 一种以微波幅射加热合成钼酸铋八面体纳米颗粒的方法
Siddique et al. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts
Divya et al. Effects of annealing temperature on the crystal structure, optical and photocatalytic properties of Bi2O3 needles
Chatti et al. Near-infrared light triggered superior photocatalytic activity from MoS 2–NaYF 4: Yb 3+/Er 3+ nanocomposites
Nilavazhagan et al. Effect of an alkali hydroxide concentration on the structural, optical, and surface morphological properties of ZnO nanoparticles
Sedlak et al. Contributions of morphological and structural parameters at different hierarchical morphology levels to photocatalytic activity of mesoporous nanostructured ZnO
Mousavi et al. Investigation of methyl orange photocatalytic degradation using La0. 7Sr1. 3CoO4 Ruddlesden-Popper nanoparticles
Seo Size Control of LaNbON2 Particles for Enhanced Photocatalytic Water Oxidation Under Visible Light Irradiation
Pasternak et al. BiYWO6: Novel synthetic routes and their effect on visible-light photocatalysis
Cao et al. Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity
Lopez et al. Photocatalytic degradation of 2, 4-dichlorophenoxiacetic acid and 2, 4, 6-trichlorophenol with ZrO 2 and Mn/ZrO 2 sol-gel materials
CN110952143B (zh) 一种介孔单晶钛酸锶的合成方法
Slama et al. Photocatalytic and optical properties of vanadium doped zinc oxide nanoparticles
CN110065966A (zh) 一种黑化钛酸钡材料的制备方法
Naufal et al. Direct sunlight active Sm3+ doped TiO2 photocatalyst
Chen et al. Study on the photocatalytic activity of TiN/TiO2 nanoparticle formed by ball milling
CN105562039A (zh) 一种碲酸钛光催化剂、制备方法及其应用
CN112320858B (zh) 一种钛酸铋钠-镍钛酸钡铁电纳米粉体及其制备方法和用途
Pei et al. One-Pot Hydrothermal Synthesis of g-C3N4/BiPO4 Nanocomposites with Significant Photocatalytic Activity
Tahmasebi et al. The effect of polyvinylpyrrolidone (PVP) on the growth of (1 1 0) crystal facet of BiOCl for enhanced photodegradation of RhB under LED
Batin et al. Synthesis and characterization of iron oxide powders
Vicente et al. Photocatalytic decomposition of fatty stains by TiO2 thin films
Abdelmaksoud et al. A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190730

RJ01 Rejection of invention patent application after publication