CN103608881B - 陶瓷粉末、半导体陶瓷电容器及其制造方法 - Google Patents

陶瓷粉末、半导体陶瓷电容器及其制造方法 Download PDF

Info

Publication number
CN103608881B
CN103608881B CN201280028203.0A CN201280028203A CN103608881B CN 103608881 B CN103608881 B CN 103608881B CN 201280028203 A CN201280028203 A CN 201280028203A CN 103608881 B CN103608881 B CN 103608881B
Authority
CN
China
Prior art keywords
ceramic
mentioned
semiconductor
make
semiconductor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280028203.0A
Other languages
English (en)
Other versions
CN103608881A (zh
Inventor
川本光俊
佐野笃史
石川达也
小林靖知
藤田吉宏
木村祐树
草野雄
草野雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN103608881A publication Critical patent/CN103608881A/zh
Application granted granted Critical
Publication of CN103608881B publication Critical patent/CN103608881B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

提供一种ESD耐压出色的晶界绝缘型半导体陶瓷所使用的陶瓷粉末、利用其的半导体陶瓷电容器及其制造方法。一种SrTiO3系晶界绝缘型半导体陶瓷所使用的陶瓷粉末,其特征在于,比表面积在4.0m2/g以上、8.0m2/g以下,累积90%粒径D90在1.2μm以下。

Description

陶瓷粉末、半导体陶瓷电容器及其制造方法
技术领域
本发明涉及陶瓷粉末,更详细而言涉及SrTiO3系晶界绝缘型半导体陶瓷所使用的陶瓷粉末、利用其的半导体陶瓷电容器及其制造方法。
背景技术
随着近年来的电子学技术的发展,伴随移动电话和笔记本电脑等的便携用电子设备、汽车等中安装的车载用电子设备的普及,寻求电子设备的小型化、多功能化。另一方面,为了实现电子设备的小型化、多功能化,一直以来经常使用各种IC、LSI等的半导体元件,伴随于此需要应对电子设备的噪声的对策。
作为应对电子设备的噪声的对策,在半导体元件的电源线上,作为旁路电容器而配置了薄膜电容器、层叠型陶瓷电容器、半导体陶瓷电容器等。特别是,在汽车导航或汽车音响、车载ECU等中,广泛进行着将静电电容1nF左右的电容器连接于外部端子,来吸收高频噪声。
然而,若为静电电容1nF左右的低电容,则ESD(Electro-Static Discharge:“静电放电”)耐压变得极低(例如,2kV~4kV程度),存在导致电容器自身破损的危险。为此,作为ESD对策,大多将变阻器或齐纳二极管并联连接于电容器来使用。
另一方面,公知SrTiO3系晶界绝缘型的半导体陶瓷具有变阻器特性。变阻器特性是指若施加一定值以上的电压则会流过大的电流的特性。若利用该变阻器特性,则不需要如以往的电容器那样连接变阻器或齐纳二极管,能提供自身具备ESD耐压功能的电容器。为此,使用了该晶界绝缘型的半导体陶瓷的电容器的开发在不断进展。
例如,在专利文献1中,记载了以下陶瓷粉末:该陶瓷粉末是SrTiO3系晶界绝缘型的陶瓷粉末,施主元素固溶于晶粒界面中,并且受主元素至少存在于晶粒界面中,晶面的(222)面处的积分宽度在0.500°以下,并且晶粒的平均粉末粒径在1.0μm以下。另外,在利用对该陶瓷粉末进行烧成而得到的半导体陶瓷制成的半导体陶瓷电容器中,即使被施加了高电压,也能防止电容器自身的破坏。
在先技术文献
专利文献
专利文献1:国际公开WO2009/001690号公报
发明内容
发明要解决的课题
但是,实际上在利用专利文献1记载的半导体陶瓷制作半导体陶瓷电容器时,在一部分条件下产生了ESD耐压变低的问题。本发明人针对该问题进行了研究,发现了烧成前的陶瓷粉末的粉体特性对半导体陶瓷电容器的ESD耐压有很大影响。即,在陶瓷粉末包含了粗粒的情况下,在烧成后的半导体陶瓷产生粗粒,其结果导致半导体陶瓷电容器的ESD耐压降低。
本发明正是鉴于这样的问题而做出的发明,其目的在于提供一种用于提供ESD耐压出色的晶界绝缘型半导体陶瓷的陶瓷粉末、利用其的半导体陶瓷电容器及其制造方法。
用于解决课题的手段
本发明所涉及的陶瓷粉末SrTiO3系晶界绝缘型半导体陶瓷所使用的陶瓷粉末,其特征在于,比表面积在4.0m2/g以上、8.0m2/g以下,累积90%粒径D90在1.2μm以下。
另外,本发明也面向一种半导体陶瓷电容器,具备:层叠体,其具有被层叠的多个半导体陶瓷层、和沿着半导体陶瓷层间的界面形成并以Ni为主成分的多个内部电极;以及外部电极,其设于层叠体的两端部,并与内部电极电连接,上述半导体陶瓷电容器的特征在于,半导体陶瓷层是通过对上述陶瓷粉末进行烧结而成。
另外,本发明也面向一种半导体陶瓷电容器的制造方法,其特征在于,具备:煅烧粉末制作工序,在将含有Sr的化合物、含有Ti的化合物以及含有施主元素的化合物混合粉碎后,进行煅烧来制作煅烧粉末;混合粉末制作工序,将煅烧粉末与含有受主元素的化合物混合粉碎,之后进行热处理来制作混合粉末;陶瓷生片制作工序,将混合粉末与粘合剂混合来制作陶瓷浆,由陶瓷浆,来制作含有陶瓷粉末与粘合剂并且应成为半导体陶瓷层的陶瓷生片;成形工序,在陶瓷生片的一部分表面涂覆了应成为内部电极的导电性膏剂后,层叠陶瓷生片并进行压接,由此来制作成形体;和烧成工序,在还原氛围下对成形体进行了一次烧成后,在大气氛围下进行二次烧成,由此来制作层叠体,陶瓷生片中的陶瓷粉末的比表面积在4.0m2/g以上、8.0m2/g以下,累积90%粒径D90在1.2μm以下。
另外,本发明所涉及的半导体陶瓷电容器的制造方法中,优选煅烧粉末制作工序中的煅烧温度为1300~1450℃,烧成工序中的一次烧成的烧成温度为1150~1250℃。
发明效果
根据本发明,能提供ESD耐压高的半导体陶瓷电容器。
附图说明
图1是示意性表示本发明的一实施方式所涉及的半导体陶瓷电容器的剖面图。
具体实施方式
以下,对用于实施本发明的方式进行说明。
图1是示意性表示本发明的一实施方式所涉及的半导体陶瓷电容器的剖面图。
半导体陶瓷电容器1具备层叠体2、和设于层叠体的两端部的外部电极5a、5b。
层叠体2沿着层叠的多个半导体陶瓷层3a~3g与半导体陶瓷层3a~3g间的界面而形成,具有以Ni为主成分的多个内部电极4a~4f。内部电极4a、4c、4e露出于层叠体2的一个端面,与外部电极5a电连接。另外,内部电极4b、4d、4f露出于层叠体2的另一端面,与外部电极5b电连接。
半导体陶瓷层3a~3g是具有晶粒和形成于晶粒周围的晶粒界面的晶界绝缘型半导体陶瓷。晶界绝缘型半导体陶瓷是如下所述那样的陶瓷:在还原氛围下对成形体进行一次烧成并进行了半导体化后,在氧化氛围下进行二次烧成,由此将晶粒界面绝缘体化,形成静电电容。
另外,半导体陶瓷层3a~3g其主成分为SrTiO3系,包含施主元素与受主元素。也可以用Ba、Ca等置换Sr的一部分。另外,也可以用Zr等置换Ti的一部分。
施主元素的一部分固溶于晶粒中。另外,若受主元素的一部分存在于晶粒界面,则在二次烧成时氧会因受主元素而吸附于晶粒界面。由此,晶粒界面的绝缘体化进展,能实现介电常数的提高。
本发明所涉及的陶瓷粉末用于上述的SrTiO3系晶界绝缘型半导体陶瓷,半导体陶瓷层3a~3g通过陶瓷粉末烧结而成。该陶瓷粉末的特征在于,比表面积在4.0m2/g以上8.0m2/g以下,累积90%粒径D90在1.2μm以下。通过如上述那样调节比表面积与累积90%粒径D90,从而能抑制陶瓷粉末的烧成后的晶粒的粗大化。因此,能得到ESD耐压出色的半导体陶瓷电容器。
此外,虽然Sr与Ti之比没有特别限定,但优选Sr/Ti比在0.990以上1.010以下。半导体陶瓷层3a~3g在该范围具有特别良好的绝缘性,ESD耐压也很好。
另外,施主元素的含有摩尔量虽然没有特别限定,但最好相对于Ti100摩尔为0.2~1.2摩尔,优选为0.4~1.0摩尔。在该范围内,半导体陶瓷电容器能得到特别良好的静电电容。作为施主元素的例子,可以举出La、Sm、Dy、Ho、Y、Nd、Ce等稀土类元素,或Nb、Ta、W等。
另外,受主元素的含有摩尔量虽然没有特别限定,但最好相对于Ti100摩尔在0.7摩尔以下(但是,不包含0摩尔),优选为0.3~0.5摩尔。在该范围内,半导体陶瓷电容器能得到特别良好的静电电容。作为受主元素的例子,可以举出Mn、Co、Ni、Cr等的过渡金属。
另外,半导体陶瓷层3a~3g中也可以包含低熔点氧化物,该低熔点氧化物是包含了SiO2、B2O3、碱金属元素的玻璃陶瓷等。
接下来,对半导体陶瓷电容器的制造方法进行说明。
首先,分别准备含有Sr的化合物、含有Ti的化合物、含有施主元素的化合物,并称量规定量。
接下来,在该称量物中添加规定量的分散剂,并与PSZ(Partially StabilizedZirconia;“部分稳定化氧化锆”)球等的粉碎介质与纯水一起投入到球磨机。然后,湿式混合该称量物,制作浆。然后,在使该浆干燥后,在大气氛围下,例如在1300~1450℃下进行煅烧,制成煅烧粉末。
接下来,准备含有受主元素的化合物,并称量规定量。也可以根据需要准备SiO2等的低熔点氧化物,称量规定量。然后,将煅烧粉末、含有受主原料的化合物、低熔点氧化物、纯水、和分散剂投入球磨机。然后,在湿式混合了该混合物后,进行蒸发干燥。然后,在大气氛围下,在规定温度下进行热处理,制成混合粉末。
接下来,在该混合粉末中适当添加甲苯、乙醇等的有机溶剂和粘合剂、可塑剂、界面活性剂等,并充分地进行湿式混合,得到陶瓷浆。
接下来,由陶瓷浆制成陶瓷生片。陶瓷生片含有陶瓷粉末与粘合剂,在烧成后会成为半导体陶瓷层。作为陶瓷生片的制成方法的例子,可以举出刮刀法、狭缝涂覆法、模涂法等。
接下来,在陶瓷生片的一部分表面,涂覆应成为内部电极的导电性膏剂。作为涂覆方法的例子,可以举出丝网印刷法、照相凹版印刷法等。
接下来,层叠陶瓷生片并进行了压接后,切断为规定尺寸,制成成形体。
接下来,在大气氛围下对成形体进行加热,进行脱粘合剂处理。脱粘合剂处理的温度条件例如为300~500℃。然后,在H2气体与N2气体为规定的流量比(例如,H2/N2=0.025/100~1/100的体积比)的还原氛围下,对成形体进行一次烧成。一次烧成的烧成温度优选为1150℃~1250℃。这样,通过使一次烧成的烧成温度低于煅烧温度(1300~1450℃),从而在一次烧成中抑制晶粒的粒生长,所以能防止晶粒的粗大化。之后,在大气氛围下进行二次烧成,制成层叠体。二次烧成的烧成温度例如是600~900℃。
接下来,在层叠体的两端部,用浸染法涂覆导电性膏剂。之后进行烘焙处理,形成外部电极。外部电极的形成方法可以是印刷法、真空蒸镀法或者溅射法。这样来制造半导体陶瓷电容器。
此外,本发明并不限定于上述实施方式,在无损本发明的效果的范围内,可以有各种形态。
[实验例]
接下来,对本发明的实验例进行具体说明。
(试料的制作)
在含有Sr的化合物准备SrCO3,作为含有Ti的化合物准备比表面积为30m2/g(平均粒径:约30nm)的TiO2、以及施主化合物LaCl3。然后,进行称量,使得LaCl3的含有量相对于Ti元素100摩尔为0.8摩尔。Sr与Ti的摩尔比(Sr/Ti比)m为1.000。
接下来,添加相对于称量物100重量部为3重量部的多碳酸铵盐(ammoniumpolycarboxylate)作为分散剂,与作为粉体介质的直径2mm的PSZ球和纯水一起投入球磨机。然后,在球磨机内进行湿式混合,制成陶瓷浆。
接下来,在使该陶瓷浆蒸发干燥后,在1400℃下煅烧2小时,得到煅烧粉末。
接下来,对煅烧粉末,添加了作为含有受主元素的化合物的MnCO3、作为低熔点化合物的SiO2、和作为分散剂的多碳酸铵盐。然后,与直径2mm的PSZ球和纯水一起投入球磨机,在球磨机内进行了湿式混合。此时,多碳酸铵盐的添加量与混合时间为表1所示那样的条件。另外,按照Mn/Ti=0.003的摩尔比添加了MnCO3。另外,按照Si/Ti=0.001的摩尔比添加了SiO2
之后,排出得到的浆,进行蒸发干燥。之后,在600℃的温度下进行5小时的热处理,除去分散剂成分,得到混合粉末。
接下来,对混合粉末,添加甲苯、乙醇等的有机溶剂以及分散剂,与直径2mm的PSZ球一起投入球磨机。然后,在球磨机内进行了湿式混合。由此制成陶瓷浆。
接下来,通过狭缝涂覆法,由陶瓷浆制成了陶瓷生片。
接下来,在陶瓷生片的表面,印刷了以Ni为主成分的导电性膏剂。然后,构成为陶瓷生片的层数为10层,在其上下赋予外层(没有印刷导电性膏剂的层),整体层叠为0.7mm左右的厚度,进行压接。然后,将压接得到的块体切成规定的形状,得到成形体。
接下来,在大气中,在400℃下进行2小时的热处理,进行了成形体的脱脂。脱脂结束后,在H2/N2=0.1/100~1/100的还原氛围下,在1200℃、2小时的条件下进行了一次烧成。之后,在大气中,在700℃、1小时的条件下进行二次烧成而得到层叠体。所得到的层叠体的大小约为1.0mm(L)×0.5mm(W)×0.5mm(T)的大小。
之后,通过溅射法形成了外部电极。作为外部电极的构成,成为3层构造,其中第1层:NiCr(镍铬),第2层:镍合金,第3层:Ag。之后,在外部电极的表面电镀Ni与Sn,完成1005尺寸的半导体陶瓷电容器。
(试料的评价)
陶瓷粉末的比表面积与累积90%粒径D90在通过热处理除去了陶瓷生片中的粘合剂等的有机成分后进行了测定。
比表面积使用堀场制作所制激光衍射/散射式粒度分布测定装置LA-700,通过BET法进行测定。
累积90%粒径D90利用蒙太克公司(Mountech Co.,Ltd)制比表面积测定装置Macsorb Model HM-1220进行测定,根据所得到的粒度分布,求出为体积基准的累积粒度分布的90%的粒径。
半导体陶瓷电容器的静电电容在1kHz、1V的条件进行测定。另外,绝缘电阻通过施加1分钟DC50V来进行测定。另外,ESD耐压基于IEC61000-4-2的标准,在进行了接触放电的状态下正反施加10次电压来进行测定。
在表1中,表示了相对于煅烧粉末的分散剂添加量以及混合时间、陶瓷粉末的比表面积以及累积90%粒径D90、半导体陶瓷电容器的静电电容、绝缘电阻以及ESD耐压的结果。
[表1]
关于试料编号1~3,比表面积小到2.7~3.5m2/g,ESD耐压低至4~8kV。另外,关于试料编号1~5,累积90%粒径D90是1.28μm~2.10μm,ESD耐压低至4~15kV。
关于试料编号6、7,比表面积是2.9~3.6m2/g。另外,关于试料编号6,累积90%粒径D90大至1.35μm。在该情况下,试料编号6、7的ESD耐压低至4~8kV。
关于试料编号10、14,比表面积是8.3~8.4m2/g,ESD耐压低至15kV。
另一方面,关于试料编号8、9、11~13,比表面积为4.0~8.0m2/g,累积90%粒径D90在1.20μm以下。在该情况下,得到ESD耐压为30kV的良好的结果。
符号说明:
1半导体陶瓷电容器
2层叠体
3半导体陶瓷层
4内部电极
5外部电极

Claims (3)

1.一种半导体陶瓷电容器,具备:
层叠体,其具有被层叠的多个半导体陶瓷层、和沿着上述半导体陶瓷层间的界面形成并以Ni为主成分的多个内部电极;以及
外部电极,其设于上述层叠体的两端部,并与上述内部电极电连接,
上述半导体陶瓷电容器的特征在于,
上述半导体陶瓷层是通过对用于SrTiO3系晶界绝缘型半导体陶瓷的陶瓷粉末进行烧结而成,
上述陶瓷粉末的比表面积在4.0m2/g以上、8.0m2/g以下,累积90%粒径D90在0.85μm以上1.10μm以下。
2.一种半导体陶瓷电容器的制造方法,其特征在于,具备:
煅烧粉末制作工序,在将含有Sr的化合物、含有Ti的化合物以及含有施主元素的化合物混合粉碎后,进行煅烧来制作煅烧粉末;
混合粉末制作工序,将上述煅烧粉末与含有受主元素的化合物混合粉碎,之后进行热处理来制作混合粉末;
陶瓷生片制作工序,混合上述混合粉末与粘合剂来制作陶瓷浆,由上述陶瓷浆,来制作含有陶瓷粉末与上述粘合剂并且应成为半导体陶瓷层的陶瓷生片;
成形工序,在上述陶瓷生片的一部分表面涂覆了应成为内部电极的导电性膏剂后,层叠上述陶瓷生片并进行压接,由此来制作成形体;和
烧成工序,在还原氛围下对上述成形体进行了一次烧成后,在大气氛围下进行二次烧成,由此来制作层叠体,
上述陶瓷生片中的上述陶瓷粉末的比表面积在4.0m2/g以上、8.0m2/g以下,累积90%粒径D90在0.85μm以上1.10μm以下。
3.根据权利要求2所述的半导体陶瓷电容器的制造方法,其特征在于,
上述煅烧粉末制作工序中的煅烧温度为1300~1450℃,上述烧成工序中的一次烧成的烧成温度为1150~1250℃。
CN201280028203.0A 2011-06-22 2012-06-18 陶瓷粉末、半导体陶瓷电容器及其制造方法 Expired - Fee Related CN103608881B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011138660 2011-06-22
JP2011-138660 2011-06-22
PCT/JP2012/065451 WO2012176714A1 (ja) 2011-06-22 2012-06-18 セラミック粉末、半導体セラミックコンデンサおよびその製造方法

Publications (2)

Publication Number Publication Date
CN103608881A CN103608881A (zh) 2014-02-26
CN103608881B true CN103608881B (zh) 2017-02-15

Family

ID=47422551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280028203.0A Expired - Fee Related CN103608881B (zh) 2011-06-22 2012-06-18 陶瓷粉末、半导体陶瓷电容器及其制造方法

Country Status (4)

Country Link
US (1) US9343522B2 (zh)
JP (1) JP5648744B2 (zh)
CN (1) CN103608881B (zh)
WO (1) WO2012176714A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975370B2 (ja) 2013-11-18 2016-08-23 株式会社村田製作所 バリスタ機能付き積層型半導体セラミックコンデンサとその製造方法
WO2016006510A1 (ja) * 2014-07-08 2016-01-14 株式会社村田製作所 バリスタ機能付き積層型半導体セラミックコンデンサ
KR101808794B1 (ko) * 2015-05-07 2018-01-18 주식회사 모다이노칩 적층체 소자
US10770230B2 (en) 2017-07-04 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
CN112811901B (zh) * 2020-12-31 2023-03-03 北京元六鸿远电子科技股份有限公司 一种高介晶界层陶瓷材料及晶界层陶瓷基板的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134350A (ja) * 2000-10-26 2002-05-10 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサおよびその製造方法
CN1417815A (zh) * 2001-11-08 2003-05-14 广州新日电子有限公司 制造SrTiO3晶界层半导体陶瓷电容器的方法
JP2004022611A (ja) * 2002-06-12 2004-01-22 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサおよびその製造方法
CN101346325A (zh) * 2006-05-31 2009-01-14 株式会社村田制作所 半导体陶瓷、层叠型半导体陶瓷电容器、半导体陶瓷的制造方法、层叠型的半导体陶瓷电容器的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359907A (ja) * 1989-07-27 1991-03-14 Matsushita Electric Ind Co Ltd 粒界絶縁型半導体セラミックコンデンサ及びその製造方法
JP3934352B2 (ja) * 2000-03-31 2007-06-20 Tdk株式会社 積層型セラミックチップコンデンサとその製造方法
KR101108958B1 (ko) * 2003-02-25 2012-01-31 쿄세라 코포레이션 적층 세라믹 콘덴서 및 그 제조방법
US20070109720A1 (en) * 2005-10-27 2007-05-17 Kyocera Corporation Dielectric paste, capacitor-embedded glass-ceramic multilayer substrate, electronic component and method of manufacturing capacitor-embedded glass-ceramic multilayer substrate
WO2008004389A1 (fr) * 2006-07-03 2008-01-10 Murata Manufacturing Co., Ltd. Condensateur céramique semi-conducteur superposé doté d'une fonction de varistance et procédé permettant de le fabriquer
KR101134751B1 (ko) 2007-06-27 2012-04-13 가부시키가이샤 무라타 세이사쿠쇼 반도체 세라믹 분말, 및 반도체 세라믹, 그리고 적층형 반도체 세라믹 콘덴서
JP4525788B2 (ja) * 2008-04-17 2010-08-18 Tdk株式会社 誘電体粒子の製造方法
WO2010008041A1 (ja) * 2008-07-18 2010-01-21 日本化学工業株式会社 改質ペロブスカイト型複合酸化物、その製造方法及び複合誘電体材料
JP5446880B2 (ja) * 2010-01-04 2014-03-19 Tdk株式会社 誘電体磁器組成物および電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134350A (ja) * 2000-10-26 2002-05-10 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサおよびその製造方法
CN1417815A (zh) * 2001-11-08 2003-05-14 广州新日电子有限公司 制造SrTiO3晶界层半导体陶瓷电容器的方法
JP2004022611A (ja) * 2002-06-12 2004-01-22 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサおよびその製造方法
CN101346325A (zh) * 2006-05-31 2009-01-14 株式会社村田制作所 半导体陶瓷、层叠型半导体陶瓷电容器、半导体陶瓷的制造方法、层叠型的半导体陶瓷电容器的制造方法

Also Published As

Publication number Publication date
US20140091432A1 (en) 2014-04-03
JPWO2012176714A1 (ja) 2015-02-23
US9343522B2 (en) 2016-05-17
CN103608881A (zh) 2014-02-26
WO2012176714A1 (ja) 2012-12-27
JP5648744B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
US10600572B2 (en) Dielectric composition and multilayer ceramic capacitor containing the same
CN103370754B (zh) 带变阻器功能的层叠型半导体陶瓷电容器及其制造方法
KR100566396B1 (ko) 유전체 세라믹 및 그 제조방법 및 적층 세라믹 커패시터
US9666369B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP5594373B2 (ja) 半導体セラミックとその製造方法、及びバリスタ機能付き積層型半導体セラミックコンデンサとその製造方法
JP6523930B2 (ja) 誘電体磁器組成物及びこれを含む積層セラミックキャパシタ
CN105706199B (zh) 带有变阻器功能的层叠型半导体陶瓷电容器及其制造方法
US8654506B2 (en) Laminate type semiconductor ceramic capacitor with varistor function
CN103608881B (zh) 陶瓷粉末、半导体陶瓷电容器及其制造方法
CN103858193B (zh) 带变阻器功能的层叠型半导体陶瓷电容器及其制造方法
US9604883B2 (en) Dielectric composition and multilayer ceramic capacitor containing the same
JP5418993B2 (ja) 積層型半導体セラミックコンデンサの製造方法、及び積層型半導体セラミックコンデンサ
TW201036003A (en) Varistor ceramic, multilayer component comprising the varistor ceramic, and production method for the varistor ceramic
JP2013201183A (ja) 積層セラミックコンデンサ
CN102696083A (zh) 电介质陶瓷组合物及电子元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20210618

CF01 Termination of patent right due to non-payment of annual fee