CN103579370A - 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置及其制备方法 - Google Patents

一种具有化学配比失配绝缘材料的电荷补偿半导体结装置及其制备方法 Download PDF

Info

Publication number
CN103579370A
CN103579370A CN201210258327.XA CN201210258327A CN103579370A CN 103579370 A CN103579370 A CN 103579370A CN 201210258327 A CN201210258327 A CN 201210258327A CN 103579370 A CN103579370 A CN 103579370A
Authority
CN
China
Prior art keywords
semiconductor
insulating material
junction
mismatching
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210258327.XA
Other languages
English (en)
Other versions
CN103579370B (zh
Inventor
朱江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Huike Microelectronics Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210258327.XA priority Critical patent/CN103579370B/zh
Publication of CN103579370A publication Critical patent/CN103579370A/zh
Application granted granted Critical
Publication of CN103579370B publication Critical patent/CN103579370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种具有化学配比失配绝缘材料的电荷补偿半导体结装置,本发明的半导体装置接一定的反向偏压时,漂移层中第一传导类型的半导体材料和第二传导类型的半导体材料形成电荷补偿结构,同时化学配比失配绝缘材料本身与漂移层半导体材料也产生电荷补偿,提高器件的反向击穿电压,从而改善了传统半导体器件导通电阻与反向阻断特性之间的矛盾;本发明还提供了一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的制备方法。

Description

一种具有化学配比失配绝缘材料的电荷补偿半导体结装置及其制备方法
技术领域
本发明涉及到一种具有化学配比失配绝缘材料的电荷补偿半导体结装置,本发明还涉及一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的制备方法。本发明的半导体装置是制造半导体功率器件的基本结构。
背景技术
功率半导体器件被大量使用在电源管理和电源应用上,功率半导体器件中最基本的结构为半导体结,半导体结包括了PN结和肖特基势垒结;降低高压功率半导体结的导通电阻是功率半导体器件发展的重要趋势。
传统的高压半导体器件,其导通电阻随器件反向阻断电压的升高成指数快速上升,使得器件具有较高的正向导通压降,为了解决此问题,人们提出过超结、界面电荷补偿等结构实现降低高压半导体器件的导通电阻。
发明内容
本发明主要针对高压半导体器件导通电阻随反向阻断电压快速升高的问题而提出,提供一种具有化学配比失配绝缘材料的电荷补偿半导体结装置及其制备方法。
一种具有化学配比失配绝缘材料的电荷补偿半导体结装置,其特征在于:包括:衬底层,为半导体材料;漂移层,为第一传导类型的半导体材料、第二传导类型的半导体材料和化学配比失配绝缘材料交替排列构成,位于衬底层之上;半导体结材料层,为半导体材料或金属,位于漂移层表面,形成PN结或肖特基势垒结。
一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的制备方法,其特征在于:包括如下步骤:在衬底层表面形成第一导电半导体材料层,然后表面形成一种绝缘材料;进行光刻腐蚀工艺去除表面部分绝缘材料,然后刻蚀去除部分裸露半导体材料形成沟槽;在沟槽内形成依次形成第二导电半导体材料和化学配比失配绝缘材料,然后进行反刻蚀;腐蚀去除表面绝缘材料,淀积势垒金属烧结形成肖特基势垒结,或者注入第二导电类型杂质退火形成PN结。
本发明的半导体装置接一定的反向偏压时,漂移层中第一传导类型的半导体材料和第二传导类型的半导体材料形成电荷补偿结构,同时化学配比失配绝缘材料本身与漂移层半导体材料也产生电荷补偿,提高器件的反向击穿电压,从而改善了传统半导体器件导通电阻与反向阻断特性之间的矛盾;本发明的半导体装置与传统超结器件相比,降低了器件对第一传导类型的半导体材料和第二传导类型的半导体材料中的电荷平衡的要求,降低了器件的制造难度;本发明的半导体装置与界面电荷补偿器件相比,提高了器件的可靠性。
附图说明
图1为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置剖面示意图;
图2为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置剖面示意图;
图3为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置剖面示意图;
图4为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置剖面示意图;
图5为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结MOS装置剖面示意图;
图6为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结MOS装置剖面示意图。
其中,
1、衬底层;
2、第二导电半导体材料;
3、第一导电半导体材料;
4、掺氧多晶硅;
5、多晶半导体材料;
6、肖特基势垒结;
7、漂移层;
8、体区;
9、源区;
10、二氧化硅。
具体实施方式
实施例1
图1为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的剖面图,下面结合图1详细说明本发明的半导体装置。
一种具有化学配比失配绝缘材料的电荷补偿半导体结装置,包括:衬底层1,为N导电类型半导体硅材料,磷原子的掺杂浓度为1E19/cm3;第二导电半导体材料2,位于衬底层1之上,为P传导类型的半导体硅材料,磷原子的掺杂浓度为1E16/cm3;第一导电半导体材料3,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子的掺杂浓度为1E16/cm3;掺氧多晶硅4,为硅和氧的化合物,位于第二导电半导体材料2中;肖特基势垒结6,位于半导体材料的表面。
其制作工艺包括如下步骤:
第一步,在衬底层1表面外延生长形成第一导电半导体材料层3,然后表面热氧化,形成二氧化硅;
第二步,进行光刻腐蚀工艺,半导体材料表面去除部分二氧化硅,然后刻蚀去除部分裸露半导体硅材料形成沟槽;
第三步,在沟槽内依次淀积形成第二导电半导体材料2和掺氧多晶硅4,反刻蚀第二导电半导体材料2和掺氧多晶硅4;
第四步,腐蚀表面二氧化硅,淀积势垒金属镍,烧结形成肖特基势垒结6,如图1所示。
图2为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的剖面图,是在图1基础上,在掺氧多晶硅4上表面引入二氧化硅2,作为掺氧多晶硅4与器件表面电极金属的隔离。
图3为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的剖面图,是在图1基础上,将掺氧多晶硅4设置在沟槽内壁表面,在沟槽内引入二氧化硅10,作为掺氧多晶硅4与器件表面电极金属的隔离。
图4为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的剖面图,是在图3基础上,在沟槽上部引入MOS结构。
实施例2
图5示出了本发明一种具有化学配比失配绝缘材料的电荷补偿半导体结MOS装置剖的示意性剖面图,下面结合图5详细说明通过本发明的半导体装置制造功率MOSFET器件。
一种具有化学配比失配绝缘材料的电荷补偿半导体结MOS装置,包括:衬底层1,为N导电类型半导体硅材料,磷原子掺杂浓度为1E19cm-3;漂移层7,位于衬底层1之上,为N传导类型的半导体硅材料,磷原子掺杂浓度为1E16cm-3,厚度为38um,漂移层7中具有条状的P导电类型半导体硅材料,硼原子掺杂浓度为7E15cm-3;体区8,位于漂移层7之上,为P传导类型的半导体材料,体区8的表面具有硼原子重掺杂接触区,体区8厚度为4um;源区9,临靠沟槽和体区8,为磷原子重掺杂N传导类型的半导体材料,源区9厚度为1.5um;二氧化硅2,为硅材料的氧化物,位于沟槽侧壁;掺氧多晶硅4,为硅和氧的化合物,位于沟槽下部;多晶半导体材料5,位于沟槽上部为器件引入栅极。
本实施例的工艺制造流程如下:
第一步,在衬底层1上通过外延生产形成硼原子掺杂浓度为7E15cm-3P导电类型半导体硅材料;
第二步,在表面热氧化形成氧化层,在待形成沟槽区域表面去除氧化层;
第三步,进行干法刻蚀,去除半导体材料,形成沟槽;
第四步,进行磷扩散,形成漂移层7结构;
第五步,在沟槽内淀积形成掺氧多晶硅4;
第六步,干法刻蚀,去除部分掺氧多晶硅4,形成沟槽,在沟槽内进行硼扩散,热氧化形成二氧化硅10,在沟槽内淀积形成多晶半导体材料5,进行多晶半导体材料5反刻蚀;
第七步,然后去除器件表面部分氧化层,进行磷扩散,形成源区9;
第八步,在器件表面形成钝化层,然后去除器件表面部分钝化层,如图5所示。
然后在此基础上,淀积金属铝,然后反刻铝,为器件引出源极和栅极。通过背面金属化工艺为器件引出漏极。
图6为本发明的一种具有化学配比失配绝缘材料的电荷补偿半导体结MOS装置剖面示意图,是在图5基础上,将掺氧多晶硅4设置在内壁表面,然后设置二氧化硅2填充沟槽。
通过上述实例阐述了本发明,同时也可以采用其它实例实现本发明,本发明不局限于上述具体实例,因此本发明由所附权利要求范围限定。

Claims (10)

1.一种具有化学配比失配绝缘材料的电荷补偿半导体结装置,其特征在于:包括:
衬底层,为半导体材料;
漂移层,为第一传导类型的半导体材料、第二传导类型的半导体材料和化学配比失配绝缘材料交替排列构成,位于衬底层之上;
半导体结材料层,为半导体材料或金属,位于漂移层表面,形成PN结或肖特基势垒结。
2.如权利要求1所述的半导体装置,其特征在于:所述的衬底层可以为高浓度杂质掺杂的半导体材料层和低浓度杂质掺杂的半导体材料层的叠加层。
3.如权利要求1所述的半导体装置,其特征在于:所述的化学配比失配绝缘材料,为化合物绝缘材料,其化合物元素配比为非饱和状态,即不能满足绝缘材料中原子最外层电子数量为8个。
4.如权利要求3所述的半导体装置,其特征在于:所述的化合物绝缘材料可以为氧化物或氮化物。
5.如权利要求1所述的半导体装置,其特征在于:所述的化学配比失配绝缘材料可以位于第一传导类型的半导体材料和第一传导类型的半导体材料之间。
6.如权利要求1所述的半导体装置,其特征在于:所述的化学配比失配绝缘材料可以位于第一传导类型的半导体材料中。
7.如权利要求1所述的半导体装置,其特征在于:所述的化学配比失配绝缘材料可以位于第二传导类型的半导体材料中。
8.如权利要求1所述的半导体装置,其特征在于:所述的化学配比失配绝缘材料可以不与半导体结材料层相连,浮空在漂移层中。
9.如权利要求1所述的半导体装置,其特征在于:所述的半导体结装置可以应用于平面结构的半导体器件。
10.如权利要求1所述的一种具有化学配比失配绝缘材料的电荷补偿半导体结装置的制备方法,其特征在于:包括如下步骤:
1)在衬底层表面形成第一导电半导体材料层,然后表面形成一种绝缘材料;
2)进行光刻腐蚀工艺去除表面部分绝缘材料,然后刻蚀去除部分裸露半导体材料形成沟槽;
3)在沟槽内形成依次形成第二导电半导体材料和化学配比失配绝缘材料,然后进行反刻蚀;
4)腐蚀去除表面绝缘材料,淀积势垒金属烧结形成肖特基势垒结,或者注入第二导电类型杂质退火形成PN结。
CN201210258327.XA 2012-07-24 2012-07-24 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置 Active CN103579370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210258327.XA CN103579370B (zh) 2012-07-24 2012-07-24 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210258327.XA CN103579370B (zh) 2012-07-24 2012-07-24 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置

Publications (2)

Publication Number Publication Date
CN103579370A true CN103579370A (zh) 2014-02-12
CN103579370B CN103579370B (zh) 2017-10-20

Family

ID=50050733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210258327.XA Active CN103579370B (zh) 2012-07-24 2012-07-24 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置

Country Status (1)

Country Link
CN (1) CN103579370B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594494A (zh) * 2012-08-16 2014-02-19 朱江 一种电荷补偿肖特基半导体装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048131A1 (en) * 2000-02-12 2001-12-06 U.S. Philips Corporation Semiconductor device
US20070052058A1 (en) * 2004-02-13 2007-03-08 Franz Hirler High blocking semiconductor component comprising a drift section
CN101180739A (zh) * 2005-05-24 2008-05-14 Nxp股份有限公司 用于半导体器件的边缘末端
CN101241933A (zh) * 2007-02-06 2008-08-13 半导体元件工业有限责任公司 具有沟槽边缘终端结构的半导体器件
CN101510557A (zh) * 2008-01-11 2009-08-19 艾斯莫斯技术有限公司 具有电介质终止的超结半导体器件及制造该器件的方法
CN102347220A (zh) * 2010-07-22 2012-02-08 飞兆半导体公司 具有薄epi工艺的沟槽超结mosfet器件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048131A1 (en) * 2000-02-12 2001-12-06 U.S. Philips Corporation Semiconductor device
US20070052058A1 (en) * 2004-02-13 2007-03-08 Franz Hirler High blocking semiconductor component comprising a drift section
CN101180739A (zh) * 2005-05-24 2008-05-14 Nxp股份有限公司 用于半导体器件的边缘末端
CN101241933A (zh) * 2007-02-06 2008-08-13 半导体元件工业有限责任公司 具有沟槽边缘终端结构的半导体器件
CN101510557A (zh) * 2008-01-11 2009-08-19 艾斯莫斯技术有限公司 具有电介质终止的超结半导体器件及制造该器件的方法
CN102347220A (zh) * 2010-07-22 2012-02-08 飞兆半导体公司 具有薄epi工艺的沟槽超结mosfet器件及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594494A (zh) * 2012-08-16 2014-02-19 朱江 一种电荷补偿肖特基半导体装置及其制备方法

Also Published As

Publication number Publication date
CN103579370B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
JP5565461B2 (ja) 半導体装置
CN103199119B (zh) 一种具有超结结构的沟槽肖特基半导体装置及其制备方法
CN103545381B (zh) 一种水平结构沟槽肖特基半导体装置及其制备方法
CN110931548A (zh) 一种半导体器件结构及其制造方法
CN103367396B (zh) 一种超级结肖特基半导体装置及其制备方法
CN103579370B (zh) 一种具有化学配比失配绝缘材料的电荷补偿半导体结装置
CN103378178B (zh) 一种具有沟槽结构肖特基半导体装置及其制备方法
CN103489895B (zh) 一种沟槽超结半导体装置
CN103378172B (zh) 一种肖特基半导体装置及其制备方法
CN103378170A (zh) 一种具有超级结肖特基半导体装置及其制备方法
CN103137711A (zh) 一种具有绝缘层隔离结构肖特基半导体装置及其制备方法
CN103378177B (zh) 一种具有沟槽肖特基半导体装置及其制备方法
CN103579371A (zh) 一种沟槽终端结构肖特基器件及其制备方法
CN103199102A (zh) 一种具有超结结构的肖特基半导体装置及其制备方法
CN103515449B (zh) 一种具有电荷补偿沟槽肖特基半导体装置及其制备方法
CN103367434B (zh) 一种超级结沟槽mos半导体装置
CN103367433B (zh) 一种沟槽超级结mos半导体装置及其制造方法
CN103943667A (zh) 一种化学配比失配绝缘材料电荷补偿的半导体结装置及其制备方法
CN103367437B (zh) 一种沟槽mos半导体装置及其制造方法
CN103383953A (zh) 一种无源超结沟槽mos半导体装置及其制造方法
CN103367436B (zh) 一种沟槽肖特基mos半导体装置及其制造方法
CN103531628B (zh) 一种沟槽肖特基mos半导体装置
CN103390635B (zh) 一种具有无源金属pn结半导体装置及其制备方法
CN103378176B (zh) 一种具有电荷补偿肖特基半导体装置及其制造方法
CN103378131A (zh) 一种电荷补偿肖特基半导体装置及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210106

Address after: No.1 Taiji Road, Bei'an sub district office, Jimo District, Qingdao City, Shandong Province

Patentee after: Qingdao Huike Microelectronics Co.,Ltd.

Address before: 113200 disabled people's Federation of Xinbin Manchu Autonomous County, Fushun City, Liaoning Province

Patentee before: Zhu Jiang

TR01 Transfer of patent right