CN103579140A - 散热元件及其制造方法 - Google Patents

散热元件及其制造方法 Download PDF

Info

Publication number
CN103579140A
CN103579140A CN201310332818.9A CN201310332818A CN103579140A CN 103579140 A CN103579140 A CN 103579140A CN 201310332818 A CN201310332818 A CN 201310332818A CN 103579140 A CN103579140 A CN 103579140A
Authority
CN
China
Prior art keywords
matrix
tube
heat dissipation
carbon nano
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310332818.9A
Other languages
English (en)
Chinese (zh)
Inventor
川村贤二
青木周三
中泽昌夫
诹访顺之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Publication of CN103579140A publication Critical patent/CN103579140A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • C25D5/009Deposition of ferromagnetic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1673Magnetic field
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/007Electroplating using magnetic fields, e.g. magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
CN201310332818.9A 2012-08-03 2013-08-02 散热元件及其制造方法 Pending CN103579140A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-173143 2012-08-03
JP2012173143A JP2014033104A (ja) 2012-08-03 2012-08-03 放熱部品及びその製造方法

Publications (1)

Publication Number Publication Date
CN103579140A true CN103579140A (zh) 2014-02-12

Family

ID=50024329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310332818.9A Pending CN103579140A (zh) 2012-08-03 2013-08-02 散热元件及其制造方法

Country Status (4)

Country Link
US (1) US20140034282A1 (enrdf_load_stackoverflow)
JP (1) JP2014033104A (enrdf_load_stackoverflow)
CN (1) CN103579140A (enrdf_load_stackoverflow)
TW (1) TW201423920A (enrdf_load_stackoverflow)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9210806B2 (en) * 2004-06-02 2015-12-08 Joel S. Douglas Bondable conductive ink
JP6118540B2 (ja) * 2012-11-08 2017-04-19 新光電気工業株式会社 放熱部品及びその製造方法
JP2016012448A (ja) * 2014-06-27 2016-01-21 Tdk株式会社 導電線
WO2016180278A1 (zh) * 2015-05-08 2016-11-17 宁波信远工业集团有限公司 一种波热转化结构及其应用
JP6489979B2 (ja) * 2015-09-07 2019-03-27 新光電気工業株式会社 放熱部品及びその製造方法
US12035448B2 (en) * 2015-11-23 2024-07-09 Daniel Paul Hashim Dielectric heating of three-dimensional carbon nanostructured porous foams as a heat exchanger for volumetric heating of flowing fluids
US10836633B2 (en) 2015-12-28 2020-11-17 Hitachi Zosen Corporation Carbon nanotube composite material and method for producing carbon nanotube composite material
JP6840725B2 (ja) * 2016-03-09 2021-03-10 日立造船株式会社 カーボンナノチューブ構造体の起毛方法、カーボンナノチューブ構造体の製造方法およびカーボンナノチューブ構造体
US10082918B2 (en) 2016-11-08 2018-09-25 International Business Machines Corporation In-cell capacitive touch and fingerprint detector
FR3087938A1 (fr) * 2018-10-25 2020-05-01 Thales Interface de diffusion thermique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3796587A (en) * 1972-07-10 1974-03-12 Union Carbide Corp Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
US5545473A (en) * 1994-02-14 1996-08-13 W. L. Gore & Associates, Inc. Thermally conductive interface
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
JP4324434B2 (ja) * 2003-09-18 2009-09-02 新光電気工業株式会社 放熱部材及びその製造方法
US20090255660A1 (en) * 2008-04-10 2009-10-15 Metal Matrix Cast Composites, Llc High Thermal Conductivity Heat Sinks With Z-Axis Inserts
JP5239768B2 (ja) * 2008-11-14 2013-07-17 富士通株式会社 放熱材料並びに電子機器及びその製造方法
JP2010192661A (ja) * 2009-02-18 2010-09-02 Sumitomo Electric Ind Ltd 放熱部品とその製造方法、およびこれを用いた放熱装置と放熱方法
CN101989583B (zh) * 2009-08-05 2013-04-24 清华大学 散热结构及使用该散热结构的散热系统
CA2779493A1 (en) * 2009-12-01 2011-06-30 Applied Nanostructured Solutions, Llc Metal matrix composite materials containing carbon nanotube-infused fiber materials and methods for production thereof

Also Published As

Publication number Publication date
TW201423920A (zh) 2014-06-16
US20140034282A1 (en) 2014-02-06
JP2014033104A (ja) 2014-02-20

Similar Documents

Publication Publication Date Title
CN103579140A (zh) 散热元件及其制造方法
Liu et al. Highly conductive Cu–Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles
JP6166860B2 (ja) グラフェンの製造方法、該グラフェンを接合したグラフェン接合体の製造方法、および前記グラフェンないしは前記グラフェン接合体を用いた基材ないしは部品の製造方法
CA2878600C (en) Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
US20220059711A1 (en) Systems and method for manufacturing solar cell paste
US9136200B2 (en) Heat radiating component and method of producing same
CN102197439A (zh) 用于透明导电氧化物置换的磁性纳米结构
US7384668B2 (en) CCVD method for producing tubular carbon nanofibers
KR20110139588A (ko) 나노카본과 금속 또는 세라믹 복합재료의 제조방법
US10562270B2 (en) Three-dimensional porous composite structure
CN111979438A (zh) 一种改善石墨烯铜基复合材料界面结合强度的方法
US10253423B2 (en) Method for making three-dimensional porous composite structure
JP5064724B2 (ja) 電極、金属微粒子の製造装置および金属微粒子の製造方法
TW201408591A (zh) 螺旋奈米碳材製備方法、其螺旋奈米碳材層基板及其螺旋奈米碳材
KR20100082218A (ko) 복합재료 및 이의 제조방법
Zhang et al. Recent advances in metal/alloy nano coatings for carbon nanotubes based on electroless plating
Dingsheng et al. Electroless deposition of Cu on multiwalled carbon nanotubes
TWI376833B (en) Method for preparing a surface modification coating of metal bipolar plates
CN1150998C (zh) 在碳纳米管表面负载铂-钌合金纳米粒子的方法
Wu et al. Rational Design and Facile Preparation of Palladium‐Based Electrocatalysts for Small Molecules Oxidation
CN100462184C (zh) 用于点焊电极的表面改性的颗粒增强铜基复合材料
TWI289250B (en) Heat sink assembly and method for making same
TWI357632B (en) Circuit substrate and method for manufacturing the
KR101644676B1 (ko) 코어-쉘 금속 입자 및 그 제조방법
CN1962427B (zh) 纳米碳管的生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140212