TWI357632B - Circuit substrate and method for manufacturing the - Google Patents

Circuit substrate and method for manufacturing the Download PDF

Info

Publication number
TWI357632B
TWI357632B TW97114140A TW97114140A TWI357632B TW I357632 B TWI357632 B TW I357632B TW 97114140 A TW97114140 A TW 97114140A TW 97114140 A TW97114140 A TW 97114140A TW I357632 B TWI357632 B TW I357632B
Authority
TW
Taiwan
Prior art keywords
metal
carbon nanotube
substrate
circuit substrate
composite
Prior art date
Application number
TW97114140A
Other languages
Chinese (zh)
Other versions
TW200945488A (en
Inventor
Shing Tza Liou
Yao-Wen Bai
Cheng Hsien Lin
Original Assignee
Zhen Ding Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhen Ding Technology Co Ltd filed Critical Zhen Ding Technology Co Ltd
Priority to TW97114140A priority Critical patent/TWI357632B/en
Publication of TW200945488A publication Critical patent/TW200945488A/en
Application granted granted Critical
Publication of TWI357632B publication Critical patent/TWI357632B/en

Links

Description

1:00年.11月24日按正 1357632 ^ 1 六、#明說—日月一: 【發明所屬之技術領域】 [0001] 本發明涉及喷墨印刷技術領域,特別涉及一種線路基板 及線路基板之製作方法。 【先前技術】 [0002] 喷墨印刷作為一種印刷工藝,其與平版印刷、絲網印刷 一樣可用於圖形之轉移。喷墨印刷為非接觸印刷工藝, 不同於活字以及由照相方法製作之印版或軟片那樣印刷· 表面只需將所需圖形直接由電腦給出,再藉由控制器 控制噴墨印刷系統之喷嘴,將油墨顆粒由喷嘴喷出並逐 點地形成圖形。噴墨印刷可應用於電路板線路製作中, 即喷墨印刷線路圖形。該方法製作線路圖形能夠.精確控 制線路之位置及寬度,還降低原料浪鲁,係一種環保之 印刷工藝。 [00〇3]目前’喷墨印剔嫵路网形係將以單分散之奈米知教'為核 心之金屬奈米油墨直接喷射線上路基板表面形成導電線 路。請參閱文獻:李江,奈米油墨友其應用技術,材料 與製備’ 2005,3 : 25一29。惟,喷射線上路基板表面之 金屬奈米油墨乾燥後,還需經過3GG度高溫燒結,使金屬 奈米顆粒燒結於—起,從而形成考,續+導電線路。惟, 燒結過程巾’溫度控料佳會料導電祕之連續性及 導電性。如燒結溫度過低,金屬奈米顆粒不能完全被燒 、、;起,相反地,燒結溫度過高,則線路基板必須採 用耐高溫且不易受熱變形材料製成。另,由金屬奈米油 墨燒結後形成之導電線路為金屬單f,其熱膨脹係數與 097114140 表單編號A0101 第3頁/共15頁 1003436512-0 1357632 於受熱後’導電線路與基 其漲縮程度相差較大,使 而引起最終電路板產品發 [0004] [0005] [0006] [0007] [0008] 基材之熱膨脹係數相差較大。 材之間發生不同程度之漲縮, 導電線路與基材易發生剝離, 生板超。 【發明内容】 有鐘於此’提供-種線路基板及線路基板之製作方法, 避免燒結溫度之影響,減小導電線路與基材之間潘縮裎 度之差異實屬必要c 以下將以實施例說明-種線路基板及線路基板之製作方 法。 該線路基板包括基材及形成於基材表面之導電線路該 導電線路包括奈米碳管與金屬奈綠子之複合物及錄覆 於該複合物表面之金屬。該鍍覆金屬填充於相鄰兩個金 屬奈来粒子之間隙,使該兩個金屬奈米粒子藉由該金屬 完全結合’從而實現良好之電性導通。 該線路基板之製作方法,其包括以下步驟:將油墨藉由 喷墨印刷方式線上路基板之基材表㈣形成線路圖形, 該油墨包括奈米碳管與金屬奈米粒子之複合物。然後於 該線路圖形之表面鑛覆金屬形成導電線路。 與先前技術相比,該線路基板之導電線路包括奈米碳管 與金屬奈米粒子之複合物及鍍覆於該複合物表面之金屬 。該奈米碳管可減小金屬單質喊H料與基材之 漲縮程度之差異,該金屬奈米粒子可増加奈米碳管之導 電性。鍍覆於該複合物表面之金屬填充於相鄰兩個金屬 097114140 表單編號A0101 第4頁/共15頁 1003436512-0 1357632 ί〇〇年;ιι·月24日修正替換頁 奈米粒子之簡隙,棱該兩個金屬奈杀粒子藉由該金屬完 全結合,從而實現良好之電性導通。因此’該線路基板 具有良好導電性之導電線路’且線路基板不易發生板麵 。另外,該線路基板之製作方法藉由鐘覆金屬之方法替 代高溫燒結,以形成具有良好導電性之導電線路,避免 燒結溫度之影響對線路基板之影響。 【實施方式】 [0009] 下面將結合附圖及實施例對本技術方案實施例提供之線 路基板及線路基板之製作方法作進一步詳細說明。 [0010] 請參閱圖1至圖3,本實施例提供之線路基板及線路基板 之製作方法。 [0011] 第一步:提供基材100。 [0012] 如圖1所示,本實施例中,基材loo為需要進行線路製作 之半成品。根據需要可選擇不同結構之基材100。例如, 該墓材100可為一層絕緣層,該絕緣層可採用聚醯亞胺、 聚_、液晶聚合物等絕緣材料製作而成^該基材1.00亦可 &複數層線路板與一層絕緣層壓合後所形成之複合結構 °此外’基材100還可為半導體基片。本實施例中,基材 100為需要製作單面線路之一層絕緣層。該基材1〇〇具有 用於形成導電線路之表面110。當然,該基材丨〇〇亦可用 於製作雙面板,只要於基材100相對設置之兩個表面上製 作導電線路即可。 [0013] [0014] 0971141401:00年.11月24日正正1357632^1 六,#明说—日月一: [Technical Field of Invention] [0001] The present invention relates to the field of inkjet printing technology, and more particularly to a circuit substrate and a circuit substrate How to make it. [Prior Art] [0002] Inkjet printing is a printing process that can be used for pattern transfer as well as lithography and screen printing. Inkjet printing is a non-contact printing process, which is different from movable type and printing plates or films made by photographic methods. The surface only needs to be directly given by the computer, and the nozzle of the inkjet printing system is controlled by the controller. The ink particles are ejected from the nozzles and patterned into dots. Inkjet printing can be applied to circuit board circuit fabrication, that is, inkjet printed circuit graphics. The method of making a line pattern can accurately control the position and width of the line, and also reduce the raw material, which is an environmentally friendly printing process. [00〇3] At present, the 'inkjet printing road mesh shape system will form a conductive line on the surface of the direct-injection substrate of the metal nano ink which is the center of the monodisperse nano-intelligence'. Please refer to the literature: Li Jiang, Nano Ink Applied Technology, Materials and Preparation' 2005, 3: 25-29. However, after the metal nano ink on the surface of the sprayed-line substrate is dried, it is subjected to high-temperature sintering at 3 GG to cause the metal nanoparticles to be sintered, thereby forming a test, a continuous + conductive line. However, the sintering process towel's temperature control material is good for the continuity and conductivity of the conductive material. If the sintering temperature is too low, the metal nanoparticles cannot be completely burned, and, conversely, if the sintering temperature is too high, the circuit substrate must be made of a material that is resistant to high temperatures and is not easily deformed by heat. In addition, the conductive line formed by sintering the metal nano ink is a metal single f, and its thermal expansion coefficient is 097114140. Form No. A0101 Page 3 / 15 pages 1003436512-0 1357632 After heating, the conductive line and the base are different in degree of expansion and contraction. Larger, causing the final circuit board product to be emitted [0004] [0006] [0007] [0008] The thermal expansion coefficients of the substrates differ greatly. Different degrees of expansion and contraction between the materials, the conductive circuit and the substrate are prone to peeling, and the board is super. SUMMARY OF THE INVENTION There is a method for manufacturing a circuit substrate and a circuit substrate, which avoids the influence of sintering temperature and reduces the difference in the shrinkage between the conductive line and the substrate. For example, a method of manufacturing a circuit board and a circuit board will be described. The circuit substrate includes a substrate and a conductive trace formed on the surface of the substrate. The conductive trace comprises a composite of a carbon nanotube and a metal natriure and a metal recorded on the surface of the composite. The plated metal is filled in the gap between two adjacent metal nanoparticles so that the two metal nanoparticles are completely bonded by the metal to achieve good electrical conduction. The method for fabricating the circuit substrate comprises the steps of: forming an ink pattern by a substrate table (4) of an inkjet printing method on a line substrate, the ink comprising a composite of a carbon nanotube and a metal nanoparticle. Then, the metal is coated on the surface of the circuit pattern to form a conductive line. Compared with the prior art, the conductive circuit of the circuit substrate comprises a composite of a carbon nanotube and a metal nanoparticle and a metal plated on the surface of the composite. The carbon nanotubes can reduce the difference between the degree of shrinkage of the metal material and the substrate, and the metal nano particles can be used for the conductivity of the carbon nanotubes. The metal plated on the surface of the composite is filled with two adjacent metals 097114140. Form No. A0101 Page 4 of 15 Page 1003436512-0 1357632 〇〇Year; ιι·月24日修正 Replacement page Nanoparticle gap The two metal natrile particles are completely bonded by the metal, thereby achieving good electrical conduction. Therefore, the circuit substrate has a conductive line having good conductivity and the circuit substrate is less likely to have a plate surface. In addition, the method of fabricating the circuit substrate is replaced by a metal-clad method to form a conductive line having good conductivity to avoid the influence of the influence of the sintering temperature on the circuit substrate. [Embodiment] A method for fabricating a circuit substrate and a circuit substrate according to embodiments of the present technical solution will be further described in detail below with reference to the accompanying drawings and embodiments. Referring to FIG. 1 to FIG. 3, a circuit board and a circuit board manufacturing method provided by the embodiment are provided. [0011] First step: providing a substrate 100. [0012] As shown in FIG. 1, in the present embodiment, the substrate loo is a semi-finished product that needs to be fabricated. The substrate 100 of a different structure can be selected as needed. For example, the burial material 100 may be an insulating layer, and the insulating layer may be made of an insulating material such as polyimine, poly-, liquid crystal polymer, etc., the substrate 1.00 may also be <multiple-layer circuit board and one layer insulated The composite structure formed after lamination is further described. The substrate 100 may also be a semiconductor substrate. In this embodiment, the substrate 100 is a layer of insulating layer that is required to be fabricated on a single-sided line. The substrate 1 has a surface 110 for forming a conductive trace. Of course, the substrate 丨〇〇 can also be used to make a double panel, as long as the conductive lines are formed on the opposite surfaces of the substrate 100. [0014] 097114140

:形成線路圖形200於基材1〇〇之表面11〇。 為増加形成之線路 圖形200與基材1〇〇表面11〇之結合強 表單編號Α0101 第5頁/共15頁 1003436512-0 1357632 _ 100年11月24日核正替無頁 度,於基材100形成線路圖形200之前,可藉由氧化處理 、紫外線處理、電漿處理、微蝕處理等方法對基材100進 行表面處理,以除去附著於表面110之污物、氧化物、油 脂等。 [0015] 如圖2所示,分別於基材100之表面110藉由喷墨印刷方式 形成線路圖形200。具體地,噴墨印刷系統於控制器之控 制下根據所需製作之導電線路之圖形,將油墨自噴嘴逐 點喷灑到表面110,使其沈積於表面110形成線路圖形 2 0 0。該油墨包括奈米碳管與金屬奈米粒子複合物。該包 括奈米碳管與金屬奈米粒子複合物之油墨形成之線路圖 形200與所需‘製作之導電線路之圖形相同。 [0016] 喷墨印刷設備之頻率為1至20Hz,喷嘴之直徑為1至100 /zm,墨滴之體積為1至100pL (pL為墨滴之體積單位, 相當於10-1 5立方米)。由此噴墨印刷設備印刷之線路圖 形200之線路寬度為5至500 //m。其中,該喷墨印刷製作 · 線路寬度為5至2〇em之線路圖形200為最佳。 [0017] 該奈米碳_管與金屬奈米粒子之複合物係由金屬奈米粒子 附著於奈米碳管之管壁外側而形成。奈米碳管與金屬奈 米粒子複合後,奈米碳管可緩解金屬單質組成之導電線 路與基材100之漲縮程度之差異,同時金屬奈米粒子可增 加奈米碳管之導電性,因此採用包括奈米碳管與金屬奈 米粒子複合物之油墨製作之線路圖形200具有較好之導電 性,且緩解導電線路與基材100漲縮程度之不同。而單純 之金屬奈米粒子直接形成之導電線路。該導電線路與基 材之熱膨脹係數相差較大,使最終電路板產品於受熱後 097114140 表單編號A0101 第6頁/共15頁 1003436512-0 1357632 I ί 1:00’年.11月24日修正脊换頁 ,其導電線路與基材之漲縮程k相i較大,易引起 板板翹。而單純之奈米碳管導電性較差,不能滿足製作 導電線路電導通之要求。 [0018] 該奈米碳管與金屬奈米粒子複合物可藉由電沈積、化學 鍍、直接吸附金屬奈米粒子等方法使金屬奈米粒子附著 於奈米碳管之管壁外側製備而成,亦可藉由於奈米碳管 之管壁外側吸附金屬離子,再將金屬離子經過還原反應 還原為金屬奈米粒子,從而使金屬奈米粒子附著於奈米 碳管之管壁外側。具體製備方法及製備參數可參閱文獻 Jingbiao Cui,Charles P. Dagh1ian » and Ursula J. Gibson , Journal of the American Chemical Socity , 2005 , 109 , 11456-11460 ; Ber-nadette M. Quinn , Cees Dekker , and Serge G.: The wiring pattern 200 is formed on the surface 11 of the substrate 1 . The combination of the line pattern 200 formed by the addition and the surface of the substrate 1 is strong. Form number Α 0101 Page 5 / Total 15 pages 1003436512-0 1357632 _ November 24, 2014 Nuclear replacement for pageless, on the substrate Before the formation of the wiring pattern 200, the substrate 100 may be surface-treated by a method such as oxidation treatment, ultraviolet treatment, plasma treatment, or micro-etching treatment to remove dirt, oxides, grease, and the like adhering to the surface 110. [0015] As shown in FIG. 2, the line pattern 200 is formed by inkjet printing on the surface 110 of the substrate 100, respectively. Specifically, the ink jet printing system sprays the ink from the nozzle point by point to the surface 110 under the control of the controller according to the pattern of the conductive lines to be formed, and deposits it on the surface 110 to form a line pattern 200. The ink includes a carbon nanotube and a metal nanoparticle composite. The circuit pattern 200 comprising the ink of the nanocarbon tube and the metal nanoparticle composite is the same as the pattern of the desired 'made conductive line. [0016] The frequency of the inkjet printing device is 1 to 20 Hz, the diameter of the nozzle is 1 to 100 /zm, and the volume of the ink droplet is 1 to 100 pL (pL is the volume unit of the ink droplet, which is equivalent to 10-1 5 cubic meters) . The line pattern printed by the ink jet printing apparatus thus has a line width of 5 to 500 //m. Among them, the ink jet printing method is preferably the line pattern 200 having a line width of 5 to 2 〇em. [0017] The composite of the nanocarbon tube and the metal nanoparticle is formed by attaching metal nanoparticles to the outside of the tube wall of the carbon nanotube. After the carbon nanotubes are combined with the metal nanoparticles, the carbon nanotubes can alleviate the difference between the conductive lines of the metal element and the substrate 100, and the metal nanoparticles can increase the conductivity of the carbon nanotubes. Therefore, the wiring pattern 200 made of an ink including a carbon nanotube and a metal nanoparticle composite has better conductivity and alleviates the difference in the degree of shrinkage between the conductive wiring and the substrate 100. A simple conductive metal line directly forms a conductive line. The difference between the thermal expansion coefficient of the conductive line and the substrate is large, so that the final circuit board product is heated 097114140 Form No. A0101 Page 6 / Total 15 Page 1003436512-0 1357632 I ί 1:00' Year. November 24 Correction Ridge When the page is changed, the conductive line and the substrate have a larger k-phase i, which tends to cause the plate to be warped. However, the pure carbon nanotubes have poor conductivity and cannot meet the requirements for making electrical conduction of conductive lines. [0018] The carbon nanotube and metal nanoparticle composite can be prepared by electrodepositing, electroless plating, direct adsorption of metal nanoparticles, and the like, by attaching metal nanoparticles to the outside of the tube wall of the carbon nanotube. The metal ions can also be adsorbed to the outside of the tube wall of the carbon nanotubes by adsorbing metal ions on the outer side of the tube wall of the carbon nanotubes and then reducing the metal ions to metal nanoparticles by reduction reaction. Specific preparation methods and preparation parameters can be found in the literature Jingbiao Cui, Charles P. Dagh1ian » and Ursula J. Gibson, Journal of the American Chemical Socity, 2005, 109, 11456-11460; Ber-nadette M. Quinn, Cees Dekker, and Serge G.

Lemay , Journal of the American Chemical S〇-city , 2005 , 127 , 6146-6147 ; Dan Wang , Zi-Chen Li , and Liwei Chen , Journal of the American Chemical Socity > 2006- 128 >15078-15079 ; Syed Mubeen , Syed Mubeen , Ting Zhang > Bengyoung Yoo j Marc A. Deshusses , and Nosang V. Myung , Journal of the American Chemical Socity , 2007 , 111 , 6321-6327 。 [⑻ 19] 奈米碳管可為分散之單壁奈米碳管、雙壁奈米碳管或多 壁奈米碳管,亦可為單壁奈米碳管、雙壁奈米碳管或多 壁奈米碳管中至少兩種奈米碳管之聚集體。該奈米碳管 之長度小於500奈米,該奈米碳管聚集體之粒徑小於1微 097114140 表單編號A0101 第7頁/共15頁 1003436512-0 1357632 、 _ 100年ll·月24日修正替#頁 米。金屬奈米粒子可為金、銀、銅、銘、纪等金屬奈米 粒子,其粒徑於1奈米至500奈米之間。本實施例中,油 墨包括銅附著單壁奈米碳管形成之複合物。 [0020] 含有奈米碳管與金屬奈米_子複合物之油墨係將奈米碳 管與金屬奈米粒子複合物均勻之分散到水、有機溶劑或 水溶性介質中而製成。為進一步提高喷出之油墨顆粒與 基材100表面110之結合能力,還可於製備過程中,向該 油墨中加入表面活性劑' 分散劑、保濕劑、防黴劑、殺 菌劑及其它試劑,用以調節油墨之穩定性、表面張力、 黏度等性能,從而形成與表面110具有較佳結合力之線路 圖形200。有機溶劑可為丙酮、乙醇等,水溶性介質可為 去離子水、水溶性有機物或兩者之混合物。而表面活性 劑可為陽離子活性劑、陰離子活性劑、兩性活性劑等, 分散劑可為聚乙烯吡咯烷酮、聚乙烯醇等水溶性聚合物 ,保濕劑可為乙二醇、甘油等。由此得到之油墨,其室 溫時(即25度)之物理參數具體為:黏度為1至40mPa. s ,表面張力20至60mN/m,分散於油墨中之固體顆粒(如 :奈米碳管、金屬奈米粒子等)之粒徑小於2微米,PH值 於7至8之間,且具有至少三個月之保存期。 [0021] 第三步:形成導電線路300於基材100之表面110。 [0022] 前一步驟中,奈米碳管與金屬奈米粒子複合物經喷墨印 刷系統喷射至基材100之表面110形成線路圖形200時, 該線路圖形200為分佈於表面110之奈米碳管與金屬奈米 粒子複合物油墨形成。該附著於奈米碳管管壁外側之金 屬奈米粒子雖然可增加奈米碳管之導電性,惟,金屬奈 097114140 表單编號A0101 第8頁/共15頁 1003436512-0 1357632 1 < .100年.11月24日:梭正替¥頁 米粒子間不能完全結合,使形成之線路圖形200之連續性 變差,從而降低奈米碳管與金屬奈米粒子複合物形成之 線路圖形200之導電性,使整個線路圖形200可能無法達 到良好之電性導通。 [0023] 因此,如圖3所示,於線路圖形200之金屬奈米粒子表面 經過化學鍍或其他鍍覆方法鍍覆金屬,使線路圖形200之 金屬奈米粒子藉由金屬形成連續之導電線路300。鍍覆金 屬時,形成線路圖形200之金屬奈米粒子可作為鍍覆反應 之催化中心,並以該金屬奈米粒子為中心於其表面鑛覆 金屬。而沒有完全結合之相鄰兩値金屬奈米粒子間可由 新鍍覆之金屬填充,使該兩個金屬奈米粒子藉由該金屬 完全結合,從而實現良好之電性導通。該余屬可與線路 圖形20 0之金屬奈米粒子之種類相/同或不同.。本實施例中 ,採用化學鍍之方法鍍覆金屬,該鍍覆之金屬與線路圖 形200之金屬奈米粒子均由銅組成。即將線路圖形200之 表面直接浸入鍵液中,藉由化學反應鍍覆銅單質。該錢 液包括銅化合物、還原劑與絡合劑。其中,銅化合物可 為硫酸銅、氯化銅等;還原劑可為曱醛、乙醛酸等;絡 合劑可為乙二胺四乙酸、石酸鉀鈉等絡合物。當然,還 可於渡液中加入穩定劑、光亮劑等,以滿足化學鍍之需 要。經化學鍍銅後,基材100之表面110形成之銅線路( 即導電線路300)寬度為5至500//m ’厚度為1至100/iin ,體積電阻率小於2/ζ Ω· cm。優選地,於表面110形成線 路寬度為5至20/zm之導電線路300。 [0024] 由於所鍍金屬與作為被鍍件之線路圖形200所包括之金屬 097114140 表單編號A0101 第9頁/共15頁 1003436512-0 1357632 100年.11.月24日梭正替‘頁 奈米粒子之組成相同,故可保證於線路圖形200形成分佈 均勻之金屬,從而得到線寬與厚度均勻之導電線路300。 當然,所鍍金屬與線路圖形200所包括之金屬奈米粒子之 種類不同時,只要選擇合適之鍍液即可。 [0025] 由此完成線路基板400 (如圖3所示)之製作,以供後續 加工使用。該線路基板400包括基材100及形成於基材 100之表面110之導電線路300。該導電線路300包括奈米 碳管與金屬奈米粒子之複合物及鍍覆於該複合物表面之 金屬,該鍍覆金屬填充於相鄰兩個金屬奈米粒子之間隙 ,使該兩個金屬奈米粒子藉由該金屬完全結合,從而實 現良好之電性導通。 [0026] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0027] 圖1係本技術方案實施例提供之基材之結構示意圖。 [0028] 圖2係圖1中基材形成線路圖形之結構示意圖。 [0029] 圖3係圖1中基材形成導電線路之結構示意圖。 【主要元件符號說明】 [0030] 線路基板:400 [0031] 基材:100 097114140 表單编號A0101 第10頁/共15頁 1003436512-0 1357632 l ' 100年.11月24日務正替“頁 [0032] 表面:1 1 0 [0033] T 線路圖形:200 [0034] 導電線路:300 097114140 表單編號A0101 第11頁/共15頁 1003436512-0Lemay, Journal of the American Chemical S〇-city, 2005, 127, 6146-6147; Dan Wang, Zi-Chen Li, and Liwei Chen, Journal of the American Chemical Socity > 2006-128 >15078-15079; Syed Mubeen, Syed Mubeen, Ting Zhang > Bengyoung Yoo j Marc A. Deshusses, and Nosang V. Myung, Journal of the American Chemical Socity, 2007, 111, 6321-6327. [(8) 19] The carbon nanotubes can be dispersed single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, or single-walled carbon nanotubes or double-walled carbon nanotubes or An aggregate of at least two carbon nanotubes in a multi-walled carbon nanotube. The length of the carbon nanotube is less than 500 nm, and the particle size of the carbon nanotube aggregate is less than 1 micro 097114140. Form No. A0101 Page 7 / Total 15 Page 1003436512-0 1357632, _ 100 years ll. For #页米. The metal nanoparticles may be metal nanoparticles such as gold, silver, copper, Ming, and Ji, and have a particle diameter of between 1 nm and 500 nm. In this embodiment, the ink comprises a composite of copper-attached single-walled carbon nanotubes. [0020] An ink containing a carbon nanotube and a metal nano-composite is prepared by uniformly dispersing a carbon nanotube and a metal nanoparticle composite in water, an organic solvent or an aqueous medium. In order to further improve the bonding ability of the ejected ink particles to the surface 110 of the substrate 100, a surfactant 'dispersant, a moisturizer, a mold inhibitor, a bactericide and other reagents may be added to the ink during the preparation process. It is used to adjust the stability, surface tension, viscosity and the like of the ink to form a wiring pattern 200 having a better bonding force with the surface 110. The organic solvent may be acetone, ethanol or the like, and the water-soluble medium may be deionized water, a water-soluble organic substance or a mixture of the two. The surfactant may be a cationic active agent, an anionic active agent or an amphoteric active agent. The dispersing agent may be a water-soluble polymer such as polyvinylpyrrolidone or polyvinyl alcohol, and the humectant may be ethylene glycol or glycerin. The physical parameters of the ink obtained at room temperature (ie, 25 degrees) are specifically: a viscosity of 1 to 40 mPa·s, a surface tension of 20 to 60 mN/m, and solid particles dispersed in the ink (eg, nanocarbon) Tubes, metal nanoparticles, etc.) have a particle size of less than 2 microns, a pH between 7 and 8, and have a shelf life of at least three months. [0021] The third step: forming the conductive line 300 on the surface 110 of the substrate 100. [0022] In the previous step, when the carbon nanotube and the metal nanoparticle composite are sprayed onto the surface 110 of the substrate 100 by the inkjet printing system to form the wiring pattern 200, the wiring pattern 200 is a nanometer distributed on the surface 110. The carbon tube is formed with the metal nanoparticle composite ink. The metal nanoparticles attached to the outer side of the carbon nanotube tube wall can increase the conductivity of the carbon nanotubes, but the metal 097114140 form number A0101 page 8 / 15 pages 1003436512-0 1357632 1 < . 100 years. November 24th: The shuttle is not completely integrated between the particles of the page, so that the continuity of the formed line pattern 200 is deteriorated, thereby reducing the line pattern formed by the carbon nanotube and the metal nanoparticle composite. The electrical conductivity makes it impossible for the entire line pattern 200 to achieve good electrical continuity. [0023] Therefore, as shown in FIG. 3, the surface of the metal nanoparticles on the line pattern 200 is plated with metal by electroless plating or other plating method, so that the metal nano particles of the line pattern 200 form a continuous conductive line by metal. 300. When the metal is plated, the metal nanoparticle forming the wiring pattern 200 serves as a catalytic center of the plating reaction, and the metal is coated on the surface of the metal nanoparticle as a center. The adjacent two metal nanoparticles which are not completely combined may be filled with a newly plated metal, so that the two metal nanoparticles are completely bonded by the metal, thereby achieving good electrical conduction. The remainder may be the same or different from the type of the metal nanoparticle of the line pattern 20 0. In this embodiment, the metal is plated by electroless plating, and the metal of the plated metal and the metal nanoparticle of the circuit pattern 200 are composed of copper. That is, the surface of the line pattern 200 is directly immersed in the key liquid, and the copper element is plated by a chemical reaction. The liquid includes a copper compound, a reducing agent and a complexing agent. The copper compound may be copper sulfate, copper chloride or the like; the reducing agent may be furfural or glyoxylic acid; and the complexing agent may be a complex such as ethylenediaminetetraacetic acid or sodium potassium silicate. Of course, stabilizers, brighteners, etc. can also be added to the liquid to meet the needs of electroless plating. After electroless copper plating, the copper line formed by the surface 110 of the substrate 100 (i.e., the conductive line 300) has a width of 5 to 500 / / m' thickness of 1 to 100 / iin and a volume resistivity of less than 2 / Ω Ω · cm. Preferably, a conductive line 300 having a line width of 5 to 20/zm is formed on the surface 110. [0024] Due to the metal plated and the metal pattern 097114140 included as the circuit pattern 200 as the object to be plated, the form number A0101, page 9 / total 15 pages 1003436512-0 1357632 100 years. 11. month 24th shuttle for the 'page nm Since the composition of the particles is the same, it is ensured that the wiring pattern 200 forms a uniformly distributed metal, thereby obtaining the conductive line 300 having a uniform line width and thickness. Of course, when the metal to be plated differs from the type of the metal nanoparticle included in the wiring pattern 200, it is only necessary to select a suitable plating solution. [0025] The fabrication of the circuit substrate 400 (shown in FIG. 3) is thus completed for subsequent processing. The circuit substrate 400 includes a substrate 100 and a conductive trace 300 formed on the surface 110 of the substrate 100. The conductive line 300 includes a composite of a carbon nanotube and a metal nanoparticle and a metal plated on the surface of the composite, the plating metal being filled in a gap between two adjacent metal nanoparticles to make the two metals The nanoparticles are completely bonded by the metal to achieve good electrical conduction. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0027] FIG. 1 is a schematic structural view of a substrate provided by an embodiment of the present technical solution. 2 is a schematic structural view of a substrate forming a line pattern in FIG. 1. 3 is a schematic structural view of a substrate forming a conductive line in FIG. 1. [Main component symbol description] [0030] Circuit substrate: 400 [0031] Substrate: 100 097114140 Form No. A0101 Page 10/Total 15 Page 1003436512-0 1357632 l '100 years. November 24th for the "page [ 0032] Surface: 1 1 0 [0033] T Line pattern: 200 [0034] Conductive line: 300 097114140 Form number A0101 Page 11 of 15 1003436512-0

Claims (1)

1357632 _ 100年11月24日梭正替接頁 七、申請專利範圍: 1 . 一種線路基板,其包括基材及形成於基材表面且沿該基材 表面連續電導通之導電線路,其改進在於,該導電線路由 包括奈米碳管與金屬奈米粒子之複合物及鍍覆於該複合物 表面之金屬所形成,該複合物沿該基材表面連續分布,該 鍍覆金屬填充於該複合物中的相鄰兩個金屬奈米粒子之間 隙,使該複合物中扣鄰兩個金屬奈米粒子藉由該金屬完全 結合。 2. 如申請專利範圍第1項所述之線路基板,其中,該奈米碳 管與金屬奈米粒子之複合物由金屬奈米粒子附著於奈米碳 管之管壁外側而形成。 3. 如申請專利範圍第1項所述之線路基板,其中,該奈米碳 管為單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管或單壁 奈米碳管、雙壁奈米碳管及多壁奈米碳管中至少兩種奈米 碳管之聚集體。 4. 如申請專利範圍第3項所述之線路基板,其中,該奈米碳 管聚集體之粒徑小於1微米。 5 .如申請專利範圍第1項所述之線路基板,其中,該奈米碳 管之長度小於500奈米。 6. 如申請專利範圍第1項所述之線路基板,其中,該金屬奈 米粒子選自金、銀、銅、鉑或鈀之奈米粒子之其中之一。 7. 如申請專利範圍第1項所述之線路基板,其中,該金屬奈 米粒子之粒徑於1奈米至500奈米之間。 8. 如申請專利範圍第1項所述之線路基板,其中,該導電線 路之線路寬度為5微米至20微米。 097114140 表單編號A0101 第12頁/共15頁 1003436512-0 1357632 > * 100:年.11·月24日按正替4頁 9 . 一種線路基板之製作方法,其包括以下步驟:將油墨藉由 喷墨印刷方式於線路基板之基材表面形成沿該基材表面連 續延伸之線路圖形,該油墨包括奈米碳管與金屬奈米粒子 之複合物;於該線.路圖形之表面鍍覆金屬以使該金屬填充 於該油墨中的相鄰兩個金屬奈米粒子之間隙,從而形成沿 該基材表面連續電導通之導電線路。 10.如申請專利範圍第9項所述之線路基板之製作方法,其中 ,該奈米碳管與金屬奈米粒子之複合物藉由於奈米碳管之 管壁外側吸附金屬離子,再將金屬離子還原為金屬奈米粒 '子,從而使金屬奈米粒子附著於奈米破管之管壁外側.。 11 .如申請專利範圍第9項所述之線路基板之製作方法,其中 ,該油墨進一步包括溶劑、表面活性劑、分散劑、保濕劑 、防黴劑及殺菌劑。 12 .如申請專利範圍第9項所述之導電線路之製作方法,其中 ,該鍍覆金屬種類與該金屬奈米粒子之種類相同。 13 .如申請專利範圍第9項所述之線路基板之製作方法,其中 ,該線路圖形之表面藉由化學鍍鍍覆金屬形成導電線路。 097114140 表單編號Α0101 第13頁/共15頁 1003436512-01357632 _ November 24, 2014 shuttle replacement page VII, the scope of application for patents: 1. A circuit substrate comprising a substrate and a conductive line formed on the surface of the substrate and continuously electrically conducting along the surface of the substrate, the improvement The conductive circuit is formed by a composite comprising a carbon nanotube and a metal nanoparticle and a metal plated on the surface of the composite, the composite being continuously distributed along the surface of the substrate, the plating metal being filled in the conductive metal The gap between two adjacent metal nanoparticles in the composite causes the two metal nanoparticles in the composite to be completely bonded by the metal. 2. The circuit substrate according to claim 1, wherein the composite of the carbon nanotubes and the metal nanoparticles is formed by attaching metal nanoparticles to the outside of the tube wall of the carbon nanotube. 3. The circuit substrate according to claim 1, wherein the carbon nanotube is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube or a single-walled carbon nanotube. Aggregates of at least two carbon nanotubes in a double-walled carbon nanotube and a multi-walled carbon nanotube. 4. The circuit substrate of claim 3, wherein the carbon nanotube aggregate has a particle size of less than 1 micrometer. 5. The circuit substrate of claim 1, wherein the carbon nanotube has a length of less than 500 nm. 6. The circuit substrate according to claim 1, wherein the metal nanoparticles are one selected from the group consisting of gold particles of gold, silver, copper, platinum or palladium. 7. The circuit substrate according to claim 1, wherein the metal nanoparticles have a particle diameter of from 1 nm to 500 nm. 8. The circuit substrate of claim 1, wherein the conductive line has a line width of 5 micrometers to 20 micrometers. 097114140 Form No. A0101 Page 12 of 15 1003436512-0 1357632 > * 100: Year 11.11. Month 24 Press 4 Page 9 . A method of manufacturing a circuit board comprising the steps of: ink passing The inkjet printing method forms a circuit pattern continuously extending along the surface of the substrate on the surface of the substrate of the circuit substrate, the ink comprises a composite of a carbon nanotube and a metal nanoparticle; and the surface of the wire pattern is plated with metal The metal is filled in the gap between two adjacent metal nanoparticles in the ink to form a conductive line that is continuously electrically conductive along the surface of the substrate. 10. The method for fabricating a circuit substrate according to claim 9, wherein the composite of the carbon nanotube and the metal nanoparticle is adsorbed by a metal ion outside the tube wall of the carbon nanotube The ions are reduced to metal nanoparticles, so that the metal nanoparticles are attached to the outside of the tube wall of the nanotube. The method of producing a circuit substrate according to claim 9, wherein the ink further comprises a solvent, a surfactant, a dispersing agent, a moisturizing agent, an antifungal agent, and a bactericide. 12. The method of producing a conductive line according to claim 9, wherein the type of the plated metal is the same as the type of the metal nanoparticle. The method of manufacturing a circuit substrate according to claim 9, wherein the surface of the wiring pattern is formed by electroless plating of a metal to form a conductive line. 097114140 Form NumberΑ0101 Page 13 of 15 1003436512-0
TW97114140A 2008-04-18 2008-04-18 Circuit substrate and method for manufacturing the TWI357632B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114140A TWI357632B (en) 2008-04-18 2008-04-18 Circuit substrate and method for manufacturing the

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114140A TWI357632B (en) 2008-04-18 2008-04-18 Circuit substrate and method for manufacturing the

Publications (2)

Publication Number Publication Date
TW200945488A TW200945488A (en) 2009-11-01
TWI357632B true TWI357632B (en) 2012-02-01

Family

ID=44869758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114140A TWI357632B (en) 2008-04-18 2008-04-18 Circuit substrate and method for manufacturing the

Country Status (1)

Country Link
TW (1) TWI357632B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479512B (en) * 2012-06-01 2015-04-01 Chi Mei Corp Method for preparing conductive board containing patterned nano-carbon tube film and conductive board containing said patterned nano-carbon tube film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479512B (en) * 2012-06-01 2015-04-01 Chi Mei Corp Method for preparing conductive board containing patterned nano-carbon tube film and conductive board containing said patterned nano-carbon tube film

Also Published As

Publication number Publication date
TW200945488A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
CN101553084B (en) Circuit base plate and manufacturing method thereof
Layani et al. Transparent conductors composed of nanomaterials
Mou et al. Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes
KR101207363B1 (en) Composition for Conductive Paste Containing Nanometer-Thick Metal Microplates
US20110062389A1 (en) Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition
KR20150036551A (en) Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
Anh Dinh et al. Silver nanowires: a promising transparent conducting electrode material for optoelectronic and electronic applications
Xu et al. Pressure-assisted low-temperature sintering for paper-based writing electronics
TWI584708B (en) Structure of conductive lines and method of manufacturing the same
CN101547567B (en) Method for producing conductive circuit
Ding et al. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes
CN101640979A (en) Manufacturing method of conducting circuit
KR20100066781A (en) Conductive paste containing silver-decorated carbon nanotubes
TWI383950B (en) Method of forming nanometer-scale point materials
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
Sheng et al. Copper Nanoplates for printing flexible high-temperature conductors
Kawaguchi et al. Cu-based composite inks of a self-reductive Cu complex with Cu flakes for the production of conductive Cu films on cellulose paper
JP2006165574A (en) Method of manufacturing substrate for display device and substrate for display device
TWI357632B (en) Circuit substrate and method for manufacturing the
Niu et al. Synthesized silver nanoparticles decorated reduced graphene oxide/silver ink for aerosol jet printed conformal temperature sensor with a wide sensing range and excellent stability
US20130126146A1 (en) Planar thermal dissipation patch m and the method of the same
CN101597440B (en) Printing ink, method using printing ink to manufacture electric conduction line and circuit board therewith
JP2019178059A (en) Method for manufacturing dispersion
Yokoyama et al. Flexible and adhesive sintered Cu nanomaterials on polyimide substrates prepared by combining Cu nanoparticles and nanowires with polyvinylpyrrolidone
TWI441577B (en) Method of thermal dissipation