CN103551167B - 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法 - Google Patents

一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法 Download PDF

Info

Publication number
CN103551167B
CN103551167B CN201310539765.8A CN201310539765A CN103551167B CN 103551167 B CN103551167 B CN 103551167B CN 201310539765 A CN201310539765 A CN 201310539765A CN 103551167 B CN103551167 B CN 103551167B
Authority
CN
China
Prior art keywords
solution
titanium dioxide
concentration
cadmium sulfide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310539765.8A
Other languages
English (en)
Other versions
CN103551167A (zh
Inventor
袁浩然
邓丽芳
陈勇
郭华芳
黄宏宇
小林敬幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201310539765.8A priority Critical patent/CN103551167B/zh
Publication of CN103551167A publication Critical patent/CN103551167A/zh
Application granted granted Critical
Publication of CN103551167B publication Critical patent/CN103551167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,采用化学浴沉积法在二氧化钛纳米管阵列薄膜上生长一层致密的硫化镉膜,先形成Cd(OH)2混浊液,然后逐滴加入纯氨水直至溶液变澄清,加入硫脲溶液搅拌反应得到混合溶液;然后将二氧化钛纳米管阵列薄膜浸渍入上述混合溶液中,密封,置于60℃水浴中1~4h后,将样品取出用去离子水冲洗表面,然后晾干。本发明直接以硫化镉对二氧化钛纳米管进行敏化,操作简单,成本低廉,为光催化技术进入实用阶段奠定基础,得到的催化剂抑制了光生电子-空穴的复合,提高了光催化反应的量子效率,具有较高的可见光光催化性能,提高了对太阳能的利用率。

Description

一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法
技术领域:
本发明涉及光催化材料制备领域,具体涉及一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法。
背景技术:
目前,随着世界人口不断增长和经济的快速发展,煤、石油、天然气等天然能源加速消耗,发展新的代替能源将是人类必须面临且急需解决的科学问题。太阳能是人类可利用的最丰富的能源,是取之不尽用之不竭、无污染、廉价的能源,因此其开发利用备受人们关注,成为了国内外研究热点。
光催化剂是一类开发利用太阳能必备的半导体材料。而TiO2以其无毒、催化活性高、稳定性好等优点近年来倍受人们的青睐,是目前研究中采用得最多、最理想的光催化剂。但是,纳米TiO2的禁带宽度为3.2eV,光谱响应范围较窄,光吸收波长主要集中在小于387nm的紫外区。只有波长小于387nm的紫外光激发才会使其产生光催化效应,产生具有很强氧化和还原能力的空穴(h+)和电子(e-)。这些h+和e-与OH或H2O结合会产生氧化性很强的·OH自由基,使许多化学反应发生。而太阳光中,这部分光仅占照射到地面的太阳光总能量的4%,限制了对太阳能的利用。因此,通过表面修饰等方法提高TiO2可见光催化活性已成为光催化领域的一个研究热点。
CdS作为一种窄带隙半导体材料,其禁带宽度为2.4eV,可以很好的活化吸收可见光,但其光生电子-空穴对的氧化还原电势不利于催化氧化物质,且极易重新复合和容易发生光腐蚀,使用寿命有限。
最新研究发现,两种不同禁带宽度的半导体复合,能促进电荷分离,抑制电子-空穴的复合和扩展光谱吸收范围。因此,将二氧化钛与窄禁带宽度的半导体材料进行复合,是有效提高催化剂光催化活性的一个新的研究方向。
经过现有技术的文献检索发现,浙江大学专利号为200510061719的专利公开了一种纳米复合半导体光催化剂及其制备方法,它是二氧化钛包裹硫化镉或硒化镉的复合半导体纳米颗粒,通过常规湿化学法结合表面活性剂的改性来制备单分散性能较好硫化镉或硒化镉的半导体纳米颗粒,继而利用高能量超声引发异质体系相互化学反应,物理作用使钛的有机醇盐的水解产物二氧化钛和硫化镉或硒化镉纳米半导体之间相互作用,得到核壳结构的二氧化钛包裹硫化镉或硒化镉的纳米复合半导体光催化剂。上海交通大学专利号为201010301187.0的专利公开了一种掺杂硫化镉的二氧化钛纳米管从而提高催化制氢活性。但上述申请中所提及的制备方法都相对较复杂,且主要是通过往二氧化钛上掺杂或负载硫化镉而实现的。
发明内容:
本发明的目的是提供一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,直接以硫化镉对二氧化钛纳米管进行敏化,以获得一种催化性能高效、制备方法简单的二氧化钛纳米管复合半导体光催化剂。
本发明是通过以下技术方案予以实现的:
一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,采用化学浴沉积法在二氧化钛(TiO2)纳米管阵列薄膜上生长一层致密的硫化镉(CdS)膜,具体步骤如下:
a、冰水浴条件下,剧烈搅拌下,将0℃的浓度为0.01~0.1mol/L的CdCl2溶液加入到0℃的浓度为0.01~0.1mol/L NaOH溶液中,形成白色的Cd(OH)2混浊液,继续搅拌,然后逐滴加入纯氨水直至溶液变澄清,继续搅拌(搅拌时间优选为2~5min),然后加入浓度为0.1~1mol/L的硫脲溶液搅拌反应(搅拌时间优选为1~4min)得到混合溶液;所述CdCl2溶液、NaOH溶液和硫脲溶液的体积比为1:2:2;
b、将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的混合溶液中,然后密封,置于60℃水浴中1~4h后,将样品取出用去离子水冲洗表面的沉淀物,然后在氮气气氛中晾干备用。
所述NaOH水溶液的浓度优选为0.05mol/L,CdCl2溶液的浓度优选为0.05mol/L,硫脲溶液的浓度优选为0.5mol/L。
步骤a中剧烈搅拌下将0℃的CdCl2溶液加入到0℃的NaOH溶液中,目的是形成颗粒比较小的Cd(OH)2沉淀物。
步骤b中将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的混合溶液后需密封以防止氨水挥发。
所述二氧化钛纳米管阵列薄膜以本领域常规阳极氧化法在钛板基底上制备,厚度为800~1000nm。
本发明的有益效果是:本发明直接以硫化镉对二氧化钛纳米管进行敏化,操作简单,成本低廉,为光催化技术进入实用阶段奠定基础,得到的催化剂抑制了光生电子-空穴的复合,提高了光催化反应的量子效率,具有较高的可见光光催化性能,提高了对太阳能的利用率。附图说明:
图1是实施例1和实施例2的CdS与TiO2的复合半导体的紫外-可见漫反射光谱;
图2实施例1中CdS与TiO2的复合半导体光催化剂的FESEM图;
其中,图1中TNA-CdS1h指实施例1得到的样品;TNA-CdS2h指实施例2得到的样品;
图2中(a)、(b)为未敏化过的二氧化钛纳米管阵列薄膜、(c)、(d)为CdS敏化过的二氧化钛纳米管阵列薄膜。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
a、冰浴条件下,分别配制100ml浓度为0.05mol/L的NaOH水溶液和50ml浓度为0.05mol/L的CdCl2溶液,剧烈搅拌下将0℃的CdCl2溶液(50ml,0.05mol/L)加入到0℃的NaOH溶液(100ml,0.05mol/L)中,形成白色的Cd(OH)2混浊液,继续搅拌,然后逐滴加入纯氨水至溶液变澄清,继续搅拌3min,然后加入100ml浓度为0.1~1mol/L的硫脲溶液搅拌反应2min得到混合溶液;
b、将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的混合溶液中,然后密封,置于60℃水浴中1h后,将样品取出用去离子水冲洗表面的沉淀物,然后在氮气气氛中晾干备用,样品记为TNA-CdS1h。
考察光催化活性:指将被测样品对甲基橙溶液降解脱色来表征,具体过程如下:
称取0.05克的TNA-CdS1h光催化剂,量取80ml浓度为12mg/L甲基橙溶液,黑暗状态下搅拌60min达到吸附脱附平衡,取样作为光降解初始浓度,然后在可见光光源500W氙灯下进行光催化反应,光源与甲基橙溶液上层液面相距12厘米,反应5h后取样离心分离,取上层溶液用紫外可见光漫反射光谱测其吸光度,经计算,甲基橙的降解率为85%。
实施例2:
参考实施例1,不同的是步骤b中将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的溶液中,密封,然后置于60℃水浴中2h,最后考察光催化活性,甲基橙的降解率为90%。
实施例3:
参考实施例1,不同的是步骤b中将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的溶液中,密封,然后置于60℃水浴中3h,水浴3h后溶液已经分层明显,有体积较大的絮状沉淀生成。最后考察光催化活性,甲基橙的降解率为60%。
如图1所示,TiO2仅在紫外区有较强的吸收,其吸收波长约370nm,而实施例1和实施例2的CdS与TiO2的复合半导体的吸收波长大约为555nm,样品吸收波长红移了约175nm,不但能够吸收紫外光,而且能吸收可见光,有效拓展了光吸收范围,且复合材料光催化降解有机污染物的反应能被可见光激发。
如图2所示,从图2的(a)和(b)可以看到TiO2纳米管为顶端开口高度有序的纳米管阵列结构,而图2的(c)和(d)为经CdS敏化后的TiO2纳米管阵列,已经观察不到TiO2纳米管阵列的纳米管结构,其顶端开口已经完全被CdS颗粒堵塞,而且形成了一个CdS紧实致密层,开始出现CdS的花型团簇。另外,该图体现出样品颗粒小,光生电子-空穴容易迁移到颗粒表面,有利于光催化反应的进行。
本发明制备的CdS与TiO2的复合半导体,在400~550nm的可见光区域有较强的吸收,并且在可见光照射下,5小时内80ml甲基橙溶液(12mg/L)的降解率为90%,而在同样条件下,纯TiO2的降解率仅为2%。

Claims (3)

1.一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,采用化学浴沉积法在二氧化钛纳米管阵列薄膜上生长一层致密的硫化镉膜,其特征在于,具体步骤如下:
a、冰水浴条件下,剧烈搅拌下,将0℃浓度为0.01~0.1mol/L的CdCl2溶液加入到0℃的浓度为0.01~0.1mol/L NaOH溶液中,形成白色的Cd(OH)2混浊液,继续搅拌,然后逐滴加入纯氨水直至溶液变澄清,继续搅拌,然后加入浓度为0.1~1mol/L的硫脲溶液搅拌反应得到混合溶液;所述CdCl2溶液、NaOH溶液、硫脲溶液的体积比为1:2:2;
b、将二氧化钛纳米管阵列薄膜浸渍入步骤a得到的混合溶液中,然后密封,置于60℃水浴中1~4h后,将样品取出用去离子水冲洗表面的沉淀物,然后在氮气气氛中晾干备用。
2.根据权利要求1所述的制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,其特征在于,所述NaOH水溶液的浓度为0.05mol/L,CdCl2溶液的浓度为0.05mol/L,硫脲溶液的浓度为0.5mol/L。
3.根据权利要求1所述的制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法,其特征在于,加入纯氨水直至溶液变澄清后继续搅拌2~5min,加入浓度为0.1~1mol/L的硫脲溶液继续搅拌反应1~4min。
CN201310539765.8A 2013-11-04 2013-11-04 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法 Active CN103551167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310539765.8A CN103551167B (zh) 2013-11-04 2013-11-04 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310539765.8A CN103551167B (zh) 2013-11-04 2013-11-04 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法

Publications (2)

Publication Number Publication Date
CN103551167A CN103551167A (zh) 2014-02-05
CN103551167B true CN103551167B (zh) 2015-09-02

Family

ID=50005623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310539765.8A Active CN103551167B (zh) 2013-11-04 2013-11-04 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法

Country Status (1)

Country Link
CN (1) CN103551167B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159265B (zh) * 2017-06-19 2022-09-13 湖南理工学院 一种Cd-Nd-S/TiO2-NTs可见光催化材料的制备与应用
CN107930614B (zh) * 2017-12-14 2020-06-05 聊城大学 一种Cd2Nb2O7/Cd(OH)2光催化材料的制备方法
CN109174129B (zh) * 2018-09-17 2020-04-14 浙江大学 一种双敏化二氧化钛光催化剂及其制备方法
CN110280274B (zh) * 2019-08-01 2021-09-07 山东大学 一种基于TiO2阵列光波导的宽光谱响应光催化材料及其制备方法与应用
CN114634219A (zh) * 2020-12-16 2022-06-17 核工业北京化工冶金研究院 一种采用漂浮型光催化材料处理含铀废水中u(vi)的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846489B2 (en) * 2005-07-22 2010-12-07 State of Oregon acting by and though the State Board of Higher Education on behalf of Oregon State University Method and apparatus for chemical deposition
CN101026199A (zh) * 2007-03-26 2007-08-29 浙江大学 一种制备硫化镉量子点敏化多孔二氧化钛光电极的方法
US8726835B2 (en) * 2011-06-30 2014-05-20 Jiaxiong Wang Chemical bath deposition apparatus for fabrication of semiconductor films

Also Published As

Publication number Publication date
CN103551167A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
Zhou et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures
CN103551167B (zh) 一种制备硫化镉敏化二氧化钛纳米管复合半导体光催化剂的方法
Liu et al. ZnO@ Ti3C2 MXene interfacial Schottky junction for boosting spatial charge separation in photocatalytic degradation
CN105289689A (zh) 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用
CN101590413A (zh) 具有可见光响应的硫化锌镉光催化剂及其制备方法
CN102275975B (zh) 利用氮掺杂氧化亚铜制备纳米氧化亚铜的合成方法
Miao et al. Photoelectrocatalysis for high-value-added chemicals production
CN109967074A (zh) 一种银负载的二氧化钛光催化剂的制备方法与应用
CN110252370A (zh) 一种二维ZnO/g-C3N4复合光催化剂的制备方法及用途
Wang et al. Decoration of CdS nanowires with Ni3S4 nanoballs enhancing H2 and H2O2 production under visible light
CN104056620A (zh) 一种可见光催化剂及其制备方法与应用
CN102500388A (zh) 铜、铋共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN105214689A (zh) 一种TiO2/CdS/石墨烯复合光催化材料及其制备方法
CN102861597A (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
CN105195131A (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催剂的制备方法
CN110124690A (zh) 一种1D Sb2S3纳米棒/3D ZnIn2S4复合结构的制备方法
Xu et al. Photocatalytic hydrogen production: an overview of new advances in structural tuning strategies
CN103551138B (zh) 一种氧化铋敏化二氧化钛纳米管光催化剂的制备方法及其在降解有机污染物中的应用
CN101791562B (zh) 铁、氟共掺杂的纳米二氧化钛可见光光催化剂的制备方法
Wang et al. One-pot synthesis of porous g-C3N4 nanosheets with enhanced photocatalytic activity under visible light
CN113976148B (zh) 一种Z型C60/Bi/BiOBr复合光催化剂及其制备方法和应用
Mandari et al. Plasmonic quaternary heteronanostructures (HNSs) for improved solar light utilization, spatial charge separation, and stability in photocatalytic hydrogen production
CN110302826A (zh) 碱式硝酸铋和碘氧铋复合光催化剂及其制备方法和应用
CN109364949A (zh) 紫外-可见-近红外光响应的PbS/TiO2纳米管团聚微球异质结、其制备方法和用途
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant