CN103547212B - 评估心脏内激活模式和电不同步 - Google Patents

评估心脏内激活模式和电不同步 Download PDF

Info

Publication number
CN103547212B
CN103547212B CN201280024669.3A CN201280024669A CN103547212B CN 103547212 B CN103547212 B CN 103547212B CN 201280024669 A CN201280024669 A CN 201280024669A CN 103547212 B CN103547212 B CN 103547212B
Authority
CN
China
Prior art keywords
trunk
trunk surface
activation time
heart
surface activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280024669.3A
Other languages
English (en)
Other versions
CN103547212A (zh
Inventor
S·戈什
J·M·吉尔伯格
R·W·斯塔德勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN103547212A publication Critical patent/CN103547212A/zh
Application granted granted Critical
Publication of CN103547212B publication Critical patent/CN103547212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3682Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions with a variable atrioventricular delay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • A61N1/36842Multi-site stimulation in the same chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • A61N1/36843Bi-ventricular stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

描述了用于评估心脏电不同步的技术。在某些实例中,对多个躯干表面电势信号中的每个确定激活时间。可分析或呈现这些激活时间的分散或次序以提供患者心脏电不同步的各种指示。在某些实例中,可将该组电极中各电极的位置,且因此将躯干表面电势信号被感测到的位置投射到包括模型心脏的模型躯干的表面上。可求解心电图的逆算问题以基于从患者感测的躯干表面电势信号对模型心脏的各区域确定电激活时间。

Description

评估心脏内激活模式和电不同步
技术领域
本发明涉及电生理学,且更具体涉及评估心脏的电激活模式。
背景技术
心脏的跳动受窦房节点、即位于上静脉腔入口附近右心房内的一组传导细胞的控制。由窦房节点产生的去极化信号激活房室节点。房室节点暂时地延迟去极化信号的传播,允许在去极化信号传递到心脏的心室之前心房进行引流。两心室的协调收缩驱动血液流过患者躯干。在某些情况下,从房室节点到左右心室的去极化信号传导可能被中断或减慢。这可致使左右心室收缩不同步,并最终致使心脏衰竭或死亡。
心脏再同步治疗(CRT)可通过对一个或两个心室或心房提供起搏治疗、例如通过提供起搏来促进左心室或右心室的较早激活来纠正电不同步的症状。通过起搏心室的收缩,心室可被控制使心室收缩同步。经受CRT的某些患者体验到了改进的射血分数、增加的锻炼能力、和改善的健康感觉。
向患者提供CRT可包括在植入心律装置之前确定患者是否会受益于CRT、确定放置一个或多个心室起搏引线的最佳部位、对装置参数编程,诸如多极右心室或左心室引线上电极的选择、以及递送到电极的起搏脉冲的定时的选择,诸如房室(A-V)和心室内(V-V)延迟。用于这些目的的电不同步的评估通常设计临床评估QRS持续期间。尽管通常对患者推荐具有宽QRS期间的CRT,但据报道在窄QRS心脏衰竭患者中通过CRT有血流动力学改善。因此,基于目前的电不同步评价技术,可能受益于CRT的某些患者可能未被处方以CRT。
发明内容
总地来说,本发明涉及用于评估患者心脏的电不同步的技术。电不同步的评估可便于CRT的患者选择。电不同步的评估还便于放置可植入的引线(例如一根或多根左心室引线)、以及在植入过程期间对CRT进行装置参数的编程,或者在随访期间对CRT进行装置参数的重新编程。
一组电极可围绕患者的躯干空间分布。各电极可各感测身体表面电势信号,更具体地是躯干表面电势信号,该信号指示信号传播穿过患者躯干之后患者心脏的去极化信号。由于各电极的空间分布,由每个电极记录的躯干表面电势信号可指示心脏的不同空间区域的去极化。
在某些实例中,对于每个躯干表面电势信号,即对所述组的每个电极确定激活时间。可分析或呈现这些激活时间的分散或次序以提供患者心脏电不同步的各种指示。例如,可将示出激活时间的躯干表面的等时线或其它激活图呈现给用户以示出心脏的电不同步。在某些实例中,可确定指示激活时间的时间和/或空间分布的一个或多个统计指数的值。这些图和指数,或基于躯干表面激活时间确定的其他的不同步指示可向用户指示心脏的电不同步,并便于为CRT进行患者的评估以及对患者配置CRT。
在某些实例中,可将全部电极或电极的子集的位置,且因此可将所感测的躯干表面电势信号的位置,投射到包括模型心脏的模型躯干的表面上。可求解心电图的逆算问题以基于从患者感测的躯干表面电势信号对模型心脏的各区域确定电激活时间。这样,可估算患者心脏的电活动。可基于在患者躯干的表面上感测的躯干表面电势信号生成模型心脏的表面的各等时线或其它激活时间图。此外,可确定模型心脏上指示激活时间的时间和/或空间分布的一个或多个指数的值。电不同步的这些测量值和表示可用于评估患者对CRT的适合性、在植入期间调整CRT引线的定位、并确定一根或多跟多级引线中那些电极应该用于递送CRT、以及起搏脉冲的定时,诸如CRT递送到患者的房室(A-V)和心室内(V-V)延迟。
例如,可基于内在传导期间或CRT期间收集的数据确定或生成不同步的一个或多个指示。可比较内在传导和CRT期间的不同步程度,例如用以确定患者是否适合CRT。类似地,可基于在采用不同引线位置、不同电极配置和/或例如A-V或V-V延迟的不同CRT参数的CRT期间所收集的数据来确定或生成不同步的一个或多个指示。可评估由于这些不同引线位置、不同电极配置、和/或不同CRT参数造成的不同步的变化。
在一实例中,一种方法包括用处理单元从分布在患者躯干上多个电极中的每个接收躯干表面电势信号。该方法还包括对于所述多个电极的至少一个子集用处理单元基于从电极感测的信号计算躯干表面激活时间;以及通过处理单元经由显示器向用户呈现躯干表面激活时间的不同步程度的指示。
在另一实例中,一种系统包括分布在患者躯干上的多个电极和处理单元。处理单元配置成从多个电极中的每个接收躯干表面电势信号,并对多个电极中的至少一个子集基于从电极感测的信号计算躯干表面激活时间,并经由显示器向用户呈现躯干表面激活时间的不同步程度的指示。
在另一实例中,计算机可读存储介质包括指令,这些指令在执行时使处理器从分布在患者躯干上多个电极中的每个接收躯干电势信号,并对于多个电极的至少一个子集基于从电极感测的信号计算躯干表面激活时间;以及经由显示器向用户呈现躯干表面激活时间的不同步程度的指示。
在以下的附图和说明中阐述一个或多个方面的细节。从说明书和附图以及权利要求书中可显示出其它特征、目标和优点。
附图说明
图1是示出可用于向患者的心脏提供CRT的示例系统的概念示意图。
图2是示出两次健康心脏跳动的示例ECG描图的时序图。
图3是示出患左束支阻滞的患者的示例ECG描图的时序图。
图4A和4B是示出用于测量躯干表面电势的示例系统的概念图。
图5是示出用于测量躯干表面电势的示例系统的框图。
图6是典型的左束支阻滞内在节律和CRT起搏的躯干表面激活时间的一系列模拟等时线图。
图7是示出系统的示例操作以基于躯干表面激活时间提供患者的心脏电不同步的指示的流程图。
图8是示出根据经由躯干表面激活时间对患者的心脏电不同步作出的评估来处方和配置CRT的示例技术的流程图。
图9是使用来自同一患者的身体表面ECG数据用两个不同的心脏-躯干模型构造的心脏激活时间的一系列等时线图。
图10是示出经由激活时间测量患者的心脏电不同步的系统的示例操作的流程图。
图11是示出根据经由心脏激活时间对患者的心脏电不同步作出的评估来配置CRT的示例技术的流程图。
具体实施方式
图1是示出可用于向患者1的心脏10提供CRT的示例系统的概念示意图。该系统可包括可植入医疗装置(IMD)100。IMD100可为CRT起搏器或CRT除颤器。IMD100可装备有一根或多跟引线;引线102、104和106,这些引线插入心脏10的左心室12、右心室14或右心房16内或插在其表面上。引线102、104和106可装备有一个或多个电极108、110和112。
心脏10可能经受电不同步。当启动心室12和14的收缩的去极化信号未以协调方式到达心室时可能发生电不同步,并致使心脏10的低效泵送作用。患者1可能经受心脏衰竭的症状。电不同步可能是由对心脏10的电系统的损坏(例如束支阻滞或心脏10肌束的损伤)所造成的。替代的传导通路可形成于心脏10内,但这些通路可能减慢电去极化信号的进度并致使心室12和14的不同步收缩。
IMD100可向患者1的心脏10提供CRT刺激。IMD100示出为配置成向心脏10的右心房16、右心室14和左心室12递送刺激。在其它实例中,IMD100可配置成根据患者1的情况向心脏10的其它部分递送刺激。IMD可与外部编程器(未示出)交互以调节由IMD100递送的治疗的操作特性,诸如A-V和V-V延迟。在某些实例中,IMD100还可配置成通过一根或多根引线102、104和106上的电极感测心脏10的电活动。
如图1所示,引线102、104、106可延伸到患者1的心脏10内以向心脏10递送电刺激并使心室12和14的收缩同步。右心室引线106延伸穿过一个或多个静脉(未示出)、上腔静脉(未示出)、以及右心房16并进入右心室14。左心室冠状窦引线102延伸穿过一个或多个静脉(未示出)、腔静脉、右心房16并进入冠状窦(未示出)到达与心脏10的左心室12的自由壁相邻的区域。右心房引线104延伸穿过一个或多个静脉和静脉腔并进入心脏10的右心房16。
在其它配置中,根据为患者1提供的治疗的要求,IMD100可装备有更多或更少的引线。例如,IMD100可装备有延伸到心脏10的更多或更少腔室的引线。在某些实例中,IMD100可装备有延伸到心脏的公共腔室的多根引线,例如延伸到左心室12的多根引线。IMD100也可装备有通过提供到心脏组织通路的其它方式放置在心脏上的一根或多跟引线,其它方式诸如外科心外膜引线放置或其它心包接近方法。在某些实例中,IMD100可装备有从心脏内放置在心脏上的左心室引线。此外,尽管在图1中示出为在患者1的右侧上植入,但在其它实例中,IMD100可植入在患者胸肌区域的左侧上,或在患者的腹部内。
电极108、110和112可附连到心脏10的各部分以提供电刺激或感测心脏10的电去极化和复极化信号。右心室14内的电极108可经由基于螺钉的机构附连到心脏10的壁。电极110可包括安装在同一引线上的多个电极,允许引线102传递治疗震荡以及由电极110检测到的电感测数据。电极110和112可经由胶粘、倒钩或其它永久性或半永久性附连机构附连到心脏10的表面。
图2是与机械心脏循环的某些时期或阶段结合的示例ECG描图200的时序图。图2的图示和相关描述是概括性的,因为电和机械事件的时序之间的关系并不一定对于所有的对象或对任何给定对象的所有时间都是如所述那样。
ECG描图200示出两个示例健康心脏循环的电信号。健康心脏的电信号包括一系列5个特征波:P-波、Q-波、R-波、S-波、和T-波。这些波中的每个以及这些波之间的间隔对应于健康心脏工作时的离散事件。
一般来说,在从P-波的峰部到随后R-波峰部划出的时段202期间的某时点,发生心房收缩,即心房的驱动血液从心房进入心室的收缩。从R-波的峰部到主动脉瓣膜打开的时段204通常标志着一段等容收缩。房室和主动脉瓣膜关闭,此举防止血液流动并导致心室内但不是主动脉内的压力增加。由主动脉瓣膜打开和关闭所界定的时段206通常是心脏循环期间发生射血的时间。在射血时段206期间,心室收缩和血液排空驱动血液进入心血管系统。当心室的收缩完成时,心血管系统内血液的压力关闭主动脉瓣膜。由主动脉瓣膜的关闭和房室瓣膜的打开所界定的时段208是心室的等容舒张。时段210和212统称为晚期心脏舒张,其中整个心脏舒张且心房充满血液。时段210对应于血液的快速流入,而时段212对应于心舒张后期,在再次发生心房收缩202之前较慢的血液流入心房的时段。
P-波标记心房刺激和心脏循环的开始。心房在该刺激下收缩,迫使血液进入心室。PR段标记当去极化信号从房室节点行进到浦肯耶(Purkinje)纤维时的延迟。Q-波标记作为心室去极化的初始部分的室间隔膜的去极化。R-波跟随Q-波并表示心室的去极化。S-波跟随R-波并表示心室的之后去极化。T-波标记心室恢复和复极化以准备下一次心脏跳动。
从Q-波开始跨越到S-波结束的QRS波群表示心肌的电激活。左心室和右心室二者的心室收缩是响应于电激活的。QRS波群通常持续80至120ms。QRS波群的相对大的幅值是由于心室的大肌肉质量。QRS波群的变形可能证明影响心室收缩的同步性的问题。例如,心室收缩的电不同步可加宽R-波或产生两个R-波峰值,通常标为r-波和R’-波,其对应于每个心室的去极化。S-波和T-波可能与健康心脏的ECG描图在形态上不同。
图3是示出ECG描图300的时序图。ECG描图300示出患有左束支阻滞的患者的电信号。该症状的标志是存在rS波群与典型的QRS波群,但Q、R和S波的其它变型形成患有左束支阻滞、右束支阻滞或其它心室传导情况的患者内可能存在的组合。rS波群的延长时段指示可能由于电不同步造成的延长的心室收缩时间。
对左或右束支阻滞,或总体而言对心脏电不同步的诊断通常涉及测量QRS波群的时段(或标记心室去极化的其它波群)。持续100ms或更久的QRS波群可指示局部束支阻滞,且120ms或更久指示完全束支阻滞。在图3中,初始Q-波是不可见的,代而是描图显示对应于右心室的初始去极化的初始r-波,接着是S-波,其标记在心脏信号行进穿过心脏的心肌(而不是穿过束支)后到达左心室之后的两心室快速去极化的。因为心肌比束支更慢地导电,所以整个波群在较长时段内分散。
在没有束支阻滞的情况下-诸如图3中所示的情况-或其它情况,诊断可能更具挑战。可能存在隐藏的不同步,这种不同步在响应于CRT的同时可能不易于从典型的12-引线ECG检查中识别到。这些隐藏的不同步可能体现在心脏产生并在躯干表面上测得的电信号中,并可通过替代分析装置、诸如通过根据本文所述技术在多个空间分布位置确定心脏激活时间而可诊断。
图4A和4B是示出用于测量身体表面电势、且更具体是躯干表面电势的示例系统的概念图。在图4A所示一实例中,包括一组电极404A-F(统称“电极404”)和条带408的感测装置400A围绕患者1的躯干缠绕,使得电极围绕心脏10。
如图4A所示,电极404可围绕患者1的外周定位,包括患者1躯干的后表面、侧表面和前表面。在其它实例中,各电极404可定位在躯干的后表面、侧表面和前表面中的任一个或多个上。各电极404可经由有线连接406电连接到处理单元500。某些配置可使用无线连接来将电极404感测到的信号例如作为数据通道而传递到处理单元500.
尽管在图4A的实例中,感测装置400A包括条带408,但在其它实施例中,可采用例如带或粘结剂的各种机构中的任一种来辅助电极404的间隔和放置。在某些实例中,条带408可包括弹性带、带条或布。在某些实例中,各电极404可分别放置在患者1的躯干上。
各电极404可围绕患者1的心脏10,并在信号传播穿过患者1的躯干之后记录与心脏10的去极化和复极化相关的电信号。每个电极404可按单极配置使用以感测反应心脏信号的躯干表面电势。处理单元500也可耦合到可与用于单极感测的每个电极404相组合使用的返回或无关电极(未示出)。在某些实例中,可能有围绕患者1的躯干空间分布的12至16个电极404。其它配置可具有更多或更少的电极404。
处理单元500可记录和分析由各电极404感测的躯干表面电势信号。如本文所述,处理单元500可配置成向用户提供指示患者1的心脏10内电不同步的输出。基于所指示的电不同步,用户可进行诊断、处方CRT、定位例如引线的治疗装置、或调整或选择处理参数。
在某些实例中,处理单元500对躯干表面电势信号的分析可考虑电极404在患者1躯干表面上的位置。在这些实例中,处理单元500可通信地耦合到成像装置501,该成像装置501可提供图像,该图像允许处理单元500确定每个电极400在患者1的表面上的坐标位置。在成像系统501提供的图像中,各电极404可以是可见的,并通过包括或去除某些材料或元素而做成透明的。
图4B示出可用于评估患者1的心脏10的电不同步的系统的示例配置。该系统包括感测装置400B,该感测装置400B可包括背心410和电极404A-ZZ(总称为“电极404”)、处理单元500以及成像系统501。处理单元500和成像系统501可基本上如上文参照图4A描述的那样工作。如图4B所示,电极404分布于患者1的躯干上,包括患者1躯干的前表面、侧表面和后表面。
感测装置400B可包括织物背心410,电极404附连到织物上。感测装置400B可保持各电极404在患者1的躯干上的位置和间隔。感测装置400B可标记成辅助确定各电极404在患者1的躯干表面上的定位。在某些实例中,使用感测装置400B时可有围绕患者1的躯干分布的150至256个电极404,但其它配置可具有更多或更少的电极404。
图5是示出用于测量躯干表面电势并提供电不同步的指示的示例系统的框图。该示例系统可包括处理单元500和感测装置400上的一组电极404,例如示例感测装置400A或400B中的一个(图4A和图4B)。该系统也可包括成像系统501。
如图5所示,处理单元500可包括处理器502、信号处理器504、存储器506、显示器508和用户输入装置509。处理单元500还可包括电极位置记录模块524。在所示实例中,处理器502包括多个模块,且更具体地包括投射模块514、逆算问题模块516、激活时间模块518、索引模块520以及等时线映射模块522。存储器506可存储记录的数据510和模块512。
处理单元500可包括一个或多个计算装置,该一个或多个计算装置可共同定位或分散在各个位置。处理单元500的各模块,例如处理器502、投射模块514、逆算问题模块516、激活时间模块518、统计模块520、等时线映射模块522、信号处理器504、电极位置记录模块524、显示器508、存储器506、记录数据510和躯干模块512可实现在一个或多个计算装置内,该一个或多个计算装置可共同定位或分散在各个位置。处理器502以及处理器502的各模块可实现在一个或多个计算装置的一个或多个处理器(例如微处理器)中,作为处理器所执行的软件模块。在某些实例中,电极位置记录模块524可实现在成像系统501中。
除了本文所述的各数据之外,存储器506可包括程序指令,当例如处理器502的可编程处理器执行该程序指令时,使处理器和其任何部件提供归于本文的处理器和处理单元的功能。存储器506可包括任何易失性、非易失性、磁性、光学、或电介质,诸如硬盘、磁带、随机存取存储器(RAM)、只读存储器(ROM)、CD-ROM/非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪速存储器、或任何其它数字或模拟介质。存储器506可包括一个或多个共同定位或分布的存储器。存储器506可包括用作数据和程序指令的非临时存储介质的有形制品。
由感测装置400的电极404感测到的躯干表面电势信号可由处理单元500的信号处理器504接收。信号处理器504可包括模拟-数字转换器以将躯干-表面电势信号数字化。信号处理器504也可包括各其它部件来过滤以其它方式调节由处理器502接收的数字信号。
电极位置记录模块524可从成像系统501接收成像数据。电极位置记录模块524分析成像数据。具体来说,电极记录位置模块524识别图像中经由成像模块更清楚可见的电极404或与电极共同定位的元件。电极位置记录模块524还可识别患者表面上和/或三维坐标系内每个电极的位置。在某些示例中,各电极404的位置可被手动识别,并例如由用户经由电极记录模块524记录于处理单元500。
成像数据可包括表示佩戴着电极404(例如感测装置400的电极)的患者1的一个或多个图像的数据。在某些示例中,可在医疗过程之前或期间获得各图像,医疗过程例如为植入心律装置或递送CRT的引线系统的外科手术。
在某些示例中,处理器502可将躯干表面电势信号、来自成像系统的成像数据、来自电极位置记录模块的电极位置数据、或本文揭示的通过处理器502处理这些信号和数据得到的任何值作为记录的数据510存储在存储器506内。每个记录的躯干表面电势信号或从其得出的其它值可与感测躯干表面电势信号的电极404的位置关联。这样,可将躯干表面电势数据与患者1的躯干上或三维坐标系中电极404的位置相互关联,使数据空间映射到躯干表面上或坐标系内的特定位置。在某些实例中,本文所述技术的各方面可在获取躯干表面电势信号和位置数据之后的某时刻,基于所记录的数据510而执行。
处理器502可配置成基于躯干表面电势信号,某些实例中还基于电极位置数据,提供电不同步的一个或多个指示。电不同步的示例指示包括示出围绕躯干或心脏分布的每个电极/位置、或者位于公共区域内(例如位于左后区域、左前区域、右后区域或右前区域内)的一个或多个电极子集的激活时间的指数。在某些实例中,处理器502可配置成对躯干或心脏的两个或多个不同区域(例如若干个不同区域)提供一组两个或多个不同指示(例如若干个不同指示)。
不同步的某些指示可包括源自一个或多个区域内每个电极位置或一个或多个电极子集的激活时间的统计值或其它指标。可基于各电极/位置的激活时间确定的电不同步的其它示例指示包括图形指示,诸如等时线图或其它激活图,或者电激活的动画。基于各电极/位置处的激活时间确定的电不同步的其它示例指示包括经由例如文本或颜色(例如红、黄、绿)来标识预定数量的不同步程度,例如高、中、或低中的一个。
在某些实例中,用于一个或多个区域的不同步的各指示可基于在两个或多个不同时间和/或在两个或多个不同情况下收集的数据来确定。例如,不同步的各指示可基于心脏10的内在传导期间的躯干电势信号确定,并还可基于CRT期间收集的躯干电势信号确定。这样,可通过比较源自内在传导和CRT的不同的值、图形表示等等对患者评估CRT的减轻电势不同步的益处。又例如,可在多个不同时间中的每个时间基于用不同引线位置、电极配置或CRT参数(例如A-V或V-V间隔值)递送CRT期间收集的躯干电势信号确定不同步的各指示。这样,可通过比较不同的值、图形表示或类似物对患者评估不同引线位置、电极配置或CRT参数的减轻不同步的相对益处。
模型512可包括人体躯干或心脏的多个不同模型,例如三维模型。模型躯干或模型心脏可使用市售软件通过从多个对象(例如不同于患者1的心肌病患者)先前获取的医疗图像(CT/MRI)的可用数据库进行手动或半自动图像分割而构建。每个模型可使用边界元方法进行离散。可生成多个不同的躯干模型。不同的模型可表示不同的对象特征,诸如不同性别、疾病状态、体态特征(例如、大骨架、中骨架和小骨架)和心脏大小(例如特大、大、中、小)。通过经由用户输入509提供输入,用户可从可作为模型512存储在存储器506内的各种模型躯干和模型心脏中选择,使得用户可使患者1的实际躯干和心脏10与模型躯干和模型心脏的尺寸和几何形状紧密匹配。在某些实例中,可将例如CT或MRI图像的患者的医疗图像进行手动或半自动分割、记录,并与模型512比较,以便从模型512中进行选择。此外,单视图或多视图2-D医疗装置(例如x-射线、荧光)可被分割或测量以确定专用于患者的大致心脏和躯干尺寸,从而选择最适合的模型躯干和心脏。
投射模块可以将例如作为记录数据510存储在存储器506内各电极404的位置投射到适当的、例如用户选择的包含在存储器506的模型数据模块512内的模型躯干上。通过将各电极404的位置投射到模型躯干上,投射模块514也可将由各电极404感测到的患者1的躯干表面电势信号投射到模型躯干上。在其它实例中,测得的电势可在模型给出的电极位置处内插并重新采样。在某些实例中,将躯干表面电势投射到模型躯干上可允许处理器502经由逆算问题模块516估算在模型心脏中的,和产生测得的躯干表面电势的患者1的心脏10所对应的各位置或区域的电活动。
逆算问题模块516可配置成基于电极404所记录的测得的躯干表面电势在模型躯干上的投射而求解心电图的逆算问题。求解心电图的逆算问题可涉及基于躯干与心脏电势之间的关系评估心脏10内的电势或激活时间。在一示例方法中,假定模型心脏与模型躯干之间是无源的(source-less)容积导体,在拉普拉斯方程的逆柯西问题中从模型躯干电势而计算出模型心外膜电势。在另一示例方法中,假定躯干表面电势与跨膜电势之间有解析关系。可基于该关系模拟躯干表面电势。在某些实例中,逆算问题模块516可利用Ghosh等人在AnnalsofBiomedicalEngineering2005年9月第9期第33卷的“AccuracyofQuadraticVersusLinearInterpolationinNon-InvasiveElectrocardiographicImaging(ECGI)”或AnnalsofBiomedicalEngineering2009年第5期第37卷的“ApplicationoftheL1-NormRegularizationtoEpicardialPotentialSolutionoftheInverseElectrocardiographyProblem”中描述的技术。在其它实例中,逆算问题模块516可采用求解心电图的逆算问题的任何已知技术。
激活时间模块518可直接从测得的躯干表面电势或通过估算模型跨膜电势来计算激活时间。在两种情况下,用于每个电极/位置的激活时间可确定为两次事件之间、诸如在QRS波群开始与感测的躯干电势信号或估算心外膜电势信号的最小导数(或最陡负斜率)之间的时段。因此,在一个实例中,从模型心外膜心电图的最陡负斜率估算心脏激活时间。在其它配置中,心脏激活时间(躯干表面电势与心脏跨膜电势之间解析关系中的参数)可基于使测得的躯干表面电势与模拟的躯干表面电势之间的最小方差最小来计算。心室、心外膜、或躯干表面激活时间的颜色编码等时线图可由显示器308示出。在其它实例中,显示器308可示出遍布于整个模型心脏的表面或躯干表面的激活波阵面传播的双色动画。
指数模块520可配置成从躯干表面或心脏激活时间计算电不同步的一个或多个指数。这些指数可辅助确定患者是否是适合CRT、CRT引线放置、以及选择CRT参数。例如,LV引线102(图1)可定位在从一个或多个指标降低不同步的部位,或替代地定位在指数表现出最大电复同步的部位。相同的指数也可用于在随访期间对A-V和/或V-V延迟进行编程。如上文所指出的,可基于对所有电极/位置或对一个或多个区域内的一个或多个电极子集的激活时间确定各指数,例如以便于诸如后部和/或左前或左心室区域的区域的比较和隔离。
电不同步的指数之一是作为患者1的躯干表面上某些或所有电极404的激活时间(SDAT)的标准偏差而计算出的标准偏差指数。在某些实例中,可使用在模型心脏的表面上估算的心脏激活时间计算SDAT。
电不同步的第二示例指数在可作为最大与最小例如总体或区域躯干表面或心脏激活时间之差计算的激活时间(RAT)的范围内。RAT反映激活时间的跨度,而SDAT从平均值给出激活时间的分散度的估计。该SDAT还提供激活时间的异质性的估计,因为如果激活时间空间异质,则各个激活时间将更偏离平均激活时间,指示心脏10的一个或多个区域延迟激活。在某些实例中,可使用在模型心脏的表面上估算的心脏激活时间计算RAT。
电不同步的第三示例指数定位于估计躯干或心脏的所关注特定区域内的电极404的百分比,所述电极的相关激活时间大于测得的QRS波群时段或电极404的经确定激活时间的一定百分位,例如70%。所关注区域可为例如后部、左前和/或左心室区域。该指数,即延迟激活的百分比(PLAT),提供所关注区域(例如,与延迟激活的心脏10的左心室区域相关的后部和左前区域)的百分比的估算。PLAT的大值可能意味着所述区域(例如左心室12(图1))的主要部分的延迟激活,以及通过CRT(CRT通过预激励例如左心室12的延迟区域进行)的电复同步的潜在益处进行。在其它实例中,可对其它区域、诸如右前区域内的其它电极子集确定PLAT以评估右心室内的延迟激活。此外,在某些实例中,可对整个心脏或对心脏的例如左心室或右心室的特定区域在模型心脏的表面上使用估算的心脏激活时间计算PLAT。
等时线模块522可配置成生成描绘激活时间在患者1的躯干或模型心脏的表面上的激活时间的分布的等时线图。等时线模块522可包含近乎实时的躯干表面或心脏激活时间的变化,在用户调节CRT装置或监测患者1以确定CRT是否适当时这可允许近瞬时反馈。由等时线模块522生成的等时线图可经由显示器508呈现给用户。
一般而言,处理器502可基于测得的躯干表面电势、计算的躯干表面或估算的心脏激活时间、或者电不同步的变化程度生成用于经由显示器508向用户显示的各种图像和信号。例如,双心室起搏或单心室融合起搏期间反映LV引线102的特定部位的功效的分级响应可以红、黄、绿信号提供给医师。如果CRT起搏期间电不同步减小与内在节律相比为负(电不同步增加)或极小,例如小于5%,则可示出红色信号。如果与内在节律相比CRT起搏期间有电不同步的些许减小,例如5%至15%之间,则可能触发黄色信号,但可能有用于引线放置的可能更好的部位。如果CRT起搏期间电不同步的减小与内在节律相比是显著的,例如大于15%,则可触发绿色信号,向医师指示该部位提供同步的有效变化。来自该系统的反馈与其它标准(像起搏阈值、阻抗、电池寿命、膈神经刺激的大小)也可用来选择用于一个或多个多极引线的最佳起搏矢量。来自该系统的反馈也可用于选择影响用来自单个或多个心室部位的起搏激活的内在激活的融合程度的最佳装置定时(A-V延迟、V-V延迟等),或用于辨别单个部位融合起搏相比多部位起搏和选择适当起搏类型的敏锐优点。
显示器508也可显示患者1的躯干表面上或模型心脏上电活动的三维图。这些图可以是将同步电活动的区域示出为行进通过患者1的心脏10的去极化进展的等时线图。该信息可用于医生诊断不同步电活动并制定适当的治疗以及评估治疗的有效性。
图6是在用CRT装置治疗之前和期间,患有左心室电不同步的患者躯干上躯干表面激活时间的一系列模拟等时线图600。治疗之前(内在)和之后的等时线图分成两个视图:前部和后部。线602表示电极404的子集(例如感测装置400B的电极404的子集)的位置,其可用于计算电不同步的一个或多个指标。在某些实例中,线602可表示感测装置400A上的各电极404。
可使用在患者躯干的表面上分布的多个电极404(例如使用感测装置400B)生成天然和CRT辅助躯干表面激活时间的等时线图600。等时线图600的生成可包括确定各电极404的位置,并用各电极感测躯干表面电势信号。等时线图600的生成还可包括通过确定电极感测的信号的QRS波群中的对应于最大负斜率的点位来计算每个电极或电极位置的躯干表面激活时间。在另一些实例中,可通过识别QRS波群的最小导数来确定躯干表面激活时间。然后可将测得的躯干表面激活时间标准化并生成患者躯干表面的等时线图。
由于电不同步所致的、与电极404中的某些相关的某些部位的延迟激活在内在躯干表面激活时间的后视图中是显见的。各区域604指示下面心脏激活的增加的延迟。用CRT装置治疗期间相应的后部视图指示内在躯干表面激活时间图上的区域606(与区域604相同的位置)呈现出电心室活动的增加的同步性。CRT图呈现躯干表面激活时间的减小的范围和较低的标准偏差。此外,后部区域不再呈现延迟的激活时间。内在和CRT起搏期间躯干表面激活时间以及从内在到CRT起搏的激活时间分布的变化的等时线图可用于诊断目的或调整CRT装置。
电不同步的一个或多个指标也可从用于生成等时线图600的躯干表面激活时间计算得到。例如,使用完整电极404集合对患者的内在心脏节律的的SDAT(激活时间传播的指示)为64。使用由线602标记的缩减的引线组导致62的SDAT。用于内在心脏节律和完整引线组的RAT为166.5,而缩减的引线组具有160的RAT。使用缩减和完整引线组的内在心脏节律的PLAT分别为56.15%和66.67%。这表示使用环绕患者心脏的缩减引线组、例如感测装置400A和相关电极404,与使用诸如感测电极400B的覆盖患者躯干的电极组相比,可提供相媲美的(comparable)电不同步的指数。
电不同步的指数还提供CRT装置的有效性的指示,对于缩减的电极组,SDAT下降到24,RAT下降到70,且PLAT下降到36%。这表示CRT治疗期间躯干表面激活时间和在正常心脏节律下相比更窄地分布且在更小范围内,且位于患者躯干左前表面上的电极404的百分比记录了延迟激活时间显著下降。
图7是示出经由躯干表面激活时间评估患者的心脏电不同步的系统的示例操作的流程图。可确定分布在患者躯干表面上例如电极404(图4A和4B)的各电极的位置(700)。例如去极化的心脏事件可生成电信号,其传播通过例如患者1(图1)的患者躯干的并被记录在各电极上。由各电极感测的信号可通过例如处理单元500(图5)接收(702)。该处理单元可计算躯干表面激活时间(704)。在某些实例中,处理单元也可构建躯干表面激活时间等时线图(706)。处理单元也可计算心脏电不同步的至少一个指数(708)。这些指数可包括SDAT(710)、RAT(712)和PLAT(714)中的一个或多个。
诸如去极化的心脏事件生成传播通过躯干的电信号。电信号可包括QRS波群或由诸如左束支阻滞或右束支阻滞的心脏相关状况引起的变化。由于躯干和心脏内导电率的变化,电信号可能无法均匀地传播穿过患者的躯干。这些延迟可表现在分布在患者躯干表面上的各电极中,这些电极及时记录不同位置处的相同电信号。
由心脏事件生成的电信号可记录在分布在患者躯干表面上的多个电极上。各电极可分布在躯干的前表面、侧表面和/或后表面上,允许生成发生在躯干内的电活动的三维图片。在某些实例中,各电极可放置成通过使用感测装置400B(图4B)提供心脏上方和下方的广泛覆盖。在其它实例中,缩减的电极组可例如使用感测装置400A(图4A)围绕躯干的周围布置,包围患者的心脏。各电极可接收由心脏事件生成的电信号的完整波形并将信号传递到处理单元。
可确定分布在患者躯干表面上各电极的位置(700)。可通过例如处理单元500的成像系统501和电极位置记录模块524(图5)自动进行各电极的定位。各电极可通过分析患者躯干的一个或多个图像并执行图案匹配例程、例如识别抵靠患者躯干的电极的形状并将电极在患者躯干上的位置存储在处理单元存储器内来进行定位。在其它实例中,可确定感测装置400A或400B的位置,并基于感测装置的位置确定各电极的位置,例如电极在患者身上的位置基于电极在感测装置上的已知位置。在另一实例中,可手动测量各电极的位置。
处理单元可从各电极接收电信号并将输出记录在存储器内(702)。处理单元可记录原始输出、例如来自每个电极的原始ECG描图以及各电极的位置数据,允许由各电极探测的电信号映射到患者躯干表面上。
该处理单元可计算躯干表面激活时间(704)。处理器,例如处理单元500的处理器502(图5),可获取存储在处理单元存储器内存储的ECG描图数据,并分析该描图以探测心脏心室的极化,该极化通常在描图中由QRS波群标记。在某些实例中,该处理器可通过确定相对于QRS波群开始时测得的QRS波群内的最小导数(或最陡负斜率)的时间来探测心室去极化。可对每个电极进行激活时间的确定并存储在处理单元存储器内。
在某些配置中,处理单元可构建躯干表面激活时间的等时线图,允许用户视觉检查电信号在行进穿过患者躯干之后在心脏的传播。可通过将测得的躯干表面激活时间范围分成一系列子范围来构建等时线图。可图形化地表示患者躯干表面上每个电极的位置。其测得的激活时间落入同一子范围内的诸电极的区域在图形表示中可用相同的颜色表示。
处理单元还可基于躯干表面激活时间计算电不同步的一个或多个指数(708)。这些指数可包括SDAT(710)、RAT(712)和PLAT(714)。在某些实例中,PLAT可确定为在QRS波群时段的一定百分数之后激活的后部电极的百分比。
如上所述,在某些实例中,可基于这些区域内从各电极(702)接收的信号对躯干的特定区域进行躯干表面激活时间等时线图的构建(706)、或不同步的其它图形表示、以及电不同步的指数的计算(708)。可基于来自这些区域的各电极接收的信号对多个区域中的每个确定图形表示和电不同步的指数。在某些实例中,可将各区域的表示和指数呈现在一起或比较。
图8是示出经由测得的躯干表面激活时间测量患者的心脏电不同步的示例技术的流程图。处理单元500可从从多个电极(800)(诸如从诸电极404(图4A和4B))接收躯干表面电势信号。处理单元500可对多个电极(802)中的每个计算躯干表面激活时间。处理单元500可提供心脏电不同步的至少一个指示(804)。
用户可基于电不同步的至少一个指示评估患者是否适合CRT(806)。用户还可监测电不同步的至少一个指示(808),并使用所述至少一个指示的变化来辅助在例如IMD100(图1)的CRT装置的植入(810)期间调整例如电极108、110和112(图1)的各电极的定位,或者植入或随访期间CRT装置(812)的诸如电极组合和A-V或V-V起搏间隔的各种可编程参数的选择。
诸如激活时间的统计或其它指示、或图形表示的本文所述的心脏电不同步的各种指示可指示对患者的心脏的导电性存在损害,例如存在左束支阻滞或右束支阻滞,这无法从标准12引线ECG读出器的检查中显现出来。例如,大SDAT指示在大时间跨度内发生心室的激活,指示心室的去极化没有同时发生。大RAT还指示激活时间的宽范围和心室的不同步收缩。高PLAT指示心脏的特定区域,例如与左心室相关的后部区域可能未能与测得的QRS波群一致激活。此外,通过监测心脏电不同步的至少一个指示,用户可探测由不同治疗或治疗配置引起的心脏电活动的变化。
如上所述,对例如后部、左前等的多个区域中的每个区域,可基于来自该区域的躯干表面激活时间计算诸如统计指数的电不同步的各种指示。此外,基于电不同步的至少一个指示评估患者是否适合CRT(806)可包括基于心脏内在传导期间和CRT期间躯干表面激活时间确定电不同步的一个或多个指示。内在传导与CRT期间指示之差可指示CRT可为患者提供益处,例如患者适合CRT。如上所述,用户也可根据仅基于内在节律的电不同步的至少一个指示评估患者是否适合CRT。此外,植入或随访期间监测电不同步的至少一个指示(808)可包括基于各位置处CRT的递送产生的躯干表面激活时间,或用各电极配置或参数值,对多个引线位置、电极配置或其它参数值中的每个的确定电不同步的一个或多个指示。这样,可将与各位置、电极配置或参数值相关的不同步指示之差比较以确定较佳位置、配置或值。
图9是一系列心脏激活时间的等时线图。使用在患者的躯干表面上测得的躯干表面电势构建视图900、902和904并投射到患者的躯干和心脏的三维模型上。使用投射到不同模型躯干和模型心脏上测得的相同患者的躯干表面电势构建视图910、912和914。
使用从先前获取的心胸图像的数据库得到的心脏的计算机断层扫描(CT)图像构建视图900、902、904、910、912和914中示出的心脏的三维表示。患者躯干上各电极(例如感测装置400的电极404(图4B))的位置可绘制到模型躯干上的大致位置。可使用计算机来求解心电图的逆算问题,这包括确定心脏表面上会产生测得的躯干表面电势的电活动。视图900、902、904、910、912和914中所示的等时线图基于两个不同患者的心脏的图像,这也用于确定心脏的几何形状和与相应躯干的关系以求解心电图的逆算问题。
可通过使用市售软件从心肌病患者的先前获取的医疗图像(CT/MRI)的可用数据库进行手动或半自动图像分割来构建出模型躯干和心脏。每个模型可使用边界元法进行离散化,并可进一步操纵以考虑具有不同身体特征(例如大骨架、中骨架和小骨架)和心脏大小(例如超大、大、中、小)的患者。
用户可选择适当的模型躯干和心脏来相配于患者,例如具有大身躯的患者可用大骨架模型躯干进行模拟。在某些实例中,可将例如CT或MRI图像的患者的医疗图像进行手动或半自动分割、记录、并与从模型选择的各种可用模型比较。也可使用2-D医疗图像(例如X-射线或荧光)的一个或多个视图。用户可将从患者躯干测得的躯干表面电势投射到模型躯干上的相应位置。然后可求解将电信号从模型躯干传播到模型心脏的逆算问题,并可估算出模型心脏的激活时间。
在应用本发明技术的一实例中,从图像数据库获取用于其它对象的人类胸部CT图像。在图像上进行半自动图像分割以生成心脏和躯干的不同模型的三维表示。在某些实例中,可用来自加利福尼亚州圣地亚哥的面貌成像公司(VisageImaging,Inc.)出售的AMIRA软件包进行图像分割。
例如,患者躯干上的电极位置到模型躯干的投射是近似的。具体来说,患者躯干到模型躯干上电极的位置,将患者躯干上各电极的位置基于各电极安装在患者身上的次序投射到模型躯干的表面上。为了该投射的目的,患者和模型躯干使用胸骨(前)和脊柱(后)作为参考分成右前、左前、右后和左后区域。各电极按垂直条布置,且三个条应用到躯干的每个区域。这些区域内的各电极投射到模型躯干的相应段上。所述方法是可用于记录或描绘测得的电势的几何分布的多种技术中的一种。例如,测得的电势。例如,可将测得的电势在模型给出的电极位置处进行内插或复采样。各电极位置以正确次序从患者躯干的各段投射到模型躯干的相应段上使得激活图案和模型心脏上激活的空间分散相对精确地反应实际患者心脏上的激活图案和激活的空间分散。在一实例中,使用Matlab正则化工具可求解心电图的逆算问题(汉森PC,正则化工具:AMatlabpackageforanalysisandsolutionofdiscreteill-posedproblems,NumericalAlgorithms(数值算法),6(1994),第1-35页)。
与该实例一致的用于求解逆算问题的输入数据集可包括多电极表面ECG测量、模型心脏和躯干表面的3-D直角坐标系、以及指定每个表面上不同点的连接的每个模型表面上的网格。与本发明的技术一致的输出可包括可使用视觉软件和计算机图形工具可视化的3-D模型心脏表面上的激活时间。在某些实例中,3-D模型心脏表面可使用Matlab(马萨诸塞州内蒂克的Mathworks公司)或诸如Tecplot(华盛顿州贝尔维尤的Tecplot公司)的更先进可视化软件来可视化。
比较两个不同的心脏激活时间上的估算心脏激活时间(该估算心脏激活时间根据对一个对象的相同躯干表面电势信号而确定),显示类似的图案和分布。例如,视图902和904的区域906在大小和激活时间上对应于视图912和914的区域916。视图902和904的区域908对应于视图912和914的区域918。此外,两个模型的激活时间的标准偏差都源自一个对象的相同躯干表面电势,且类似(17.6和15.5ms)。因此心脏激活的总体图案和心脏激活时间的分散的测量值不依赖于特定的心脏-躯干模型。使用通用心脏-躯干模型可允许用户创建适于诊断和观察的心脏激活时间的等时线模型,同时避免形成患者的心脏的患者专用模型所可使用的CT扫描或其它成像会造成的花费、不便和辐射暴露。
图10是示出经由激活时间测量患者的心脏电不同步的系统的示例操作的流程图。处理单元500通过电极定位记录模块524例如基于成像数据的分析确定各电极404的位置。处理单元将各电极的位置投射到例如所选模型躯干的模型躯干上(1002)。
发生例如去极化的心脏事件致使电信号传播穿过患者的躯干,并记录在分布在患者躯干表面上的各电极上。由各电极感测的躯干表面电势信号可由处理单元500接收(1004)。处理单元可基于各电极的确定的位置将信号投射到模型躯干的表面上(1006)。
处理单元可求解基于躯干表面电势确定心外膜电势的逆算问题(1008)。然后处理单元可基于投射的躯干表面电势计算模型心脏的各位置的心脏激活时间(1010)。可通过例如确定心外膜电图电势的最大负斜率(1016)或逆算问题解的最小二乘最小化来计算心脏激活时间(1018)。可显示心脏激活时间(1012)。显示心脏激活时间的可能方法的实例包括等时线图(1014)和描绘模型心脏上波阵面进展的影片(1016)。处理单元可配置成允许用户在包括波阵面影片和等时线图在内的各种显示模式之间选择或同时显示各显示模式。此外,可计算心脏电不同步的一个或多个指数(1018),包括SDAT(1020)、RAT(1022)、以及PLAT(1024)。
为了求解逆算问题(1008),在拉普拉斯方程的逆Cauchy问题中,可假定心脏与躯干之间是无源(source-less)的容积导体,从投射的躯干表面电势计算心外膜电势。或者,可以假设躯干-表面电势与心脏跨膜电势之间有解析关系。此外,可从根据躯干-表面电势/心外膜电势转换的逆解确定的心外膜电图的最陡负斜率确定心脏激活时间(1010)。在其它实例中,可基于解析关系方法模拟模型躯干-表面电势,从而从躯干-表面电势确定心脏跨膜电势。可基于使投射的模型躯干-表面电势与模拟的躯干-表面电势之间的最小方差最小化来计算心脏激活时间(解析关系中的参数)。
在某些实例中,可基于这些区域内计算的心脏激活时间,对模型心脏的特定区域进行躯干表面激活时间等时线图的构建(1014)、波阵面动画(1016)或心脏电不同步的其它图形表示、以及心脏电不同步的指数的计算(1018)。可基于在这些区域内计算的心脏激活时间对多个区域中的每个确定心脏电不同步的图形表示和指数。在某些实例中,可将各区域的表示和指数呈现在一起或比较。
图11是示出经由确定的心脏激活时间测量患者的心脏电不同步的示例技术的流程图。这些技术可包括确定多个电极的位置(1100)、将各电极的位置投射到模型躯干的表面上(1102)、记录多个电极的输出(1104)、将多个电极的输出投射到模型躯干的表面上(1106)、求解逆算问题(1108)并从投射的躯干表面电势对模型心脏确定心脏激活时间(1110)。可显示心脏激活时间(1112)。可计算电不同步的一个或多个指数(1114)。可监测该输出、心脏电不同步的指数以及心脏激活时间图,允许用户对患者进行诊断、在植入期间调整CRT电极的位置(1118)或调整CRT装置的A-V或V-V起搏间隔(1120)。
用户可监测计算的输出(1116),例如心脏电不同步的至少一个指数或心脏激活时间的显示。监测这些值可允许用户诊断可能受益于CRT的状况或评估CRT的有效性。例如,心脏电不同步的至少一个指数可指示对患者心脏导电性的损害的存在、例如左束支阻滞或右束支阻滞的存在,这从标准12ECG读取器的检查中不能显现。大SDAT指示在大时间跨度内发生心室的激活,指示心室的去极化不是同时发生。大RAT还指示激活时间的宽范围和心室的不同步收缩。高PLAT可指示心脏的特定区域,例如与左心室更相关的后部区域未能与测得的QRS波群一致激活。
用户可根据显示的心脏激活时间或心脏电不同步的指数调整CRT电极(例如IMD100的电极108、110和112(图1))的定位。例如,处理单元经由显示器可实施基于心脏电不同步的指数的百分比变化而显示变换颜色的系统。当调整CRT电极的位置(1118)时,显示的颜色可基于心脏电不同步的指数的百分比改进从红色变换成黄色变换成绿色。这可允许用户快速确定CRT电极的调整是否对患者的症状具有积极效果。在另一实例中,用户可调整植入的CRT装置的A-V或V-V起搏间隔(118)。心脏电不同步的指数的最小值可指示足够的起搏间隔。等时线图或波阵面传播影片也可用于辅助CRT调整或诊断可应答于CRT治疗的状况。
如上所述,为了便于基于监测的输出评估患者是否适合CRT(1116),心脏电不同步的一个或多个指示,例如指数或图形指示,可基于心脏的内在传导期间和CRT期间的躯干表面激活时间来确定。内在传导与CRT期间指示之差可指示CRT可为患者提供益处,例如患者适合CRT。此外,植入或随访期间,基于各位置处CRT的递送产生的躯干表面激活时间,或用各电极配置或参数值,对多个引线位置、电极配置或其它参数值中的每个确定心脏电不同步的一个或多个指示。这样,可将与各位置、电极配置或参数值相关的心脏电不同步指示之差比较以确定较佳位置、配置或值。
已经描述了本发明的各实例。但,本领域的普通技术人员会理解可对所述实施例作出各种更改而不偏离权利要求书的范围。例如,尽管讨论了SDAT、RAT和PLAT作为激活时间分散的统计指数的实例,但也可根据本发明的技术确定去极化定时分散的其它指数或指标。例如,可确定例如前部和后部的两个特定区域之间的激活时间范围。又例如,可根据本发明的技术确定排除特定位置或区域之后激活时间的范围和变化。排除的位置或区域可以为认为是疤痕组织的位置或区域(例如,通过低幅电信号而辨识出),或者延伸超出远场QRS波群范围的位置或区域。一般而言,指数的计算可包括基于躯干表面或心脏激活时间或其某些子集来确定任何统计或其它值。

Claims (24)

1.一种处理系统,包括:
用于从分布在患者躯干上多个电极中的每个电极接收躯干表面电势信号的装置;
用于对于所述多个电极的至少一个子集中的每个电极,基于从所述电极感测的躯干表面电势信号计算躯干表面激活时间的装置;以及
用于基于计算的躯干表面激活时间确定患者心脏的电不同步程度的指示的装置;以及
用于经由显示器向用户呈现电不同步程度的指示的装置。
2.如权利要求1所述的处理系统,其特征在于,
其中所述用于接收所述躯干表面电势信号的装置包括:用于接收在患者心脏内在传导期间感测的第一躯干表面电势信号的装置,以及用于接收在患者心脏的心脏再同步治疗(CRT)起搏期间感测的第二躯干表面电势信号的装置,
其中所述用于计算所述躯干表面激活时间的装置包括:用于基于所述第一躯干表面电势信号计算第一躯干表面激活时间的装置,以及用于基于所述第二躯干表面电势信号计算第二躯干表面激活时间的装置;以及
其中所述用于基于计算的躯干表面激活时间确定患者心脏的电不同步程度的指示的装置包括:用于确定所述第一躯干表面激活时间与所述第二躯干表面激活时间之间的电不同步的变化的装置;以及
其中所述用于呈现电不同步程度的指示的装置包括用于呈现所述电不同步的变化的指示的装置。
3.如权利要求1所述的处理系统,其特征在于,所述用于基于计算的躯干表面激活时间确定患者心脏的电不同步程度的指示的装置包括:用于基于躯干表面激活时间计算至少一个不同步的指数的装置,且其中所述用于呈现电不同步程度的指示的装置包括:用于向用户呈现计算的指数的装置。
4.如权利要求3所述的处理系统,其特征在于,
所述用于接收所述躯干表面电势信号的装置包括:用于第一次在患者心脏的内在传导期间接收第一躯干表面电势信号的装置,以及用于第二次在患者心脏的心脏再同步治疗(CRT)起搏期间接收第二躯干表面电势信号的装置,所述用于计算所述躯干表面激活时间的装置包括:用于计算第一躯干表面激活时间的装置和用于计算第二躯干表面激活时间的装置,
所述处理系统还包括:
用于将心脏的内在传导期间的所述第一躯干表面激活时间与心脏的CRT起搏期间的所述第二躯干表面激活时间比较的装置,
其中所述用于计算所述至少一个不同步的指数的装置包括:用于至少基于将心脏内在传导期间的所述第一躯干表面激活时间与心脏的CRT起搏期间的第二躯干表面激活时间比较来计算所述至少一个不同步的指数的装置。
5.如权利要求3-4中任一项所述的处理系统,其特征在于,所述用于计算所述至少一个不同步的指数的装置包括:用于计算标准偏差指数SDAT的装置,所述SDAT被计算为躯干表面激活时间的标准偏差。
6.如权利要求3-4中任一项所述的处理系统,其特征在于,所述用于计算所述至少一个不同步的指数的装置包括:用于计算激活时间范围RAT的装置,其中所述用于计算RAT的装置包括:
用于确定所述躯干表面激活时间的最大值的装置;
用于确定所述躯干表面激活时间的最小值的装置;以及
用于确定所述躯干表面激活时间的最大值与所述躯干表面激活时间的最小值之差的装置。
7.如权利要求3-4中任一项所述的处理系统,其特征在于,所述用于计算所述至少一个不同步的指数的装置包括:用于计算延迟激活时间的百分比PLAT的装置,其中所述用于计算PLAT的装置包括:
用于确定QRS波群时段的装置;以及
用于确定躯干区域内比所述QRS波群时段的一百分数迟的躯干表面激活时间的百分比的装置。
8.如权利要求3-4中任一项所述的处理系统,其特征在于,所述用于计算所述至少一个不同步的指数的装置包括:
用于基于来自躯干的第一区域的躯干表面激活时间计算躯干的第一区域的不同步的第一指数的装置;以及
用于基于来自躯干的第二区域的躯干表面激活时间计算躯干的第二区域的不同步的第二指数的装置。
9.一种医疗系统,包括:
多个电极,所述多个电极分布在患者躯干上;以及
处理单元,所述处理单元配置成从所述多个电极中的每个电极接收躯干表面电势信号,对于所述多个电极的至少一个子集中的每个电极,基于从所述电极感测的躯干表面电势信号计算躯干表面激活时间;基于计算的躯干表面激活时间确定患者心脏的电不同步程度的指示。
10.如权利要求9所述的医疗系统,其特征在于,所述躯干表面电势信号包括患者心脏内在传导期间感测的第一躯干表面电势信号和患者心脏的心脏再同步治疗(CRT)起搏期间感测的第二躯干表面电势信号,其中所述处理单元配置成,至少通过基于所述第一躯干表面电势信号计算第一躯干表面激活时间并基于所述第二躯干表面电势信号计算第二躯干表面激活时间,来计算躯干表面激活时间;以及其中不同步程度的指示包括第一躯干表面激活时间与所述第二躯干表面激活时间之间电不同步变化的指示。
11.如权利要求9所述的医疗系统,其特征在于,还包括显示器,其中所述处理单元配置成:
基于所述躯干表面激活时间计算至少一个不同步的指数;以及
经由所述显示器将所述计算的指数呈现给用户。
12.如权利要求11所述的医疗系统,其特征在于,所述处理单元配置成:
在患者心脏的内在传导期间接收第一躯干表面电势信号并首次计算第一躯干表面激活时间,并在心脏的心脏再同步治疗(CRT)起搏期间接收第二躯干表面电势信号并第二次计算第二躯干表面激活时间;
将心脏的内在传导期间的所述第一躯干表面激活时间与心脏的CRT起搏期间的所述第二躯干表面激活时间比较;以及
至少基于将心脏内在传导期间的所述第一躯干表面激活时间与心脏的CRT起搏期间的第二躯干表面激活时间比较来计算至少一个不同步的指数。
13.如权利要求11-12中任一项所述的医疗系统,其特征在于,至少一个不同步的指数包括标准偏差指数(SDAT),且其中所述处理单元配置成通过至少确定所述躯干表面激活时间的标准偏差来计算所述标准偏差指数(SDAT)。
14.如权利要求11-12中任一项所述的医疗系统,其特征在于,所述至少一个不同步的指数包括激活时间范围(RAT);以及其中所述处理单元配置成通过至少确定所述躯干表面激活时间的最大值、确定所述躯干表面激活时间的最小值、并确定所述躯干表面激活时间的最大值与所述躯干表面激活时间的最小值之差来计算所述激活时间范围(RAT)。
15.如权利要求11-12中任一项所述的医疗系统,其特征在于,所述至少一个不同步的指数包括延迟激活时间的百分比(PLAT);且其中所述处理单元配置成通过至少确定QRS波群时段,并确定躯干区域内比所述QRS波群时段的一百分数迟的躯干表面激活时间子集的百分比来计算延迟激活时间的百分比(PLAT)。
16.如权利要求11-12中任一项所述的医疗系统,其特征在于,所述处理单元配置成:
基于来自躯干的第一区域的躯干表面激活时间计算躯干的第一区域的第一不同步指数;以及
基于来自躯干的第二区域的躯干表面激活时间计算躯干的第二区域的第二不同步指数。
17.如权利要求11-12中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤计算所述至少一个不同步的指数:
基于来自躯干的第一区域的躯干表面激活时间计算躯干的第一区域的第一组两个或多个不同步的指数;以及
基于来自躯干的第二区域的躯干表面激活时间计算躯干的第二区域的第二组两个或多个不同步的指数。
18.如权利要求11-12中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤计算所述至少一个不同步的指数:对于躯干的几个区域中的每个,基于来自躯干区域的躯干表面激活时间对躯干的所述区域计算一组一个或多个不同步的指数。
19.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:
基于所述计算的躯干表面激活时间计算躯干表面激活时间等时线图,其中所述等时线图描绘躯干表面激活时间的空间分布;以及
经由显示器呈现所述躯干表面激活时间等时线图。
20.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:
基于所述计算的躯干表面激活时间计算波阵面动画,其中所述波阵面动画描绘心脏的激活的空间传播;以及
经由显示器呈现所述波阵面动画。
21.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:显示多个预定颜色中的一个,所述颜色中的每个指示相应程度的不同步变化。
22.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:在心脏再同步治疗(CRT)装置的植入期间呈现所述指示。
23.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:在心脏再同步治疗(CRT)装置的调整过程期间呈现所述指示。
24.如权利要求9-10中任一项所述的医疗系统,其特征在于,所述处理单元配置成,通过以下步骤呈现患者心脏的电不同步程度的指示:在筛选过程期间呈现所述指示以确定给定患者是否可能受益于心脏再同步治疗(CRT)装置的植入。
CN201280024669.3A 2011-05-03 2012-05-03 评估心脏内激活模式和电不同步 Active CN103547212B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161482053P 2011-05-03 2011-05-03
US61/482,053 2011-05-03
US13/462,404 US9510763B2 (en) 2011-05-03 2012-05-02 Assessing intra-cardiac activation patterns and electrical dyssynchrony
US13/462,404 2012-05-02
PCT/US2012/036262 WO2012151364A1 (en) 2011-05-03 2012-05-03 Assessing intra-cardiac activation patterns and electrical dyssynchrony

Publications (2)

Publication Number Publication Date
CN103547212A CN103547212A (zh) 2014-01-29
CN103547212B true CN103547212B (zh) 2016-03-16

Family

ID=47090700

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280026661.0A Active CN103561642B (zh) 2011-05-03 2012-05-03 评估心脏内激动模式
CN201280024669.3A Active CN103547212B (zh) 2011-05-03 2012-05-03 评估心脏内激活模式和电不同步

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280026661.0A Active CN103561642B (zh) 2011-05-03 2012-05-03 评估心脏内激动模式

Country Status (4)

Country Link
US (6) US8972228B2 (zh)
EP (3) EP2704627B1 (zh)
CN (2) CN103561642B (zh)
WO (2) WO2012151389A1 (zh)

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208232A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Physiologic monitoring initialization systems and methods
WO2011099992A1 (en) 2010-02-12 2011-08-18 Brigham And Women's Hospital, Inc. System and method for automated adjustment of cardiac resynchronization therapy control parameters
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US10311978B2 (en) * 2012-01-30 2019-06-04 Siemens Healthcare Gmbh Method and system for patient specific planning of cardiac therapies on preoperative clinical data and medical images
US20140070949A1 (en) * 2012-09-11 2014-03-13 Paul Chen Muscle activity training facility for lower body of user
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
USD850626S1 (en) 2013-03-15 2019-06-04 Rhythm Diagnostic Systems, Inc. Health monitoring apparatuses
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US9830423B2 (en) * 2013-03-13 2017-11-28 Abhishek Biswas Virtual communication platform for healthcare
US11694797B2 (en) * 2012-10-30 2023-07-04 Neil S. Davey Virtual healthcare communication platform
US10039464B2 (en) 2013-01-17 2018-08-07 Cardioinsight Technologies, Inc. Phase values and wave front detection for electrophysiological cardiac signals
US8965489B2 (en) 2013-02-21 2015-02-24 Medtronic, Inc. Method and determination of cardiac activation from electrograms with multiple deflections
WO2014137636A1 (en) * 2013-03-06 2014-09-12 The General Hospital Corporation System and method for non-invasive determination of cardiac activation patterns
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
USD921204S1 (en) 2013-03-15 2021-06-01 Rds Health monitoring apparatus
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US10251555B2 (en) * 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) * 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9272148B2 (en) 2013-07-23 2016-03-01 Medtronic, Inc. Combination of feedback on mechanical and electrical resynchronization to select therapy parameters
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9132274B2 (en) 2013-07-26 2015-09-15 Medtronic, Inc. Determining onsets and offsets of cardiac depolarization and repolarization waves
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US10076258B2 (en) 2013-11-01 2018-09-18 Boston Scientific Scimed, Inc. Cardiac mapping using latency interpolation
US9986928B2 (en) 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
JP2017502766A (ja) * 2014-01-13 2017-01-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングする医療用デバイス
EP3113671B1 (en) 2014-03-07 2023-10-25 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
JP2017509399A (ja) 2014-03-11 2017-04-06 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングするための医療用デバイス
US9776009B2 (en) * 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US10779743B2 (en) * 2014-05-06 2020-09-22 Peacs B.V. Estimating distribution, fluctuation and/or movement of electrical activity through a heart tissue
US11172860B2 (en) * 2014-05-06 2021-11-16 Peacs Investments B.V. Estimating distribution fluctuation and/or movement of electrical activity through a heart tissue
CN106456035A (zh) * 2014-05-09 2017-02-22 波士顿科学医学有限公司 用于映射心脏组织的医疗装置
US9538930B2 (en) * 2014-06-05 2017-01-10 Guangren CHEN Linear multi-domain electrocardiogram
EP3151743A4 (en) * 2014-06-05 2018-02-14 Chen, Guangren Systems and methods for detecting ecg subwaveforms
US9545203B2 (en) * 2014-06-05 2017-01-17 Guangren Chen Systems and methods for cardiomyocyte conduction speed mapping
US9949662B2 (en) 2014-06-12 2018-04-24 PhysioWave, Inc. Device and method having automatic user recognition and obtaining impedance-measurement signals
US10130273B2 (en) 2014-06-12 2018-11-20 PhysioWave, Inc. Device and method having automatic user-responsive and user-specific physiological-meter platform
US9943241B2 (en) 2014-06-12 2018-04-17 PhysioWave, Inc. Impedance measurement devices, systems, and methods
US9546898B2 (en) 2014-06-12 2017-01-17 PhysioWave, Inc. Fitness testing scale
US9568354B2 (en) 2014-06-12 2017-02-14 PhysioWave, Inc. Multifunction scale with large-area display
EP3157423A4 (en) 2014-06-20 2018-02-28 The Regents of The University of California Patient-specific modeling of ventricular activation pattern using surface ecg-derived vectorcardiogram in bundle branch block
US9589379B2 (en) * 2014-06-24 2017-03-07 Siemens Healthcare Gmbh System and method for visualization of cardiac changes under various pacing conditions
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9693696B2 (en) 2014-08-07 2017-07-04 PhysioWave, Inc. System with user-physiological data updates
US9498137B2 (en) 2014-08-07 2016-11-22 PhysioWave, Inc. Multi-function fitness scale with display
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
CN107072577A (zh) 2014-10-17 2017-08-18 心脏起搏器股份公司 基于感测心音确定多部位捕获状态的系统
ES2572142B1 (es) * 2014-10-30 2017-06-21 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón Dispositivo de localización de arritmias cardiacas
EP3206575A1 (en) 2015-01-07 2017-08-23 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for visualizing cardiac timing information using animations
US9750941B2 (en) 2015-01-23 2017-09-05 Medtronic, Inc. Criteria for determination of local tissue latency near pacing lead electrodes
US20160317840A1 (en) * 2015-01-29 2016-11-03 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9737223B2 (en) 2015-05-13 2017-08-22 Medtronic, Inc. Determining onset of cardiac depolarization and repolarization waves for signal processing
US10945671B2 (en) 2015-06-23 2021-03-16 PhysioWave, Inc. Determining physiological parameters using movement detection
US10092761B2 (en) * 2015-07-01 2018-10-09 Cardiac Pacemakers, Inc. Automatic vector selection for multi-site pacing
US11289207B2 (en) 2015-07-09 2022-03-29 Peacs Investments B.V. System for visualizing heart activation
US9610045B2 (en) 2015-07-31 2017-04-04 Medtronic, Inc. Detection of valid signals versus artifacts in a multichannel mapping system
US9782094B2 (en) 2015-07-31 2017-10-10 Medtronic, Inc. Identifying ambiguous cardiac signals for electrophysiologic mapping
EP3364875A2 (en) * 2015-10-21 2018-08-29 Peacs B.v. Heart condition determination method, robot control and system
US10923217B2 (en) 2015-11-20 2021-02-16 PhysioWave, Inc. Condition or treatment assessment methods and platform apparatuses
US10980483B2 (en) 2015-11-20 2021-04-20 PhysioWave, Inc. Remote physiologic parameter determination methods and platform apparatuses
US10395055B2 (en) 2015-11-20 2019-08-27 PhysioWave, Inc. Scale-based data access control methods and apparatuses
US10436630B2 (en) 2015-11-20 2019-10-08 PhysioWave, Inc. Scale-based user-physiological data hierarchy service apparatuses and methods
US10553306B2 (en) 2015-11-20 2020-02-04 PhysioWave, Inc. Scaled-based methods and apparatuses for automatically updating patient profiles
US11561126B2 (en) 2015-11-20 2023-01-24 PhysioWave, Inc. Scale-based user-physiological heuristic systems
CN106880353B (zh) * 2015-12-16 2020-06-23 厦门大学 心电逆处理方法及装置
AU2016379418A1 (en) 2015-12-22 2018-06-14 The Regents Of The University Of California Computational localization of fibrillation sources
US10780279B2 (en) * 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US11219769B2 (en) * 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
EP3973908A1 (en) 2016-05-03 2022-03-30 Acutus Medical Inc. Cardiac mapping system with efficiency algorithm
WO2017192294A1 (en) 2016-05-03 2017-11-09 Cardioinsight Technologies, Inc. Detecting conduction timing
US10390772B1 (en) 2016-05-04 2019-08-27 PhysioWave, Inc. Scale-based on-demand care system
US10349855B2 (en) * 2016-06-10 2019-07-16 Biosense Webster (Israel) Ltd. Identification and visualization of cardiac activation sequence in multi-channel recordings
US10215619B1 (en) 2016-09-06 2019-02-26 PhysioWave, Inc. Scale-based time synchrony
US11458320B2 (en) 2016-09-06 2022-10-04 Peacs Investments B.V. Method of cardiac resynchronization therapy
EP3318185A1 (en) 2016-11-04 2018-05-09 Aalborg Universitet Method and device for analyzing a condition of a heart
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
WO2018190716A1 (en) * 2017-04-12 2018-10-18 Peacs B.V. Mean tsi feature based determination method and system
US10845955B2 (en) 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US10456056B2 (en) * 2017-06-21 2019-10-29 Biosense Webster (Israel) Ltd. Combination torso vest to map cardiac electrophysiology
WO2019014453A2 (en) * 2017-07-12 2019-01-17 Cardioinsight Technologies, Inc. IMAGING TO DETERMINE ELECTRODE GEOMETRY
CN110996784B (zh) 2017-07-28 2023-05-30 美敦力公司 生成激动时间
EP3658227B1 (en) 2017-07-28 2021-05-12 Medtronic, Inc. Cardiac cycle selection
US10713790B2 (en) * 2017-08-01 2020-07-14 Catheter Precision, Inc. Methods of cardiac mapping and directional guidance
US11246662B2 (en) 2017-08-01 2022-02-15 Catheter Precision, Inc. Methods of cardiac mapping and model merging
US10398348B2 (en) * 2017-10-19 2019-09-03 Biosense Webster (Israel) Ltd. Baseline impedance maps for tissue proximity indications
WO2019089528A1 (en) 2017-11-02 2019-05-09 Cardiac Pacemakers, Inc. System for recognition of his-bundle pacing capture
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
DK201870599A1 (en) 2018-03-12 2019-10-16 Apple Inc. USER INTERFACES FOR HEALTH MONITORING
WO2019183512A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac resynchronization therapy
EP3768160B1 (en) 2018-03-23 2023-06-07 Medtronic, Inc. Vfa cardiac therapy for tachycardia
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
CN111886046A (zh) 2018-03-23 2020-11-03 美敦力公司 Av同步vfa心脏治疗
WO2019191602A1 (en) 2018-03-29 2019-10-03 Medtronic, Inc. Left ventricular assist device adjustment and evaluation
US10860754B2 (en) 2018-04-26 2020-12-08 Vektor Medical, Inc. Calibration of simulated cardiograms
US11564641B2 (en) 2018-04-26 2023-01-31 Vektor Medical, Inc. Generating simulated anatomies of an electromagnetic source
US11065060B2 (en) 2018-04-26 2021-07-20 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11259871B2 (en) 2018-04-26 2022-03-01 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11350867B2 (en) * 2018-04-27 2022-06-07 Duke University Small-scale time delay and single-shot conduction velocity analysis and mapping for cardiac electrophysiology
DK201870378A1 (en) 2018-05-07 2020-01-13 Apple Inc. DISPLAYING USER INTERFACES ASSOCIATED WITH PHYSICAL ACTIVITIES
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
US11304641B2 (en) * 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
WO2020010339A1 (en) 2018-07-05 2020-01-09 The Regents Of The University Of California Computational simulations of anatomical structures and body surface electrode positioning
WO2020065582A1 (en) 2018-09-26 2020-04-02 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US10952794B2 (en) 2018-11-13 2021-03-23 Vektor Medical, Inc. Augmentation of images with source locations
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US20220142600A1 (en) * 2019-01-31 2022-05-12 The Medical College Of Wisconsin, Inc. Systems and Methods for Sound Mapping of Anatomical and Physiological Acoustic Sources Using an Array of Acoustic Sensors
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11291845B2 (en) 2019-02-18 2022-04-05 Medtronic, Inc. Medical device system and method for determining His bundle pacing capture
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11071500B2 (en) 2019-05-02 2021-07-27 Medtronic, Inc. Identification of false asystole detection
US11813462B2 (en) 2019-05-07 2023-11-14 Medtronic, Inc. Supplementation of cardiac conduction system pacing therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11228835B2 (en) 2019-06-01 2022-01-18 Apple Inc. User interfaces for managing audio exposure
US11209957B2 (en) 2019-06-01 2021-12-28 Apple Inc. User interfaces for cycle tracking
US11234077B2 (en) 2019-06-01 2022-01-25 Apple Inc. User interfaces for managing audio exposure
US11152100B2 (en) 2019-06-01 2021-10-19 Apple Inc. Health application user interfaces
DK201970534A1 (en) 2019-06-01 2021-02-16 Apple Inc User interfaces for monitoring noise exposure levels
US10595736B1 (en) 2019-06-10 2020-03-24 Vektor Medical, Inc. Heart graphic display system
US10709347B1 (en) 2019-06-10 2020-07-14 Vektor Medical, Inc. Heart graphic display system
CN114096306A (zh) 2019-06-19 2022-02-25 艾莉娜健康系统公司 用于使用数据结构和图形表示优化可植入医疗装置特性的系统和方法
US12002588B2 (en) 2019-07-17 2024-06-04 Apple Inc. Health event logging and coaching user interfaces
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11903700B2 (en) 2019-08-28 2024-02-20 Rds Vital signs monitoring systems and methods
EP4004702A1 (en) 2019-09-09 2022-06-01 Apple Inc. Research study user interfaces
US20210106227A1 (en) 2019-10-09 2021-04-15 Medtronic, Inc. Systems, methods, and devices for determining cardiac condition
US20210106832A1 (en) 2019-10-09 2021-04-15 Medtronic, Inc. Synchronizing external electrical activity
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
CN114746008A (zh) 2019-12-02 2022-07-12 美敦力公司 生成代表性心脏信息
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US20210308458A1 (en) 2020-04-03 2021-10-07 Medtronic, Inc. Cardiac conduction system engagement
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
DK181037B1 (en) 2020-06-02 2022-10-10 Apple Inc User interfaces for health applications
WO2022011417A1 (en) * 2020-07-16 2022-01-20 Storm-Road Pty Ltd Generating animated images
US11964160B2 (en) 2020-07-27 2024-04-23 Medtronic, Inc. Method and apparatus for delivering bundle branch pacing
US12023503B2 (en) 2020-07-30 2024-07-02 Medtronic, Inc. ECG belt systems to interoperate with IMDs
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US20220031222A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Stable cardiac signal identification
US11698710B2 (en) 2020-08-31 2023-07-11 Apple Inc. User interfaces for logging user activities
WO2022067247A1 (en) * 2020-09-28 2022-03-31 The Trustees Of Columbia University In The City Of New York Systems and methods for electromechanical wave imaging with machine learning for automated activation map generation
WO2022094425A1 (en) 2020-10-30 2022-05-05 Vektor Medical, Inc. Heart graphic display system
WO2022119880A1 (en) 2020-12-02 2022-06-09 Medtronic, Inc. Evaluation and adjustment of left bundle branch (lbb) pacing therapy
US11338131B1 (en) 2021-05-05 2022-05-24 Vektor Medical, Inc. Guiding implantation of an energy delivery component in a body
CA3228337A1 (en) 2021-08-09 2023-02-16 Vektor Medical, Inc. Tissue state graphic display system
US11534224B1 (en) 2021-12-02 2022-12-27 Vektor Medical, Inc. Interactive ablation workflow system
WO2023105316A1 (en) 2021-12-07 2023-06-15 Medtronic, Inc. Determination of cardiac conduction system therapy benefit
WO2024018009A1 (en) 2022-07-20 2024-01-25 Corify Care, S.L. Methods to determine the morphology and the location of a heart within a torso

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043621A (zh) * 1988-12-30 1990-07-11 中日友好医院 体表心电峰值记录分析方法及其标测图装置
US5054496A (en) * 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
US5311873A (en) * 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
US6772004B2 (en) * 1997-07-31 2004-08-03 Case Western Reserve University System and method for non-invasive electrocardiographic imaging
US6856830B2 (en) * 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging

Family Cites Families (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
US4674511A (en) 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4497326A (en) 1981-04-06 1985-02-05 Curry Paul V L Heart pacing lead
US4402323A (en) 1981-05-12 1983-09-06 Medtronic, Inc. Disposable electrophysiological exploring electrode needle
PL133646B1 (en) 1981-10-22 1985-06-29 Os Bad Rozwojowy Tech Medyc Non-invasive method of measuring activation of hearth stimuli conducting system between successive stimulations
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US4763660A (en) 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US4787389A (en) 1987-07-16 1988-11-29 Tnc Medical Devices Pte. Ltd. Using an implantable antitachycardia defibrillator circuit
US4777955A (en) 1987-11-02 1988-10-18 Cordis Corporation Left ventricle mapping probe
DE3816042A1 (de) 1988-05-10 1989-11-23 Alt Eckhard Energiesparender herzschrittmacher
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
DE4131103C1 (en) 1991-09-16 1993-04-01 Medizinische Fakultaet (Charite) Der Humboldt-Universitaet Zu Berlin, O-1040 Berlin, De Evaluation of ECG maps, e.g in cardiography - using electrodes placed near patient thorax to measure electrical field of heart, and projecting voltages to form spherical image of heart with iso-intensity lines on surface
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5334220A (en) 1992-11-13 1994-08-02 Siemens Pacesetter, Inc. Dual-chamber implantable pacemaker having an adaptive AV interval that prevents ventricular fusion beats and method of operating same
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5443492A (en) 1994-02-02 1995-08-22 Medtronic, Inc. Medical electrical lead and introducer system for implantable pulse generator
US5552645A (en) 1994-06-08 1996-09-03 Siemens Medical Systems, Inc. Automatic probe activation
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
ATE178471T1 (de) 1994-11-07 1999-04-15 Johnmccune Anderson Bio-elektrischer aufnehmer
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5514163A (en) 1995-02-21 1996-05-07 Medtronic, Inc. Dual chamber pacing system and method with optimized adjustment of the AV escape interval for treating cardiomyopathy
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
US6532379B2 (en) 1995-05-04 2003-03-11 Robert A. Stratbucker Bio-electic interface adapter with twelve-lead ECG capability and provision for defibrillation
WO1997017893A1 (en) 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
IL125136A (en) 1996-01-08 2003-07-31 Impulse Dynamics Nv Electrical cardiac muscle controller method and apparatus
US6915149B2 (en) 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US5683429A (en) 1996-04-30 1997-11-04 Medtronic, Inc. Method and apparatus for cardiac pacing to prevent atrial fibrillation
US6311089B1 (en) 1996-05-14 2001-10-30 Pacesetter, Inc. Implantable stimulation device and method for determining ventricular and atrial sensitivity thresholds
WO1998002090A1 (en) 1996-07-17 1998-01-22 Cambridge Heart, Inc. Generation of localized cardiac measures
WO1998026712A1 (en) 1996-12-18 1998-06-25 John Mccune Anderson Apparatus for body surface mapping
US6625482B1 (en) 1998-03-06 2003-09-23 Ep Technologies, Inc. Graphical user interface for use with multiple electrode catheters
US6975900B2 (en) 1997-07-31 2005-12-13 Case Western Reserve University Systems and methods for determining a surface geometry
US5922014A (en) 1997-09-02 1999-07-13 Medtronic, Inc. Single pass lead and method of use
JP4208275B2 (ja) 1997-10-30 2009-01-14 株式会社東芝 心臓内電気現象の診断装置およびその現象の表示方法
US6128535A (en) 1997-12-05 2000-10-03 Cardiac Pacemakers, Inc. Automatic capture verification in multisite cardiac pacing
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6141588A (en) 1998-07-24 2000-10-31 Intermedics Inc. Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy
US6358214B1 (en) 1998-08-19 2002-03-19 Misha Tereschouk ECG scanner
US6243603B1 (en) 1998-09-15 2001-06-05 Uab Research Foundation Methods and apparatus for detecting medical conditions of the heart
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6205357B1 (en) 1998-12-04 2001-03-20 Uab Research Foundation Methods and apparatus for detecting and treating medical conditions of the heart
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
EP1178855B1 (en) 1999-05-12 2006-08-02 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US7238158B2 (en) 1999-05-28 2007-07-03 Allez Physionix, Ltd. Pulse interleaving in doppler ultrasound imaging
US6377856B1 (en) 1999-06-14 2002-04-23 Pacesetter, Inc. Device and method for implanting medical leads
US6539259B1 (en) 1999-07-15 2003-03-25 Pacesetter, Inc. System and method of automatically adjusting sensitivity in an implantable cardiac stimulation device
CN1124824C (zh) * 1999-09-27 2003-10-22 复旦大学 动态心电标测方法及其装置
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6473638B2 (en) 1999-12-24 2002-10-29 Medtronic, Inc. Medical device GUI for cardiac electrophysiology display and data communication
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
JP2003527186A (ja) 2000-03-17 2003-09-16 メドトロニック・インコーポレーテッド 患者管理システム用の心不全モニタのクイックルック概要
US6507756B1 (en) 2000-04-03 2003-01-14 Medtronic, Inc. Dual chamber pacing system having time-adaptive AV delay
AU2001235964A1 (en) 2000-05-09 2001-11-20 Paieon Inc. System and method for three-dimensional reconstruction of an artery
US7349734B2 (en) 2000-05-15 2008-03-25 Cardiac Pacemakers, Inc. Method and apparatus for delivering defibrillation shock therapy while reducing electrical dispersion due to ventricular conduction disorder
KR200225362Y1 (ko) 2000-07-07 2001-06-01 박종윤 거리감지 센서를 설치한, 고출력 반도체 레이저 다이오드(high power semiconductor laser diode)를 이용한, 일체형 휴대용 의료용 레이저 치료기구
MXPA03000499A (es) 2000-07-18 2003-06-24 Motorola Inc Sistema y metodo de electrocardiografia inalambrica.
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
EP1341443B1 (en) 2000-10-18 2010-12-29 Paieon Inc. System for positioning a device in a tubular organ
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
US7062315B2 (en) 2000-11-28 2006-06-13 Medtronic, Inc. Automated template generation algorithm for implantable device
US6643546B2 (en) 2001-02-13 2003-11-04 Quetzal Biomedical, Inc. Multi-electrode apparatus and method for treatment of congestive heart failure
US6766189B2 (en) 2001-03-30 2004-07-20 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy
US6993389B2 (en) 2001-03-30 2006-01-31 Cardiac Pacemakers, Inc. Identifying heart failure patients suitable for resynchronization therapy using QRS complex width from an intracardiac electrogram
US7058443B2 (en) 2001-04-26 2006-06-06 Medtronic, Inc. Diagnostic features in biatrial and biventricular pacing systems
JP2002328439A (ja) 2001-04-27 2002-11-15 Nippon Sheet Glass Co Ltd 原稿台ガラス
US7697977B2 (en) 2002-11-27 2010-04-13 Cardiac Pacemakers, Inc. Method and apparatus for determining relative depolarization at multiple cardiac sensing sites
US6804555B2 (en) 2001-06-29 2004-10-12 Medtronic, Inc. Multi-site ventricular pacing system measuring QRS duration
US9326695B1 (en) 2004-11-12 2016-05-03 Orbital Research Inc Electrode harness and method of taking biopotential measurements
US6640136B1 (en) 2001-09-12 2003-10-28 Pacesetters, Inc. Implantable cardiac stimulation device with automatic electrode selection for avoiding cross-chamber stimulation
US6701186B2 (en) 2001-09-13 2004-03-02 Cardiac Pacemakers, Inc. Atrial pacing and sensing in cardiac resynchronization therapy
AU2002362438A1 (en) 2001-10-04 2003-04-14 Case Western Reserve University Systems and methods for noninvasive electrocardiographic imaging (ecgi) using generalized minimum residual (gmres)
US7113823B2 (en) 2001-10-26 2006-09-26 Cardiac Pacemakers, Inc. Morphology-based optimization of cardiac resynchronization therapy
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
US6980866B2 (en) 2001-12-05 2005-12-27 Cardiac Pacemakers, Inc. Apparatus for sensing cardiac contractile function
US6847836B1 (en) 2002-02-08 2005-01-25 Lenny Sujdak Emergency ECG electrode chest pad
IL148299A (en) 2002-02-21 2014-04-30 Technion Res & Dev Foundation Ultrasonic to the heart
US7499743B2 (en) 2002-03-15 2009-03-03 General Electric Company Method and system for registration of 3D images within an interventional system
US7346381B2 (en) 2002-11-01 2008-03-18 Ge Medical Systems Global Technology Company Llc Method and apparatus for medical intervention procedure planning
US6882882B2 (en) 2002-04-22 2005-04-19 Medtronic, Inc. Atrioventricular delay adjustment
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US7778686B2 (en) 2002-06-04 2010-08-17 General Electric Company Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool
US7043292B2 (en) 2002-06-21 2006-05-09 Tarjan Peter P Single or multi-mode cardiac activity data collection, processing and display obtained in a non-invasive manner
US7041061B2 (en) 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
US20070167809A1 (en) 2002-07-22 2007-07-19 Ep Medsystems, Inc. Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking
US6978184B1 (en) 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7031777B2 (en) 2002-09-27 2006-04-18 Medtronic, Inc. Cardiac vein lead with flexible anode and method for forming same
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7142922B2 (en) 2002-12-20 2006-11-28 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US7215998B2 (en) 2003-01-06 2007-05-08 Medtronic, Inc. Synchronous pacemaker with AV interval optimization
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7610088B2 (en) 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US6885889B2 (en) 2003-02-28 2005-04-26 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7107093B2 (en) 2003-04-29 2006-09-12 Medtronic, Inc. Use of activation and recovery times and dispersions to monitor heart failure status and arrhythmia risk
US7747047B2 (en) 2003-05-07 2010-06-29 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning left atrial appendage isolation
US7565190B2 (en) 2003-05-09 2009-07-21 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning atrial fibrillation intervention
US7142911B2 (en) 2003-06-26 2006-11-28 Pacesetter, Inc. Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
CN1846231A (zh) 2003-07-21 2006-10-11 派昂公司 用于在描绘运动器官的一系列图像内识别最佳图像的方法和系统
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US7818040B2 (en) 2003-09-05 2010-10-19 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
US7742629B2 (en) 2003-09-25 2010-06-22 Paieon Inc. System and method for three-dimensional reconstruction of a tubular organ
US7233824B2 (en) 2003-10-07 2007-06-19 Medtronic, Inc. Secure and efficacious therapy delivery for an extra-systolic stimulation pacing engine
US7308299B2 (en) 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US7142919B2 (en) 2003-10-24 2006-11-28 Medtronic, Inc. Reconfigurable, fault tolerant multiple-electrode cardiac lead systems
US7003350B2 (en) 2003-11-03 2006-02-21 Kenergy, Inc. Intravenous cardiac pacing system with wireless power supply
US7308297B2 (en) 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
US7684861B2 (en) 2003-11-13 2010-03-23 Cardiac Pacemakers, Inc. Implantable cardiac monitor upgradeable to pacemaker or cardiac resynchronization device
WO2005056108A2 (en) 2003-12-03 2005-06-23 Medtronic, Inc. Method and apparatus for determining an efficacious atrioventricular delay interval
US7184835B2 (en) 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
US7787951B1 (en) 2003-12-24 2010-08-31 Pacesetter, Inc. System and method for determining optimal stimulation sites based on ECG information
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7454248B2 (en) 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
US7430309B2 (en) 2004-02-09 2008-09-30 Institut De Cardiologie De Montreal Computation of a geometric parameter of a cardiac chamber from a cardiac tomography data set
US7792572B1 (en) 2004-05-17 2010-09-07 Pacesetter, Inc. Ischemia detection using intra-cardiac signals
US7765001B2 (en) 2005-08-31 2010-07-27 Ebr Systems, Inc. Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices
CA2481631A1 (en) 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for physiological signal processing
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
WO2006105474A2 (en) 2005-03-31 2006-10-05 Proteus Biomedical, Inc. Automated optimization of multi-electrode pacing for cardiac resynchronization
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7426412B1 (en) 2004-10-13 2008-09-16 Pacesetter, Inc. Evoked potential and impedance based determination of diaphragmatic stimulation
US7664550B2 (en) 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US8050756B2 (en) 2004-12-20 2011-11-01 Cardiac Pacemakers, Inc. Circuit-based devices and methods for pulse control of endocardial pacing in cardiac rhythm management
US8010191B2 (en) * 2004-12-20 2011-08-30 Cardiac Pacemakers, Inc. Systems, devices and methods for monitoring efficiency of pacing
US7684863B2 (en) 2004-12-20 2010-03-23 Medtronic, Inc. LV threshold measurement and capture management
US20090099468A1 (en) 2004-12-21 2009-04-16 Aravinda Thiagalingam Automated Processing of Electrophysiological Data
WO2006069215A2 (en) 2004-12-21 2006-06-29 Ebr Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US7515959B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Delivery of CRT therapy during AT/AF termination
US7555340B2 (en) 2005-04-01 2009-06-30 Cardiac Pacemakers, Inc. Electrogram morphology-based CRT optimization
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US8412314B2 (en) 2005-04-25 2013-04-02 Charles Olson Location and displaying an ischemic region for ECG diagnostics
US8332030B2 (en) 2005-04-27 2012-12-11 Medtronic, Inc. Device and method for providing atrial-synchronized ventricular pacing with selective atrial tracking
US7769451B2 (en) 2005-04-28 2010-08-03 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy
US8700128B2 (en) 2005-05-03 2014-04-15 Paieon Inc. Method and apparatus for positioning a biventrivular pacemaker lead and electrode
US7983743B2 (en) 2005-07-22 2011-07-19 Case Western Reserve University System and method for noninvasive electrocardiographic imaging (ECGI)
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7751882B1 (en) 2005-12-21 2010-07-06 Pacesetter, Inc. Method and system for determining lead position for optimized cardiac resynchronization therapy hemodynamics
US7848807B2 (en) 2005-12-30 2010-12-07 Medtronic, Inc. Closed loop optimization of A-V and V-V timing
US8175703B2 (en) 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7567836B2 (en) 2006-01-30 2009-07-28 Cardiac Pacemakers, Inc. ECG signal power vector detection of ischemia or infarction
US7860580B2 (en) 2006-04-24 2010-12-28 Medtronic, Inc. Active fixation medical electrical lead
US7792584B2 (en) 2006-04-25 2010-09-07 Medtronic, Inc. System and method for characterization of atrial wall using digital signal processing
US8075486B2 (en) 2006-05-03 2011-12-13 Biosense Webster, Inc. Enhanced ultrasound image display
WO2007134190A2 (en) * 2006-05-10 2007-11-22 Regents Of The University Of Minnesota Methods and apparatus of three dimensional cardiac electrophysiological imaging
EP2029227A1 (en) 2006-05-31 2009-03-04 St. Jude Medical AB A method in an imd system
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7801604B2 (en) * 2006-08-29 2010-09-21 Cardiac Pacemakers, Inc. Controlled titration of neurostimulation therapy
US8725255B2 (en) 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US7616993B2 (en) 2006-11-27 2009-11-10 Biotronik Crm Patent Ag Heart stimulator using a Bezier function to define AV-delay values
US7765002B2 (en) 2006-12-08 2010-07-27 Cardiac Pacemakers, Inc. Rate aberrant beat selection and template formation
US7941213B2 (en) 2006-12-28 2011-05-10 Medtronic, Inc. System and method to evaluate electrode position and spacing
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US20080242976A1 (en) 2007-03-30 2008-10-02 Proteus Biomedical, Inc. Electric field tomography
US7912544B1 (en) 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US7706879B2 (en) 2007-04-30 2010-04-27 Medtronic, Inc. Apparatus and methods for automatic determination of a fusion pacing pre-excitation interval
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US7957799B2 (en) 2007-04-30 2011-06-07 Medtronic, Inc. Non-invasive cardiac potentiation therapy
US8224432B2 (en) * 2007-05-08 2012-07-17 C.R.Bard, Inc. Rapid 3D mapping using multielectrode position data
US20080281195A1 (en) 2007-05-09 2008-11-13 General Electric Company System and method for planning LV lead placement for cardiac resynchronization therapy
US8213693B1 (en) 2007-05-16 2012-07-03 General Electric Company System and method to track and navigate a tool through an imaged subject
US8160700B1 (en) 2007-05-16 2012-04-17 Pacesetter, Inc. Adaptive single site and multi-site ventricular pacing
WO2008151077A2 (en) 2007-06-01 2008-12-11 Cdl Nuclear Technologies, Inc. Method, apparatus and protocol for screening appropriate patient candidates and for cardiac resychronization therapy (crt), determining cardiac functional response to adjustments of ventricular pacing devices and follow-up of crt patient outcomes
US8301246B2 (en) 2007-06-07 2012-10-30 Pacesetter, Inc. System and method for improving CRT response and identifying potential non-responders to CRT therapy
US8265736B2 (en) * 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US20090048528A1 (en) 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
WO2009025824A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Implantable medical lead with biased electrode
WO2009025828A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009025817A2 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
WO2009027812A2 (en) 2007-08-31 2009-03-05 Medicalgorithmics Sp. Zo.O Reconstruction of geometry of a body component and analysis of spatial distribution of electrophysiological values
US7917214B1 (en) 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US8527036B2 (en) 2007-09-28 2013-09-03 Maquet Critical Care Ab Catheter positioning method and computerized control unit for implementing the method
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US20090099469A1 (en) 2007-10-11 2009-04-16 Flores Pamela A Wireless ECG/EKG patient telemetry monitoring system
US8145306B2 (en) 2007-10-15 2012-03-27 Lessmeier Timothy J Method for optimizing CRT therapy
DE102007054178A1 (de) 2007-11-14 2009-05-20 Biotronik Crm Patent Ag Biventrikulärer Herzstimulator
EP2070562B1 (fr) 2007-12-13 2010-12-29 Ela Medical Dispositif médical pour la caractérisation de l'état cardiaque d'un patient appareillé avec un implant actif à stimulation biventriculaire
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
JP5841335B2 (ja) * 2007-12-18 2016-01-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的構造の統計モデルに基づく撮像データのマルチモダリティ融合のための方法およびシステム
US20090234414A1 (en) 2008-03-13 2009-09-17 Sambelashvili Aleksandre T Apparatus and methods of optimizing atrioventricular pacing delay intervals
US20090232448A1 (en) 2008-03-14 2009-09-17 Eci Technology, Inc. Fiber optic multiplexer
US7996070B2 (en) 2008-04-24 2011-08-09 Medtronic, Inc. Template matching method for monitoring of ECG morphology changes
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
JP2011520510A (ja) 2008-05-16 2011-07-21 ハートスケイプ・テクノロジーズ,インコーポレイテッド 電極パッチ監視装置
US8200322B2 (en) 2008-06-02 2012-06-12 Medtronic, Inc. Electrogram storage for suspected non-physiological episodes
US9037240B2 (en) 2008-06-02 2015-05-19 Medtronic, Inc. Electrode lead integrity reports
US8379539B2 (en) 2008-06-03 2013-02-19 Cardiac Pacemakers, Inc. Methods and systems for providing multiple access within a network
US20090299423A1 (en) 2008-06-03 2009-12-03 Pacesetter, Inc. Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8155739B2 (en) 2008-06-20 2012-04-10 Pacesetter, Inc. Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
EP3536236B1 (en) 2008-08-11 2023-11-22 Washington University in St. Louis Systems and methods for on-site and real-time electrocardiographic imaging (ecgi)
US20100094149A1 (en) 2008-09-12 2010-04-15 Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine Noninvasive Ultrasound Cardiac Pacemaker and Defibrillator
US8090443B2 (en) 2008-09-15 2012-01-03 Xiaoyi Min Monitoring HF exacerbation and cardiac resynchronization therapy performance
JP5364167B2 (ja) 2008-10-03 2013-12-11 カーディアック ペースメイカーズ, インコーポレイテッド 内因性伝導に基づく心臓再同期療法モード選択のための方法および装置
JP5662326B2 (ja) 2008-10-23 2015-01-28 コーニンクレッカ フィリップス エヌ ヴェ インターベンション・ラジオ波焼灼療法またはペースメーカー設置手順における、仮想的な解剖学的構造を豊かにしたリアルタイム2d撮像のための、心臓および/または呼吸同期画像取得システム
US8554314B2 (en) 2008-10-31 2013-10-08 Medtronic, Inc. Device and method to detect the severity of ischemia and heart attack risk
US9446246B2 (en) 2008-11-07 2016-09-20 Pacesetter, Inc. Identification of electro-mechanical dysynchrony with a non-cardiac resynchronization therapeutic device
JP5911726B2 (ja) 2008-11-10 2016-04-27 カーディオインサイト テクノロジーズ インコーポレイテッド 電気生理学データの視覚化
US8442634B2 (en) 2008-12-04 2013-05-14 Pacesetter, Inc. Systems and methods for controlling ventricular pacing in patients with long inter-atrial conduction delays
CN102256544A (zh) 2008-12-18 2011-11-23 马奎特紧急护理公司 确定食道导管的位置的方法、控制单元和计算机程序产品
US20100174137A1 (en) 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
JP4527191B1 (ja) 2009-01-16 2010-08-18 パナソニック株式会社 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
US20100198292A1 (en) 2009-01-30 2010-08-05 Medtronic, Inc. Evaluating electrode configurations for delivering cardiac pacing therapy
US8755881B2 (en) 2009-01-30 2014-06-17 Medtronic, Inc. Pacing therapy adjustment based on ventriculo-atrial delay
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US8219186B2 (en) 2009-03-05 2012-07-10 Chen Guangren Non-invasive system and method for scanning the heart
US20100234916A1 (en) 2009-03-11 2010-09-16 The Board Of Trustees Of The Leland Stanford Junior University System and method for ventricular pace timing based on isochrones
US8010194B2 (en) 2009-04-01 2011-08-30 David Muller Determining site-to-site pacing delay for multi-site anti-tachycardia pacing
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
EP2514480B1 (en) 2009-05-27 2016-03-30 Cardiac Pacemakers, Inc. Phrenic nerve activation detection
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US8391980B2 (en) 2009-07-07 2013-03-05 Pacesetter, Inc. Method and system for identifying a potential lead failure in an implantable medical device
US9387329B2 (en) 2009-07-22 2016-07-12 Pacesetter, Inc. Systems and methods for determining ventricular pacing sites for use with multi-pole leads
US8626260B2 (en) 2009-08-27 2014-01-07 William Crosby Expandable electrode pad
US8285377B2 (en) 2009-09-03 2012-10-09 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US20110054560A1 (en) 2009-09-03 2011-03-03 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US20110075896A1 (en) 2009-09-25 2011-03-31 Kazuhiko Matsumoto Computer readable medium, systems and methods for medical image analysis using motion information
US8731642B2 (en) 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
US8412327B2 (en) 2009-11-18 2013-04-02 Pacesetter, Inc. Cardiac resynchronization therapy optimization using vector measurements obtained from realtime electrode position tracking
US9381363B2 (en) 2009-12-07 2016-07-05 Pacesetter, Inc. Optimal pacing configuration via ventricular conduction delays
SE534636C2 (sv) 2009-12-12 2011-11-01 Anna Bjaellmark Ett system för kvantifiering och visualisering av hjärtats rotationsmönster
US20110144510A1 (en) * 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
US8942818B2 (en) 2009-12-30 2015-01-27 Medtronic, Inc. Communication with an implantable medical device during implantation
WO2011099992A1 (en) 2010-02-12 2011-08-18 Brigham And Women's Hospital, Inc. System and method for automated adjustment of cardiac resynchronization therapy control parameters
US20110213260A1 (en) 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
US20110319954A1 (en) 2010-06-28 2011-12-29 Pacesetter, Inc. Metrics and techniques for optimization of cardiac therapies
EP2588190A1 (en) 2010-07-01 2013-05-08 Cardiac Pacemakers, Inc. Rhythm correlation diagnostic measurement
JP5632539B2 (ja) 2010-09-17 2014-11-26 カーディオインサイト テクノロジーズ インコーポレイテッド 興奮伝播図を計算するためのシステムおよび方法
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US8401646B2 (en) 2010-10-21 2013-03-19 Medtronic, Inc. Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors
US20120109244A1 (en) 2010-11-03 2012-05-03 Pacesetter, Inc. Parameters in monitoring cardiac resynchronization therapy response
US8583230B2 (en) 2011-01-19 2013-11-12 Pacesetter, Inc. Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters
US8805504B2 (en) 2011-02-01 2014-08-12 Brigham And Women's Hospital System and method for cardiac resynchronization therapy control parameter generation using ventricular activation simulation and surface ECG registration
US10016607B2 (en) 2011-02-08 2018-07-10 Pacesetter, Inc. Systems and methods for tracking stroke volume using hybrid impedance configurations employing a multi-pole implantable cardiac lead
JP6203641B2 (ja) 2011-02-11 2017-09-27 ザ・ジョンズ・ホプキンス・ユニバーシティー 患者別に心臓手術を計画するシステム、方法、およびプログラム
WO2012110940A1 (en) 2011-02-17 2012-08-23 Koninklijke Philips Electronics N.V. System for providing an electrical activity map
US8380308B2 (en) * 2011-03-29 2013-02-19 Pacesetter, Inc. Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US20120296387A1 (en) 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8718750B2 (en) 2011-05-26 2014-05-06 Biotronik Se & Co. Kg Heart stimulator and method for A-V delay optimization
US20120330179A1 (en) 2011-06-24 2012-12-27 Verathon, Inc. Electrode contact-quality evaluation
CA2841381C (en) 2011-07-05 2016-12-06 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
US9615790B2 (en) 2011-07-14 2017-04-11 Verathon Inc. Sensor device with flexible joints
CN103796714B (zh) 2011-07-14 2016-03-09 布里格姆女子医院有限公司 用于自动调整心脏再同步治疗控制参数的系统与方法
US8897851B2 (en) 2011-07-14 2014-11-25 Verathon Inc. Releasable liner for sensor device
US8527050B2 (en) 2011-07-28 2013-09-03 Medtronic, Inc. Method for discriminating anodal and cathodal capture
US8744576B2 (en) 2011-07-29 2014-06-03 Medtronic, Inc. Sampling intrinsic AV conduction time
US8954160B2 (en) 2011-09-02 2015-02-10 Medtronic, Inc. Detection of extracardiac stimulation by a cardiac rhythm management device
US20130072790A1 (en) 2011-09-19 2013-03-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Selection and optimization for cardiac resynchronization therapy
CA2754429A1 (en) 2011-10-05 2013-04-05 Kingston General Hospital Method and system for differentiating between supraventricular tachyarrhythmia and ventricular tachyarrhythmia
WO2013056050A1 (en) 2011-10-12 2013-04-18 Cardioinsight Technologies, Inc. Sensing zone for spatially relevant electrical information
US8861830B2 (en) 2011-11-07 2014-10-14 Paieon Inc. Method and system for detecting and analyzing heart mechanics
US9037238B2 (en) 2011-11-21 2015-05-19 Michael C. Soldner Method for efficient delivery of dual site pacing
US8639333B2 (en) 2011-11-21 2014-01-28 Medtronic, Inc. Method and apparatus for adaptive cardiac resynchronization therapy employing a multipolar left ventricular lead
US8682433B2 (en) 2011-11-21 2014-03-25 Medtronic, Inc. Method for efficient delivery of dual site pacing
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US9956416B2 (en) 2011-12-22 2018-05-01 Medtronic, Inc. Monitoring activation times for use in determining pacing effectiveness
US8886315B2 (en) 2011-12-23 2014-11-11 Medtronic, Inc. Effectiveness of ventricular sense response in CRT
US9002454B2 (en) 2011-12-23 2015-04-07 Medtronic, Inc. Tracking pacing effectiveness based on waveform features
US9381362B2 (en) 2012-01-20 2016-07-05 Medtronic, Inc. Modifying atrioventricular delay based on activation times
US8948869B2 (en) 2012-02-17 2015-02-03 Medtronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
WO2013130026A1 (en) 2012-02-28 2013-09-06 Google Inc. Previewing expandable content items
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US20130289640A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Heart sound-based pacing vector selection system and method
US9204815B2 (en) 2012-05-04 2015-12-08 The Cleveland Clinic Foundation Frequency analysis tool for cardiac resynchronization
US9155897B2 (en) 2012-05-04 2015-10-13 Medtronic, Inc. Criteria for optimal electrical resynchronization during biventricular pacing
EP2846684B1 (en) 2012-05-09 2021-11-03 CardioInsight Technologies, Inc. Channel integrity detection
JP2013252180A (ja) 2012-06-05 2013-12-19 Nippon Koden Corp 生体電極および生体電極ロール
US8527051B1 (en) 2012-07-10 2013-09-03 St. Jude Medical Ab Detection and reduction of phrenic nerve stimulation
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
US8781584B2 (en) 2012-11-15 2014-07-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US9320905B2 (en) 2012-12-06 2016-04-26 Medtronic, Inc. Effective capture test
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US9604064B2 (en) 2013-02-21 2017-03-28 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US8929984B2 (en) 2013-02-21 2015-01-06 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US9179846B2 (en) 2013-03-15 2015-11-10 Pacesetter, Inc. Method and system for characterizing cardiac function based on dynamic impedance
US9931048B2 (en) 2013-04-30 2018-04-03 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9474457B2 (en) 2013-06-12 2016-10-25 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9272148B2 (en) 2013-07-23 2016-03-01 Medtronic, Inc. Combination of feedback on mechanical and electrical resynchronization to select therapy parameters
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9511233B2 (en) 2013-11-21 2016-12-06 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9986928B2 (en) 2013-12-09 2018-06-05 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
WO2015175469A1 (en) 2014-05-12 2015-11-19 The Johns Hopkins University An imaging toolbox for guiding cardiac resynchronization therapy implantation from patient-specific imaging and body surface potential mapping data
US9707401B2 (en) 2014-07-30 2017-07-18 Cardiac Pacemakers, Inc. Pacing site and configuration optimization using a combination of electrical and mechanical information
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9675798B2 (en) 2014-08-26 2017-06-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
US11253178B2 (en) * 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US20160317840A1 (en) * 2015-01-29 2016-11-03 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9687654B2 (en) 2015-04-23 2017-06-27 Medtronic, Inc. System and method for dual-chamber pacing
US10780279B2 (en) * 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US10926094B2 (en) 2016-11-24 2021-02-23 Biotronik Se & Co. Kg Bi-ventricular implantable medical device
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
US11478653B2 (en) 2017-09-15 2022-10-25 Medtronic, Inc. Electrodes for intra-cardiac pacemaker
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054496A (en) * 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
CN1043621A (zh) * 1988-12-30 1990-07-11 中日友好医院 体表心电峰值记录分析方法及其标测图装置
US5311873A (en) * 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
US6772004B2 (en) * 1997-07-31 2004-08-03 Case Western Reserve University System and method for non-invasive electrocardiographic imaging
US6856830B2 (en) * 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging

Also Published As

Publication number Publication date
EP2704627B1 (en) 2016-03-16
US20120284003A1 (en) 2012-11-08
US20180242871A1 (en) 2018-08-30
US11027135B2 (en) 2021-06-08
US20170049347A1 (en) 2017-02-23
EP3692905A1 (en) 2020-08-12
US8972228B2 (en) 2015-03-03
EP2704626B1 (en) 2020-03-25
US20120283587A1 (en) 2012-11-08
US20210290960A1 (en) 2021-09-23
CN103561642A (zh) 2014-02-05
CN103547212A (zh) 2014-01-29
EP2704626A1 (en) 2014-03-12
US9962097B2 (en) 2018-05-08
WO2012151389A1 (en) 2012-11-08
US9974457B2 (en) 2018-05-22
US9510763B2 (en) 2016-12-06
WO2012151364A1 (en) 2012-11-08
US20150216434A1 (en) 2015-08-06
EP2704627A1 (en) 2014-03-12
CN103561642B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN103547212B (zh) 评估心脏内激活模式和电不同步
CN108712878B (zh) 确定由于心脏起搏的组织夺获的程度非侵入性方法和系统
EP3419718B1 (en) Systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US9486151B2 (en) Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
EP3319521B1 (en) System for visualizing heart activation
CN103415320B (zh) 使用心室激动模拟和体表ecg记录进行心脏再同步治疗控制参数生成的系统与方法
US8326419B2 (en) Therapy optimization via multi-dimensional mapping
CN105358215B (zh) 用于标识最佳电向量的系统、方法和界面
CN105981023A (zh) 非侵入性心脏治疗评估
CN105578955A (zh) 确定心脏去极化和复极化波的起始和终止

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant