CN103561642B - 评估心脏内激动模式 - Google Patents

评估心脏内激动模式 Download PDF

Info

Publication number
CN103561642B
CN103561642B CN201280026661.0A CN201280026661A CN103561642B CN 103561642 B CN103561642 B CN 103561642B CN 201280026661 A CN201280026661 A CN 201280026661A CN 103561642 B CN103561642 B CN 103561642B
Authority
CN
China
Prior art keywords
trunk
heart
electrode
patient
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280026661.0A
Other languages
English (en)
Other versions
CN103561642A (zh
Inventor
S·戈什
J·M·吉尔伯格
R·W·斯塔德勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN103561642A publication Critical patent/CN103561642A/zh
Application granted granted Critical
Publication of CN103561642B publication Critical patent/CN103561642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3682Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions with a variable atrioventricular delay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • A61N1/36842Multi-site stimulation in the same chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • A61N1/3684Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
    • A61N1/36843Bi-ventricular stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

描述了用于评估心脏电不同步的技术。在某些示例中,确定多个躯干表面电势信号中的每个的激动时间。可分析或呈现这些激动时间的离散性或顺序以提供患者心脏电不同步的各种指示。在某些示例中,可将电极组中各电极的位置、以及因此在此处感测躯干表面电势信号的位置,投影到包括模型心脏的模型躯干的表面上。可求解心电图的逆算问题,从而基于从患者所感测的躯干表面电势信号来确定模型心脏的各区域的电激动时间。

Description

评估心脏内激动模式
技术领域
本发明涉及电生理学,且更具体涉及评估心脏的电激动模式。
背景技术
心脏的跳动受控于窦房结(位于上静脉腔入口附近右心房内的一组传导细胞)的控制。由窦房结产生的去极化信号来激动房室结。房室结简要地延迟去极化信号的传播,在去极化信号传递到心脏的心室之前允许心房进行引流。两心室的协调收缩驱动血液流过患者躯干。在特定情况下,去极化信号从房室结到左右心室的传导可被中断或减慢。这可致使左右心室收缩不同步,并最终致使心力衰竭或死亡。
心脏再同步治疗(CRT)可通过向一个或两个心室或心房提供起搏治疗,例如通过提供起搏来鼓励左心室或右心室的较早激动来纠正电不同步的症状。通过起搏心室的收缩,心室可被控制,从而使心室收缩同步。经受CRT的某些患者经历了改进的射血分数、增加锻炼能力、并改进健康感觉。
向患者提供CRT可包括在植入心律设备之前确定患者是否会受益于CRT、确定放置一个或多个心室起搏引线的最佳部位、以及对设备参数编程,诸如多极右心室或左心室引线上电极的选择、以及递送到电极的起搏脉冲的时序的选择,诸如房室(A-V)和心室内(V-V)延迟。用于这些目的的电不同步的评定通常涉及临床地评定QRS持续期间。尽管通常对具有宽QRS期间的患者推荐CRT,但据报道在窄QRS心力衰竭患者中通过CRT有血流动力学改善。因此,基于目前的电不同步评估技术,可受益于CRT的某些患者可能未被处方进行CRT。
发明内容
一般而言,本公开涉及用于评估患者心脏的电不同步的技术。电不同步的评估可便于CRT的患者选择。电不同步的评估还便于放置可植入引线(例如一根或多根左心室引线的)、以及在植入手术期间对CRT的设备参数进行编程、或者随访期间对CRT的设备参数进行重新编程。
一组电极可围绕患者的躯干空间地分布。各电极可各自感测体表电势信号,更具体地是躯干表面电势信号,该信号指示在信号传播通过患者躯干后患者心脏的去极化信号。由于各电极的空间分布,由各电极记录的躯干表面电势信号可指示心脏的不同空间区域的去极化。
在某些示例中,对于每个躯干表面电势信号,即对该组的每个电极来确定激动时间。可分析或呈现这些激动时间的离散性或顺序以提供患者心脏电不同步的各种指示。例如,可将示出激动时间的躯干表面的等时线或其它激动图呈现给用户以示出心脏的电不同步。在某些示例中,可确定指示激动时间的时间和/或空间分布的一个或多个统计指标的值。基于躯干表面激动时间所确定的不同步的这样的图和指标、或其它指示,可向用户指示心脏的电不同步,并帮助为CRT进行患者评估、以及对患者配置CRT。
在某些示例中,可将全部电极或电极的子集的位置、以及因此在此处感测躯干表面电势信号的位置投影到包括模型心脏的模型躯干的表面上。可求解心电图的逆算问题以基于从患者感测的躯干表面电势信号确定模型心脏的各区域的电激动时间。以此方式,可估算患者心脏的电活动。可基于在患者躯干的表面上感测到的躯干表面电势信号生成模型心脏的表面的各等时线或其它激动时间图。进一步,可确定指示模型心脏上的激动时间的时间和/或空间分布的一个或多个指标的值。电不同步的这些测量和表示可用于评估患者对CRT的适合性、在植入期间调整CRT引线的定位、并确定应该使用一根或多根多级引线中哪些电极递送CRT、以及起搏脉冲的时序,诸如CRT递送到患者的房室(A-V)和心室内(V-V)延迟。
例如,可基于在本征传导期间或CRT期间收集的数据来确定或生成不同步的一个或多个指示。可比较本征传导期间和CRT期间的不同步程度,例如以确定患者是否适合CRT。类似地,可基于在具有不同引线位置、不同电极配置、和/或不同CRT参数(例如A-V或V-V延迟)的CRT期间所收集的数据来确定或生成不同步的一个或多个指示。可评估归于这些不同引线位置、不同电极配置、和/或不同CRT参数的不同步的变化。
在一示例中,一种方法,包括用处理单元从分布在患者躯干上多个电极中的每个电极处接收躯干表面电势信号。该方法还包括对于多个电极的至少一个子集,用该处理单元基于从电极感测到的信号来计算躯干表面激动时间;以及通过该处理单元,经由显示器向用户呈现躯干表面激动时间的不同步程度的指示。
在另一示例中,一种系统,包括分布在患者躯干上的多个电极,和处理单元。该处理单元配置成从多个电极中的每个电极处接收躯干表面电势信号,并对多个电极中的至少一个子集基于从电极感测到的信号计算躯干表面激动时间,并经由显示器向用户呈现躯干表面激动时间的不同步程度的指示。
在另一示例中,计算机可读存储介质包括指令,这些指令在执行时使处理器从分布在患者躯干上多个电极中的每个电极处接收躯干电势信号,并对于多个电极的至少一个子集基于从电极感测到的信号计算躯干表面激动时间;以及经由显示器向用户呈现躯干表面激动时间的不同步程度的指示。
在以下的附图和说明中阐述本公开的一个或多个方面的细节。从说明书和附图以及权利要求书中可显示出其它特征、目标和优点。
附图说明
图1是示出可用于向患者的心脏提供CRT的示例系统的概念示意图。
图2是示出两次健康心脏跳动的示例ECG轨迹的时序图。
图3是示出患左束支阻滞的患者的示例ECG轨迹的时序图。
图4A和4B是示出用于测量躯干表面电势的示例系统的概念图。
图5是示出用于测量躯干表面电势的示例系统的框图。
图6是典型的左束支阻滞本征节律和CRT起搏的躯干表面激动时间的一系列模拟的等时线图。
图7是示出系统的示例操作以基于躯干表面激动时间提供患者的心脏电不同步的指示的流程图。
图8是示出基于经由躯干表面激动时间对患者的心脏电不同步评定来处方和配置CRT的示例技术的流程图。
图9是使用来自同一患者的体表ECG数据用两个不同的心脏-躯干模型构造的心脏激动时间的一系列等时线图。
图10是示出经由心脏激动时间来测量患者的心脏电不同步的系统的示例操作的流程图。
图11是示出基于经由心脏激动时间的对于患者的心脏电不同步评定来配置CRT的示例技术的流程图。
具体实施方式
图1是示出可用于向患者1的心脏10提供CRT的示例系统的概念图。该系统可包括可植入医疗设备(IMD)100。IMD100可以是CRT起搏器或CRT除颤器。IMD100可装备有一根或多根引线;引线102、104和106,这些引线插入心脏10的左心室12、右心室14、或右心房16内或表面上。引线102、104和106可装备有一个或多个电极108、110和112。
心脏10可能经受电不同步。当启动心室12和14的收缩的去极化信号未以协调方式到达心室时可发生电不同步,并导致心脏10的低效泵血动作。患者1可经受心力衰竭的症状。电不同步可能是由心脏10的电系统的损坏造成的,例如束支阻滞或心脏10肌束的损伤。可选的传导路径可形成于心脏10内,但这些路径可减缓电去极化信号的进度并导致心室12和14的不同步收缩。
IMD100可向患者1的心脏10提供CRT刺激。IMD100示出为配置成向心脏10的右心房16、右心室14、和左心室12递送刺激。在其它示例中,IMD100可配置成取决于患者1的情况向心脏10的其它部分递送刺激。IMD可与外部编程器(未示出)交互以调节由IMD100递送的治疗的操作特性,诸如AV和V-V延迟。在某些示例中,IMD100还可配置成通过在一根或多根引线102、104和106上的电极来感测心脏10的电活动。
如图1所示,引线102、104、106可延伸到患者1的心脏10内以向心脏10递送电刺激并使心室12和14的收缩同步。右心室引线106延伸穿过一个或多个静脉(未示出)、上腔静脉(未示出)、以及右心房16、并进入右心室14。左心室冠状窦引线102延伸穿过一个或多个静脉、腔静脉、右心房16、并进入冠状窦(未示出)、到达与心脏10的左心室12的自由壁相邻的区域。右心房引线104延伸穿过一个或多个静脉和静脉腔、并进入心脏10的右心房16。
在其它配置中,取决于为患者1提供的治疗的要求,IMD100可装备有更多或更少的引线。例如,IMD100可装备有延伸到心脏10的更多或更少腔室的引线。在某些示例中,IMD100可装备有延伸到心脏的公共腔室的多根引线,例如延伸到左心室12的多根引线。IMD100还可装备有通过提供至心脏组织的通路的其它方式而放置在心脏上的一根或多跟引线,所述的其它方式诸如为外科心外膜引线放置或其它心包通路方法。在某些示例中,IMD100可装备有被心内地放置在心脏上的左心室引线。此外,尽管在图1中示出为植入在患者1的右侧上,但在其它示例中,IMD100可植入在患者胸肌区域的左侧上、或在患者的腹部内。
电极108、110和112可附连到心脏10的各部分以提供电刺激或感测心脏10的电去极化和复w信号。右心室14内的电极108可经由基于螺钉的机构固定到心脏10的壁。电极110可包括安装在同一引线上的多个电极,允许引线102传送治疗冲击以及由电极110检测到的电感测数据。电极110和112可经由胶粘、倒钩、或其它永久性或半永久性附连机构附连到心脏10的表面。
图2是示出与机械心脏循环的某些时段或阶段结合的示例ECG轨迹200的时序图。电和机械事件的时序之间的关系并不一定对于所有的对象或对任何给定对象的所有时间都是如所述那样的,在这个意义上说,图2的图示和相关描述是概括性的。
ECG轨迹200示出两个示例健康心脏循环的电信号。健康心脏的电信号包括一系列5个特征波:P-波、Q-波、R-波、S-波、和T-波。这些波中的每个以及它们之间的间隔,对应于健康心脏起作用时的离散事件。
一般而言,在时段202(该时段从P-波的峰值伸展至随后的R-波峰值)期间的某点处,发生心房收缩,这是驱动血液从心房进入心室的心房收缩。从R-波的峰值到主动脉瓣膜打开的时段204,通常标志着等容收缩时段。房室和主动脉瓣膜关闭,防止血液流动并导致心室内但不是主动脉内的压力增加。由主动脉瓣膜打开和关闭所界定的时段206,通常是心脏循环期间发生射血的时间。在射血时段206期间,心室收缩和血液排空驱动血液进入心血管系统。当心室的收缩完成时,心血管系统内血液的压力关闭该主动脉瓣膜。由主动脉瓣膜的关闭和房室瓣膜的打开所界定的时段208是心室的等容舒张。时段210和212统称为晚期心脏舒张,其中整个心脏舒张且心房充满血液。时段210对应于血液的快速流入,而时段212对应于心休息期,是再次发生心房收缩202之前较慢的血液流入心房的时段。
P-波标记心房刺激和心脏循环的开始。心房在该刺激下收缩,迫使血液进入心室。PR段标记当去极化信号从房室结行进到浦肯野(Purkinje)纤维时的延迟。Q-波将室间隔膜的去极化标记为心室去极化的初始部分。R-波跟随Q-波并表示心室的去极化。S-波跟随R-波并表示心室的晚期去极化。T-波标记准备下一次心脏跳动的心室的恢复和复极化。
从Q-波开始跨越到S-波结束的QRS波群表示心肌的电激动。左心室和右心室的心室收缩响应于电激动。QRS波群通常持续80至120ms。QRS波群的相对大的幅值是缘于心室的大肌肉质量。可能在QRS波群的变形中展示出影响心室收缩的同步性的问题。例如,心室收缩的电不同步性可加宽R-波或产生两个R-波峰值,通常标为对应于每个心室的去极化的r-波和R’-波。S-波和T-波可能形态上不同于健康心脏的ECG轨迹。
图3是示出ECG轨迹300的时序图。ECG轨迹300示出患有左束支阻滞的患者的电信号。该病况的标志是存在与典型的QRS波群相对的rS波群,但Q、R和S波的其它变型形成可出现在患有左束支阻滞、右束支阻滞、或其它心室传导病况的患者内的组合。rS波群的延长时段指示可能由于电不同步造成的延长的心室收缩时间。
一般,左或右束支阻滞或心脏电不同步的诊断通常涉及测量QRS波群的时段(或标记心室去极化的其它波群)。持续100ms或更久的QRS波群可指示局部束支阻滞,且120ms或更久则指示完全束支阻滞。在图3中,初始Q-波是不可见的,而是该轨迹显示对应于右心室的初始去极化的初始r-波、且后跟标记在心脏信号行进穿过心脏的心肌而不是穿过束支之后到达左心室之后两心室快速去极化的S-波。因为心肌比束支更慢地导电,所以整个波群在较长时段内展开。
在没有束支阻滞的情况下-诸如图3中所示的病况-或其它病况,诊断可能更具挑战。可能存在隐藏的不同步,而这种不同步在响应于CRT时可能不易于从典型的12-导联ECG检查中标识出。这些隐藏的不同步可能体现在由心脏产生并在躯干表面上测得的电信号中,且通过可选的分析手段(诸如通过根据本文所述技术在多个空间地分布的位置处确定心脏激动时间)可能是可诊断的。
图4A和4B是示出用于测量体表电势、且更具体是躯干表面电势的示例系统的概念图。在图4A所示一示例中,包括一组电极404A-F(统称“电极404”)和条带408的感测装置400A围绕患者1的躯干缠绕,使得电极围绕心脏10。如图4A所示,电极404可围绕患者1的外周定位,包括患者1躯干的后表面、侧表面、和前表面。在其它示例中,各电极404可定位在躯干的后表面、侧表面和前表面中的任一个或多个上。各电极404可经由有线连接406电连接到处理单元500。某些配置可使用无线连接、例如数据通道来将由电极404所感测到的信号传送到处理单元500。
尽管在图4A的示例中,感测装置400A包括条带408,但在其它示例例中,可采用例如带或粘结剂的各种机构中的任一种来辅助电极404的间隔和放置。在某些示例中,条带408可包括弹性带、带条、或布。在某些示例中,各电极404可分别放置在患者1的躯干上。
各电极404可围绕患者1的心脏10,并在信号传播穿过患者1的躯干之后记录与心脏10的去极化和复极化相关联的电信号。每个电极404可被用在单极构造中来感测反映心脏信号的躯干表面电势。处理单元500还可耦合到可与用于单极感测的每个电极404组合使用的返回或无关电极(未示出)。在某些示例中,可能有围绕患者1的躯干空间分布的12至16个电极404。其它配置可具有更多或更少的电极404。
处理单元500可记录和分析由各电极404感测的躯干表面电势信号。如本文所述,处理单元500可配置成向患者提供指示患者1的心脏10内电不同步的输出。用户可进行诊断、处方CRT、定位例如引线的治疗设备、或基于所指示的电不同步来调整或选择处理参数。
在某些示例中,处理单元500对躯干表面电势信号的分析可考虑电极404在患者1躯干表面上的位置。在这样的示例中,处理单元500可通信地耦合到成像设备501,该成像设备501可提供图像,该图像允许处理单元500确定每个电极400在患者1的表面上的坐标位置。在成像系统501提供的图像中,各电极404可以是可见的,或通过包括或去除某些材料或元件而做成透明的。
图4B示出可用于评估患者1的心脏10的电不同步的系统的示例配置。该系统包括感测设备400B,该感测设备400B可包括背心410和电极404A-ZZ(总称为“电极404”)、处理单元500、以及成像系统501。处理单元500和成像系统501可基本上如上文参照图4A描述的那样执行。如图4B所示,电极404被分布患者1的躯干上,包括患者1躯干的前表面、侧表面、和后表面。
感测设备400B可包括织物背心410,具有电极404附连到织物。感测设备400B可保持各电极404在患者1的躯干上的位置和间隔。感测设备400B可被标记成辅助确定各电极404在患者1的躯干表面上的位置。在某些示例中,可有使用感测设备400B围绕患者1的躯干分布的150至256个电极404,但其它配置可具有更多或更少的电极404。
图5是示出用于测量躯干表面电势并提供电不同步的指示的示例系统的框图。该示例系统可包括处理单元500和位于感测设备400上(例如示例感测装置400A或400B中的一个(图4A和图4B))的一组电极404。该系统也可包括成像系统501。
如图5所示,处理单元500可包括处理器502、信号处理器504、存储器506、显示器508、和用户输入设备509。处理单元500还可包括电极位置记录模块524。在所示示例中,处理器502包括多个模块,且更具体地包括投影模块514、逆算问题模块516、激动时间模块518、索引模块520、以及等时线绘制模块522。存储器506可存储记录的数据510和模型512。
处理单元500可包括一个或多个计算设备,该一个或多个计算设备可共同定位或分散在各个位置。处理单元500的各模块,例如处理器502、投影模块514、逆算问题模块516、激动时间模块518、统计模块520、等时线绘制模块522、信号处理器504、电极位置记录模块524、显示器508、存储器506、记录数据510和躯干模型512可实现在一个或多个计算装置内,该一个或多个计算装置可共同定位或分散在各个位置。处理器502以及处理器502的各模块可实现在一个或多个计算设备的例如微处理器的一个或多个处理器内,作为由处理器(多个)执行的软件模块。在某些示例中,电极位置记录模块524可实现在成像系统501中。
除了本文所述的各数据之外,存储器506可包括程序指令,当例如处理器502的可编程处理器执行该程序指令时,使处理器和其任何组件提供归于本文处理器和处理单元的功能。存储器506可包括任何易失性、非易失性、磁性、光学、或电介质,诸如硬盘、磁带、随机存取存储器(RAM)、只读存储器(ROM)、CD-ROM/非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪速存储器、或任何其它数字或模拟介质。存储器506可包括一个或多个共同定位或分布的存储器。存储器506可包括用作数据和程序指令的非瞬态存储介质的有形物体。
由感测设备400的电极404感测到的躯干表面电势信号可由处理单元500的信号处理器504接收。信号处理器504可包括模拟-数字转换器以将躯干-表面电势信号数字化。信号处理器504还可包括各其它组件,用来过滤或以其它方式处理由处理器502接收的数字信号。
电极位置记录模块524可从成像系统501接收成像数据。电极位置记录模块524分析成像数据。特定地,电极记录位置模块524标识图像中经由成像形态更清楚可见的电极404或与电极共同定位的元件。电极位置记录模块524还可标识患者表面上和/或三维坐标系内每个电极的位置。在某些示例中,可例如由用户经由电极记录模块524手动标识或用处理单元500记录各电极404的位置。
成像数据可包括表示佩戴例如感测设备400的电极404的患者1的一个或多个图像的数据。在某些示例中,可在医疗手术之前或期间获得各图像,医疗手术例如为植入心律设备或递送CRT的引线系统的外科手术。
在某些示例中,处理器502可将躯干表面电势信号、来自成像系统的成像数据、来自电极位置记录模块的电极位置数据、或本文揭示的通过由处理器502处理这些信号和数据导出的任何值作为所记录的数据510存储在存储器506内。每个所记录的躯干表面电势信号、或从中导出的其它值,可与感测躯干表面电势信号的电极404的位置关联。以此方式,可将躯干表面电势数据与电极404在患者1的躯干上或在三维坐标系中的位置相互关联,使数据空间映射到躯干表面上或坐标系内的特定位置。在某些示例中,本文所述技术的各方面可在获取躯干表面电势信号和基于记录数据510的位置数据之后的某个时间执行。
处理器502可配置成基于躯干表面电势信号以及在某些示例中的电极位置数据,来提供电不同步的一个或多个指示。电不同步的示例指示包括示出围绕躯干或心脏分布的每个电极/位置、或者位于共同区域内(例如左后区域、左前区域、右后区域或右前区域内)的一个或多个电极子集的激动时间的指标。在某些示例中,处理器502可配置成对躯干或心脏的两个或多个不同区域(例如七个不同区域)提供一组两个或多个不同指示,例如数个不同指示。
不同步的某些指示可包括源自在一个或多个区域内每个电极位置或一个或多个电极子集的激动时间的统计值或其它指标。基于各电极/位置处的激动时间可确定的电不同步的其它示例指示包括图形指示,诸如等时线图或其它激动图,或者电激动的动画。基于各电极/位置的激动时间可确定的电不同步的其它示例指示包括经由例如文本或颜色(例如红、黄、绿),来标识不同步程度的预定数量(例如高、中、或低)中的一个。
在某些示例中,一个或多个区域的不同步的各指示可基于在两个或多个不同时间和/或在两个或多个不同情况下收集的数据来确定。例如,不同步的各指示可基于在心脏10的本征传导期间收集的躯干电势信号确定,还可基于CRT期间收集的躯干电势信号确定。以此方式,通过比较源自本征传导和CRT的不同的值、图形表示或类似项,可评估CRT的潜在的减少不同步的益处。作为另一个示例,可在多个不同时间中的每个时间基于用不同引线位置、电极配置、或CRT参数(例如A-V或V-V间隔值)递送CRT期间收集的躯干电势信号确定不同步的各指示。以此方式,通过比较不同的值、图形表示、或类似项,可为患者评估不同引线位置、电极配置或CRT参数的相对的减少不同步的益处。
模型512可包括人体躯干和心脏的多个不同模型,例如三维模型。模型躯干或模型心脏可使用市售软件通过从多个对象(例如不同于患者1的心肌病患者)先前的获取的医疗图像(CT/MRI)的可用数据库通过手动或半自动图像分割而构建的。每个模型可使用边界元方法进行离散化。可生成多个不同的躯干模型。不同的模型可表示不同的对象特征,诸如不同性别、疾病状态、体态特征(例如、大骨架、中骨架、和小骨架)和心脏大小(例如特大、大、中、小)。通过经由用户输入509提供输入,用户可从可作为模型512存储在存储器506内的各种模型躯干和模型心脏选择,使得用户可使患者1的实际躯干和心脏10与模型躯干和模型心脏的尺寸和几何形状更为紧密匹配。在某些示例中,可将例如CT或MRI图像的患者的医疗图像进行手动或半自动分割、记录、并与从模型512中选择的模型512比较。此外,单视图或多视图2-D医疗图像(例如x-射线、荧光)可被分割或测量以确定专用于该患者的大致心脏和躯干尺寸,从而选择最适合的模型躯干和心脏。
投影模块514可将例如作为记录数据510存储在存储器506内的各电极404的位置投影到包含在存储器506的模型数据模块512内的适当的(例如用户选择的)模型躯干上。通过将各电极404的位置投影到模型躯干上,投影模块514也可将由各电极404感测到的患者1的躯干表面电势信号投影到模型躯干上。在其它示例中,可内插所测得的电势并在模型给出的电极位置处重新采样。在某些示例中,将躯干表面电势投影到模型躯干上可允许处理器502,经由逆算问题模块516,来估算出在对应于产生测得的躯干表面电势的患者1的心脏10的模型心脏的各位置或区域处的电活动。
逆算问题模块516可配置成基于由电极404所记录的测得的躯干表面电势在模型躯干上的投影而求解心电图的逆算问题。求解心电图的逆算问题可涉及基于躯干与心脏电势之间的关系来估算心脏10内的电势或激动时间。在一示例方法中,假设在拉普拉斯方程的逆柯西问题中,模型心脏与模型躯干之间是无源容积导体(source-lessvolumeconductor),从模型躯干电势中来计算出模型心外膜电势。在另一示例方法中,假设躯干表面电势与心脏跨膜电势之间有解析关系。可基于该关系模拟躯干表面电势。在某些示例中,逆算问题模块516可利用Ghosh等人在AnnalsofBiomedicalEngineering2005年9月第9期第33卷的“AccuracyofQuadraticVersusLinearInterpolationinNon-InvasiveElectrocardiographicImaging(ECGI)”或AnnalsofBiomedicalEngineering2009年第5期第37卷的“ApplicationoftheL1-NormRegularizationtoEpicardialPotentialSolutionoftheInverseElectrocardiographyProblem”中描述的技术。在其它示例中,逆算问题模块516可采用求解心电图的逆算问题的任何已知技术。
激动时间模块518可从测得的躯干表面电势直接地、或通过估算模型跨膜电势,来计算激动时间。在两种情况下,可将每个电极/位置的激动时间确定为两次事件之间(诸如在QRS波群开始和感测的躯干电势信号或估算心外膜电势信号的最小导数(或最陡负斜率)之间)的时段。因此,在一个示例中,从模型心外膜心电图的最陡负斜率中估算心脏激动时间。在其它配置中,心脏激动时间(躯干表面电势与心脏跨膜电势之间解析关系中的参数)可基于使测得的躯干表面电势与模拟的躯干表面电势之间的最小方差最小化来计算。心室、心外膜、或躯干表面激动时间的颜色编码的等时线图可由显示器308示出。在其它示例中,显示器308可示出跨越模型心脏的表面或躯干表面的激动波阵面传播的双色动画。
指标模块520可配置成从躯干表面或心脏激动时间计算电不同步的一个或多个指标。这些指标可辅助确定患者是否是适合CRT、CRT引线放置、以及CRT参数的选择。例如,LV引线102(图1)可定位在从一个或多个指标减少不同步的部位,或可选地,定位在由指标所表现的最大电再同步的部位。相同的指标还可用于在随访期间对A-V和/或V-V延迟进行编程。如上文所指示的,可基于对所有电极/位置或对一个或多个区域内的一个或多个电极子集的激动时间确定各指标,例如以便于区域(诸如后部和/或左前或左心室区域)的比较和隔离。
电不同步的指标之一可以是被计算作为患者1的躯干表面上某些或所有电极404的激动时间的标准偏差(SDAT)的标准偏差指标。在某些示例中,可使用在模型心脏的表面上估算的心脏激动时间来计算SDAT。
电不同步的第二示例指标在可以是可被计算作为例如总体或区域的最大与最小躯干表面或心脏激动时间之差的激动时间范围(RAT)。RAT反映激动时间的跨度,而SDAT给出激动时间与平均值的离散性的估算。该SDAT还提供激动时间的异质性的估算,因为如果激动时间是空间异质的,则各激动时间将更偏离平均激动时间,这指示心脏10的一个或多个区域已经延迟激动。在某些示例中,可使用在模型心脏的表面上的估算的心脏激动时间来计算RAT。
电不同步的第三示例指标估算定位在躯干或心脏的感兴趣的特定区域内的电极404的百分比,其相关的激动时间大于测得的QRS波群时段或电极404的确定激动时间的特定百分位,例如70%。感兴趣的区域可能是,例如,后部、左前和/或左心室区域。该指标,晚期激动的百分比(PLAT),提供对较晚激动的感兴趣区域(例如与心脏10的左心室区域相关联的后部和左前区域)的百分比的估算。PLAT的较大值可能意味着例如左心室12(图1)的区域的主要部分的延迟激动,以及通过CRT进行电再同步(通过预激励例如左心室12的晚期区域)的潜在益处。在其它示例中,可对其它区域、诸如右前区域内的其它电极子集确定PLAT以评估右心室内的延迟激动。此外,在某些示例中,可对整个心脏或对心脏的例如左心室或右心室的特定区域,使用在模型心脏的表面上的估算的心脏激动时间来计算PLAT。
等时线模块522可配置成生成示出在患者1的躯干或模型心脏的表面上的激动时间的分布的等时线图。等时线模块522可近乎实时地包含躯干表面或心脏激动时间的变化,在用户调节CRT设备或监测患者1以确定CRT是否适当时这可允许近乎瞬时的反馈。由等时线模块522生成的等时线图可经由显示器508呈现给用户。
一般而言,处理器502可基于测得的躯干表面电势、计算的躯干表面或估算的心脏激动时间、或者电不同步变化的程度,来生成用于经由显示器508向用户显示的各种图像或信号。例如,反映双心室起搏或单心室融合起搏期间LV引线102的特定位置的功效的级别响应可以红、黄、绿信号提供给医师。如果CRT起搏期间与本征节律相比电不同步的减少为负(电不同步增加)或最小,例如小于5%,则可示出红色信号。如果与本征节律相比CRT起搏期间存在电不同步的某种程度的减小,例如5%至15%之间,则可能触发黄色信号,但可能存在引线放置的潜在更好的部位。如果CRT起搏期间与本征节律相比电不同步的减小是显著的,例如大于15%,则可触发绿色信号,向医师指示该部位提供同步的有效变化。来自该系统的反馈与其它标准(像起搏阈值大小、阻抗、电池寿命、膈神经刺激)组合也可用来选择一个或多个多极引线的最佳起搏矢量。来自该系统的反馈也可用于选择影响本征激动与来自单个或多个心室部位的起搏激动的融合程度的最佳装置时序(A-V延迟、V-V延迟等)、或用于辨别单个部位融合起搏相较于多部位起搏和选择适当起搏类型的敏锐益处。
显示器508还可显示患者1的躯干表面上或模型心脏上电活动的三维图。这些图可以是将同步电活动的区域示出为行进通过患者1的心脏10的去极化的等时线图。这样的信息可用于从业者诊断电不同步点活动并制定适当的治疗、以及评估治疗的有效性。
图6是在用CRT设备治疗之前和期间患有左心室电不同步的患者躯干上的躯干表面激动时间的一系列模拟的等时线图600。治疗之前(本征)和之后的等时线图分成两个视图:前部和后部。线602表示电极404的子集、例如感测设备400B的电极404的子集的位置,其可用于计算电不同步的一个或多个指标。在某些示例中,线602可表示感测设备400A上的各电极404。
可使用例如用感测设备400B在患者躯干的表面上分布的多个电极404来生成天然的和CRT辅助的躯干表面激动时间的等时线图600。等时线图600的生成可包括确定各电极404的位置,并用各电极感测躯干表面电势信号。等时线图600的生成还可包括通过确定电极感测的信号的所记录的QRS波群中的与最大负斜率对应的点,来计算每个电极或电极位置的躯干表面激动时间。在其他示例中,可通过标识QRS波群的最小导数来确定躯干表面激动时间。然后可将测得的躯干表面激动时间标准化并生成患者躯干表面的等时线图。
由于电不同步引起的与电极404中的某些相关联的某些位置的延迟激动在本征躯干表面激动时间的后视图中较为明显。各区域604指示下方心脏激动的增加的延迟。在采用CRT设备治疗期间的相应后部视图指示出区域606(与本征躯干表面激动时间图上区域604相同的位置),呈现电心室活动的增加的同步性。CRT图呈现躯干表面激动时间的减小的范围和较低的标准偏差。此外,后部区域不再呈现延迟的激动时间。本征和CRT起搏期间躯干表面激动时间以及从本征到CRT起搏的激动时间分布的变化的等时线图可用于诊断目的或用于调整CRT设备。
电不同步的一个或多个指标还可从用于生成等时线图600的躯干表面激动时间计算得到。例如,使用完整电极404组时,对于患者的本征心脏节律的SDAT(激动时间传播的指示)为64。使用由线602标记的减少的引线组,则导致为62的SDAT。用于本征心脏节律和完整引线组的RAT为166.5,而减少的引线组具有160的RAT。使用减少和完整引线组的本征心脏节律的PLAT分别为56.15%和66.67%。这表示,使用环绕患者心脏的减少引线组、例如感测设备400A和相关电极404,可提供与使用诸如感测电极400B的覆盖患者躯干的电极组相比而言相当的电不同步指标。
电不同步的指标还提供CRT设备的有效性的指示,对于减少的电极组,SDAT下降到24,RAT下降到70,且PLAT下降到36%。这表示CRT治疗期间躯干表面激动时间比在正常心脏节律下更窄地分布且在更小范围内,且位于患者躯干左前表面上的电极404的百分比记录了延迟激动时间显著下降。
图7是示出经由躯干表面激动时间评估患者的心脏电不同步的系统的示例操作的流程图。可确定分布在患者躯干表面上例如电极404(图4A和4B)的各电极的位置(700)。例如去极化的心脏事件可生成传播通过例如患者1(图1)的患者躯干的电信号并记录在各电极上。由各电极感测的信号可通过例如处理单元500(图5)接收(702)。该处理单元可计算躯干表面激动时间(704)。在某些示例中,处理单元还可构建躯干表面激动时间等时线图(706)。处理单元还可计算心脏电不同步的至少一个指标(708)。这些指标可包括SDAT(710)、RAT(712)、和PLAT(714)中的一个或多个。
诸如去极化之类的心脏事件生成传播通过躯干的电信号。电信号可包括QRS波群、或由诸如左束支阻滞或右束支阻滞的心脏相关病况引起的变化。由于躯干和心脏内导电率的变化,电信号可能无法均匀地传播穿过患者的躯干。这些延迟可表现在分布在患者躯干表面上的各电极中,这些电极及时记录不同位置处的相同电信号。
由心脏事件生成的电信号可记录在分布于患者躯干表面上的多个电极上。各电极可分布在躯干的前表面、侧表面和/或后表面上,允许生成发生在躯干内电活动的三维图片。在某些示例中,各电极可放置成通过使用感测设备400B(图4B)提供心脏上方和下方的广泛覆盖。在其它示例中,减少的电极组可例如使用感测设备400A(图4A)围绕躯干的周围布置,包围患者的心脏。各电极可接收由心脏事件生成的电信号的完整波形并将信号传送到处理单元。
可确定分布在患者躯干表面上各电极的位置(700)。可通过例如处理单元500的成像系统501和电极位置记录模块524(图5)自动进行各电极的定位。可通过分析患者躯干的一个或多个图像并进行图案匹配例程、例如识别抵靠患者躯干的电极的形状并将电极在患者躯干上的位置存储在处理单元存储器内来进行定位各电极。在其它示例中,可确定感测设备400A或400B的位置,并基于感测设备的位置来确定各电极的位置,例如电极在患者身上的位置基于电极在感测装置上的已知位置。在另一示例中,可手动测量各电极的位置。
处理单元可从各电极接收电信号并将输出记录在存储器内(702)。处理单元可记录原始输出、例如来自每个电极的原始ECG轨迹以及各电极的位置数据,允许由各电极探测的电信号映射到患者躯干表面上。
该处理单元可计算躯干表面激动时间(704)。例如处理单元500的处理器502(图5)的处理器可取回存储在处理单元存储器内存储的ECG轨迹数据,并分析该轨迹以检测心脏心室的极化,通常在轨迹中用QRS波群标记。在某些示例中,该处理器可通过确定相对于QRS波群开始时测得的QRS波群内的最小导数(或最陡负斜率)的时间来检测心室去极化。可对每个电极进行激动时间的确定并存储在处理单元存储器内。
在某些配置中,处理单元可构建躯干表面激动时间的等时线图,允许用户视觉地检查电信号在行进穿过患者躯干之后在心脏的传播。可通过将测得的躯干表面激动时间范围分成一系列子范围来构建等时线图。可用图形表示患者躯干表面上每个电极的位置。其测得的激动时间落入同一子范围内的各电极的区域可在图形表示中用相同的颜色表示。
处理单元还可基于躯干表面激动时间计算电不同步的一个或多个指标(708)。这些指标可包括SDAT(710)、RAT(712)、和PLAT(714)。在某些示例中,PLAT可确定为QRS波群持续时间的一定百分比之后后部电极激动的百分比。
如上所述,在某些示例中,可基于从这些区域内的各电极(702)接收的信号对躯干的特定区域进行躯干表面激动时间等时线图的构建(706)、或不同步的其它图形表示、以及电不同步的指标的计算(708)。可基于来自这些区域的各电极接收的信号对多个区域中的每个区域确定图形表示和电不同步的指标。在某些示例中,可将各区域的表示和指标呈现在一起或比较。
图8是示出经由测得的躯干表面激动时间测量患者的心脏电不同步的示例技术的流程图。处理单元500可从诸如各电极404(图4A和4B)的多个电极接收躯干表面电势信号(800)。处理单元500可对多个电极中的每个计算躯干表面激动时间(802)。处理单元500可提供心脏电不同步的至少一个指示(804)。
用户可基于电不同步的至少一个指示评估患者是否适合CRT(806)。用户还可监测电不同步的至少一个指示(808),并使用该至少一个指示的变化来辅助在例如IMD100(图1)的CRT设备的植入期间调整例如电极108、110和112(图1)的各电极的定位(810)、或者在植入或随访期间CRT设备的诸如电极组合和A-V或V-V起搏间隔的各种可编程参数的选择(812)。
本文所述的心脏电不同步的各指示(诸如激动时间的统计或其它指示、或图形表示)可指示对患者心脏的传导性的损害的存在,例如指示左束支阻滞或右束支阻滞的存在,这无法从标准12导联ECG读取的检查中显现出来。例如,较大的SDAT指示在大时间跨度内发生心室的激动,指示心室的去极化不是同时发生的。较大的RAT也指示激动时间的较宽范围和心室的不同步收缩。较高的PLAT指示心脏的特定区域,例如与左心室相关的后部区域,可能无法与测得的QRS波群一致地激动。此外,通过监测心脏电不同步的至少一个指示,用户可检测由不同治疗或治疗配置所引起的心脏电活动的变化。
如上所述,对例如后部、左前等的多个区域中的每个,可基于来自该区域的躯干表面激动时间来计算诸如统计指标的电不同步的各种指示。此外,基于电不同步的至少一个指示评估患者是否适合CRT(806)可包括:在心脏本征传导期间和CRT期间,基于躯干表面激动时间确定电不同步的一个或多个指示。本征传导期间与CRT期间的指示之差可指示CRT将会为患者提供益处,例如患者适合CRT。如上所述,用户也可根据仅基于本征节律的电不同步的至少一个指示来评估患者是否适合CRT。此外,在植入期间或随访期间监测电不同步的至少一个指示(808)可包括:对多个引线位置、电极配置、或其它参数值中的每个,基于在各位置处、或采用各电极配置或参数值,由CRT的递送所产生的躯干表面激动时间,来确定电不同步的一个或多个指示。以此方式,可比较各位置、电极配置、或参数值相关的不同步指示之差,以确定优选位置、配置、或值。
图9是一系列心脏激动时间的等时线图。使用在患者的躯干表面上测得的躯干表面电势构建视图900、902和904并投影到患者的躯干和心脏的三维模型上。使用投影到不同模型躯干和模型心脏上测得的相同患者的躯干表面电势来构建视图910、912和914。
使用从先前获取的心胸图像的数据库得到的心脏的计算机断层扫描(CT)图像构建视图900、902、904、910、912和914中示出的心脏的三维表示。患者躯干上的各电极(例如感测设备400的电极404(图4B))的位置可绘制到模型躯干上的大致位置。可使用计算机来求解心电图的逆算问题,这包括确定将会产生测得的躯干表面电势的心脏表面上的电活动。视图900、902、904、910、912、和914中所示的等时线图基于两个不同患者的心脏的图像,这还被用于确定心脏的几何形状以及与相应躯干的关系以求解心电图的逆算问题。
可通过使用市售软件从心肌病患者的先前获取的医疗图像(CT/MRI)的可用数据库进行手动或半自动图像分割构件模型躯干和心脏。每个模型可使用边界元法进行离散化,并还可操纵以考虑具有不同身体特征(例如大骨架、中骨架和小骨架)和心脏大小(例如超大、大、中、小)的患者。
用户可选择适当的模型躯干和模型心脏来适应患者,例如具有大身躯的患者可用大骨架模型躯干进行模拟。在某些示例中,可将患者的医疗图像(例如CT或MRI图像)进行手动或半自动分割、记录、或与从模型选择的各种可用模型比较。也可使用2-D医疗图像(例如X-射线或荧光)的一个或多个视图。用户可将从患者躯干测得的躯干表面电势投影到模型躯干上的相应位置。然后可求解将电信号从模型躯干传播到模型心脏的逆算问题,并可估算模型心脏的激动时间。
在应用本公开的技术的一示例中,从图像数据库获取其它对象的人类心脏CT图像。在图像上进行半自动图像分割以生成心脏和躯干的不同模型的三维表示。在某些示例中,可用来自加利福尼亚州圣地亚哥的面貌成像公司(VisageImaging,Inc.)出售的AMIRA软件包完成图像分割。
举例来说,患者躯干上的电极位置到模型躯干的投影是近似的。特定地,患者躯干上电极的位置到模型躯干,基于各电极安装在患者身上的顺序,将患者躯干上各电极的位置投影到模型躯干的表面上。为了该投影的目的,使用胸骨(前)和脊柱(后)作为参照,将患者和模型躯干分成右前、左前、右后和左后区域。各电极布置在垂直条上,且三个条应用到躯干的每个区域。这些区域内的各电极被投影到模型躯干的相应段上。此处描述的方法是可用于记录或描绘测得的电势的几何分布的多种技术中的一种。例如,测得的电势。例如,可在由模型给出的电极位置处内插或重新采样所测得的电势。各电极位置以正确顺序从患者躯干的各段投影到模型躯干的相应段上使得模型心脏上的激动图案和激动的空间离散性相准确地反映了在实际患者心脏上的激动图案和激动的空间离散性。在一示例中,使用Matlab正则化工具盒可求解心电图的逆算问题(汉森PC,正则化工具:AMatlabpackageforanalysisandsolutionofdiscreteill-posedproblems(分析和求解离散不适定问题的Matlab包),NumericalAlgorithms(数值算法),6(1994),第1-35页)。
与该示例一致的用于求解逆算问题的输入数据集可包括多电极表面ECG测量、模型心脏和躯干表面的3-D笛卡尔坐标系、以及指定每个表面上不同点的连接的每个模型表面上的网格。与本公开的技术一致的输出可包括可使用视觉软件和计算机图形工具而可被可视化的3-D模型心脏表面上的激动时间。在某些示例中,3-D模型心脏表面可使用Matlab(马萨诸塞州内蒂克的Mathworks公司)或诸如Tecplot(华盛顿州贝尔维尤的Tecplot公司)之类的更先进可视化软件来可视化。
比较从一个对象的相同躯干表面电势信号所确定的两个不同的心脏激动时间而估算的心脏激动时间,示出类似的图案和分布。例如,视图902和904的区域906在大小和激动时间上对应于视图912和914的区域916。视图902和904的区域908对应于视图912和914的区域918。此外,两个模型的激动时间的标准偏差都源自一个对象的相同躯干表面电势,且类似(17.6和15.5ms)。因此心脏激动的总体图案和心脏激动时间的离散性的测量并不依赖于特定的心脏-躯干模型。使用通用心脏-躯干模型可允许用户创建适于诊断和观察的心脏激动时间的等时线模型,同时避免了可被用于产生患者的心脏的患者特定的模型的CT扫描或其它成像可造成的花费、不便、和辐射暴露。
图10是示出经由激动时间测量患者的心脏电不同步的系统的示例操作的流程图。处理单元500通过电极定位记录模块524例如基于成像数据的分析来确定各电极404的位置。处理单元将各电极的位置投影到例如所选模型躯干的模型躯干上(1002)。
发生例如去极化的心脏事件致使电信号传播穿过患者的躯干,并记录在分布在患者躯干表面上的各电极上。由各电极感测的躯干表面电势信号可由处理单元500接收(1004)。处理单元可基于各电极的确定的位置将信号投影到模型躯干的表面上(1006)。
处理单元可求解基于躯干表面电势确定心外膜电势的逆算问题(1008)。然后处理单元可基于所投影的躯干表面电势计算在模型心脏的各位置处的心脏激动时间(1010)。可通过例如确定心外膜电图电势的最大负斜率(1016)、或使逆算问题解的最小二乘方最小化来计算心脏激动时间(1018)。可显示心脏激动时间(1012)。显示心脏激动时间的潜在方法的示例包括等时线图(1014)、和在模型心脏上描绘波阵面行进的影片(1016)。处理单元可配置成允许用户在包括波阵面影片和等时线图在内的各种显示模式之间选择、或同时显示各显示模式。此外,可计算心脏电不同步的一个或多个指标(1018),包括SDAT(1020)、RAT(1022)、以及PLAT(1024)。
为了求解逆算问题(1008),假设在拉普拉斯方程的逆柯西问题中心脏与躯干之间是无源容积导体,从所投影的躯干表面电势来计算心外膜电势。可选地,可假设躯干-表面电势与心脏跨膜电势之间的解析关系。此外,可从根据躯干-表面电势/心外膜电势转换的逆解所确定的心外膜电图的最陡负斜率中估算心脏激动时间(1010)。在其它示例中,可基于用于从躯干-表面电势确定心脏跨膜电势的解析关系方法来模拟出模型躯干-表面电势。可基于使投影的模型躯干-表面电势与模拟的躯干-表面电势之间的最小方差最小化来计算心脏激动时间(解析关系中的参数)。
在某些示例中,可基于心脏的特定区域内所计算的心脏激动时间,对模型心脏的特定区域,进行躯干表面激动时间等时线图(1014)、波阵面动画(1016)、或心脏电不同步的其它图形表示的构建、以及心脏电不同步的指标的计算(1018)。可基于在这些区域内所计算的心脏激动时间对该多个区域中的每个确定心脏电不同步的图形表示和指标。在某些示例中,可将各区域的表示和指标呈现在一起或进行比较。
图11是示出经由所确定的心脏激动时间来测量患者的心脏电不同步的示例技术的流程图。这些技术可包括确定多个电极的位置(1100)、将各电极的位置投影到模型躯干的表面上(1102)、记录多个电极的输出(1104)、将多个电极的输出投影到模型躯干的表面上(1106)、求解逆算问题(1108)、以及从所投影的躯干表面电势确定模型心脏的心脏激动时间(1110)。可显示心脏激动时间(1112)。可计算电不同步的一个或多个指标(1114)。可监测该输出、心脏电不同步的指标、以及心脏激动时间图,这允许用户对患者进行诊断、在植入期间调整CRT电极的位置(1118)或调整CRT设备的A-V或V-V起搏间隔(1120)。
用户可监测计算的输出(1116),例如心脏电不同步的至少一个指标或心脏激动时间的显示。监测这些值可允许用户诊断可能受益于CRT的情况或评估CRT的有效性。例如,心脏电不同步的至少一个指标可指示对患者心脏传导性的损害的存在、例如左束支阻滞或右束支阻滞的存在,这从标准12导联ECG读取的检查中不能显现。较大的SDAT指示在大时间跨度内发生心室的激动,指示不同时发生心室的去极化。较大的RAT也指示激动时间的宽范围和心室的不同步收缩。较高的PLAT可指示心脏的特定区域,例如与左心室更相关的后部区域不能与测得的QRS波群一致激动。
用户可根据所显示的心脏激动时间或心脏电不同步的指标来调整CRT电极、例如IMD100的电极108、110和112(图1)的放置。例如,处理单元,经由显示器,可实现基于心脏电不同步的指标的百分比变化来显示变化的颜色的系统。当调整CRT电极的位置(1118)时,显示的颜色可基于心脏电不同步的指标的百分比改进从红色变化成黄色变化成绿色。这可允许用户快速确定CRT电极的调整是否对患者的症状具有积极效果。在另一示例中,用户可调整植入的CRT设备的A-V或V-V起搏间隔(118)。心脏电不同步的指标的最小值可指示足够的起搏间隔。等时线图或波阵面传播影片也可用于辅助CRT调整或诊断可响应于CRT处理的情况。
如上所述,为了便于基于监测的输出评估患者是否适合CRT(1116),心脏电不同步的一个或多个指示,例如指标或图形指示,可基于心脏的本征传导期间、和CRT期间的躯干表面激动时间来确定。本征传导期间与CRT期间的指示之差可指示CRT可为患者提供益处,例如患者适合CRT。此外,植入或随访期间,基于各位置的、或具有各电极配置或参数值的CRT的递送产生的躯干表面激动时间,对多个引线位置、电极配置或其它参数值的每个,来确定心脏电不同步的一个或多个指示。以此方式,可将与各位置、电极配置、或参数值相关联的心脏电不同步指示之差进行比较以确定优选位置、配置、或值。
已经描述了本公开的各示例。然而,在不偏离权利要求书的范围的情况下,本领域的普通技术人员将理解可对所述实施例作出各种更改。例如,尽管讨论了SDAT、RAT、和PLAT作为激动时间离散性的统计指标的示例,但也可根据本公开的技术确定去极化时序的离散性的其它指标或度量。作为一个示例,可确定两个特定区域(例如前部和后部)之间的激动时间范围。作为另一个示例,可在排除特定位置或区域之后根据本公开的技术确定激动时间的范围和变化。排除的位置或区域可以是被认为(例如,由低幅电信号所标识为)是疤痕组织的位置或区域,或者超出了远场QRS波群范围的位置或区域。一般而言,指标的计算可包括基于躯干表面或心脏激动时间,或其某些子集来确定任何统计或其它值。

Claims (17)

1.一种用于确定心脏激动时间的方法,包括:
确定分布在患者躯干上多个电极中每个电极的位置;
用处理单元将所述多个电极的位置投影到模型躯干的表面上;
由所述处理单元接收由所述多个电极中的每个感测的躯干表面电势信号;
由所述处理单元基于确定的所述电极的位置,将所述躯干表面电势信号中的每个投影到所述模型躯干的表面上的相应位置;以及
由所述处理单元基于所投影的躯干表面电势信号和所述模型躯干内模型心脏的位置,来确定所述模型躯干内所述模型心脏的一组心脏激动时间。
2.如权利要求1所述的方法,其特征在于,还包括:基于患者的至少一个特性从多个模型躯干和模型心脏中选择所述模型躯干和模型心脏。
3.如权利要求2所述的方法,其特征在于,基于患者的至少一个特性从所述多个模型躯干和模型心脏中选择所述模型躯干和模型心脏包括,基于从患者取得的医疗图像的手动或半自动分割和记录,从所述多个模型躯干和模型心脏选择所述模型躯干和模型心脏。
4.如权利要求2-3中任一项所述的方法,其特征在于,由对来自不同于患者的对象的医疗图像进行手动或半自动图像分割来构建所述模型心脏和所述模型躯干。
5.如权利要求2-3中任一项所述的方法,其特征在于,所述模型躯干通过性别或大小中的至少一个来区分,且所述模型心脏通过大小或疾病状态中的至少一个来区分。
6.如权利要求1-3中任一项所述的方法,其特征在于,确定所述模型心脏的一组心脏刺激时间包括:从所述投影的躯干表面电势计算出一组心外膜电势。
7.如权利要求6所述的方法,其特征在于,计算所述一组心外膜电势包括:在拉普拉斯方程的逆柯西问题中假设所述模型心脏与所述模型躯干之间是无源容积导体。
8.如权利要求6所述的方法,其特征在于,计算所述一组心外膜电势包括:
假设所述投影的躯干表面电势与心脏跨膜电势之间的解析关系;
基于所述解析关系来模拟躯干表面电势;以及
标识出使所述投影的躯干表面电势与所述模拟的躯干表面电势之间最小方差最小化的心外膜电势。
9.一种医疗系统,包括:
分布在患者躯干上的多个电极;以及
处理单元,所述处理单元配置成将所述多个电极的位置投影到模型躯干的表面上、接收由所述多个电极中的每个感测的躯干表面电势信号、基于确定的所述电极的位置将所述躯干表面电势信号中的每个投影到模型躯干表面上的相应位置上、以及基于所述投影的躯干表面电势信号与所述模型躯干内模型心脏的位置来确定所述模型躯干内所述模型心脏的一组心脏激动时间。
10.如权利要求9所述的医疗系统,其特征在于,所述处理单元配置成基于患者的至少一个特性从多个模型躯干和模型心脏中选择所述模型躯干和模型心脏。
11.如权利要求10所述的医疗系统,其特征在于,所述处理单元配置成基于从所述患者取得的医疗图像的手动或半自动分割和记录来选择所述模型躯干和模型心脏。
12.如权利要求10所述的医疗系统,其特征在于,由对来自不同于患者的对象的医疗图像进行手动或半自动图像分割来构建所述模型心脏和所述模型躯干。
13.如权利要求10所述的医疗系统,其特征在于,所述模型躯干通过性别或大小中的至少一个来区分,且所述模型心脏通过大小或疾病状态中的至少一个来区分。
14.如权利要求9-13中任一项所述的医疗系统,其特征在于,所述处理单元配置成从所述投影的躯干表面电势计算出一组心外膜电势,并基于所述一组心外膜电势确定所述一组心脏激动时间。
15.如权利要求14所述的医疗系统,其特征在于,所述处理单元配置成在拉普拉斯方程的逆柯西问题中假设所述模型心脏与所述模型躯干之间是无源容积导体。
16.如权利要求14所述的医疗系统,其特征在于,所述处理单元配置成:
假设所述投影的躯干表面电势与心脏跨膜电势之间的解析关系;
基于所述解析关系来模拟躯干表面电势;以及
标识出使所述投影的躯干表面电势与所述模拟的躯干表面电势之间最小方差最小化的心外膜电势。
17.一种医疗系统,包括:
用于将分布在患者躯干上的多个电极的位置投影到模型躯干的表面上的装置;
用于接收由所述多个电极中的每个感测的躯干表面电势信号的装置;
用于基于确定的所述电极的位置将所述躯干表面电势信号中的每个投射到所述模型躯干的表面上的相应位置处的装置;以及
用于基于所投影的躯干表面电势信号和所述模型躯干内模型心脏的位置,来确定所述模型躯干内所述模型心脏的一组心脏激动时间的装置。
CN201280026661.0A 2011-05-03 2012-05-03 评估心脏内激动模式 Active CN103561642B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161482053P 2011-05-03 2011-05-03
US61/482,053 2011-05-03
US13/462,480 2012-05-02
US13/462,480 US8972228B2 (en) 2011-05-03 2012-05-02 Assessing intra-cardiac activation patterns
PCT/US2012/036302 WO2012151389A1 (en) 2011-05-03 2012-05-03 Assessing intra-cardiac activation patterns

Publications (2)

Publication Number Publication Date
CN103561642A CN103561642A (zh) 2014-02-05
CN103561642B true CN103561642B (zh) 2015-12-02

Family

ID=47090700

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280026661.0A Active CN103561642B (zh) 2011-05-03 2012-05-03 评估心脏内激动模式
CN201280024669.3A Active CN103547212B (zh) 2011-05-03 2012-05-03 评估心脏内激活模式和电不同步

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280024669.3A Active CN103547212B (zh) 2011-05-03 2012-05-03 评估心脏内激活模式和电不同步

Country Status (4)

Country Link
US (6) US9510763B2 (zh)
EP (3) EP2704626B1 (zh)
CN (2) CN103561642B (zh)
WO (2) WO2012151364A1 (zh)

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208232A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Physiologic monitoring initialization systems and methods
JP2013519428A (ja) 2010-02-12 2013-05-30 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心臓再同期療法の調節パラメータの自動調整のためのシステムおよび方法
US9510763B2 (en) * 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US10311978B2 (en) * 2012-01-30 2019-06-04 Siemens Healthcare Gmbh Method and system for patient specific planning of cardiac therapies on preoperative clinical data and medical images
US20140070949A1 (en) * 2012-09-11 2014-03-13 Paul Chen Muscle activity training facility for lower body of user
USD850626S1 (en) 2013-03-15 2019-06-04 Rhythm Diagnostic Systems, Inc. Health monitoring apparatuses
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US11694797B2 (en) * 2012-10-30 2023-07-04 Neil S. Davey Virtual healthcare communication platform
US9830423B2 (en) * 2013-03-13 2017-11-28 Abhishek Biswas Virtual communication platform for healthcare
CN105142508B (zh) * 2013-01-17 2018-04-06 科迪影技术股份有限公司 电生理信号的波前检测
US8965489B2 (en) 2013-02-21 2015-02-24 Medtronic, Inc. Method and determination of cardiac activation from electrograms with multiple deflections
WO2014137636A1 (en) * 2013-03-06 2014-09-12 The General Hospital Corporation System and method for non-invasive determination of cardiac activation patterns
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
USD921204S1 (en) 2013-03-15 2021-06-01 Rds Health monitoring apparatus
US9924884B2 (en) 2013-04-30 2018-03-27 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US10251555B2 (en) * 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) * 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9272148B2 (en) 2013-07-23 2016-03-01 Medtronic, Inc. Combination of feedback on mechanical and electrical resynchronization to select therapy parameters
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9132274B2 (en) * 2013-07-26 2015-09-15 Medtronic, Inc. Determining onsets and offsets of cardiac depolarization and repolarization waves
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
CN105636514B (zh) 2013-11-01 2020-06-05 波士顿科学医学有限公司 使用延迟内插的心脏标测
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9993172B2 (en) 2013-12-09 2018-06-12 Medtronic, Inc. Noninvasive cardiac therapy evaluation
JP2017502766A (ja) * 2014-01-13 2017-01-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングする医療用デバイス
US9532725B2 (en) 2014-03-07 2017-01-03 Boston Scientific Scimed Inc. Medical devices for mapping cardiac tissue
EP3116386A1 (en) 2014-03-11 2017-01-18 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
US9776009B2 (en) * 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US10779743B2 (en) * 2014-05-06 2020-09-22 Peacs B.V. Estimating distribution, fluctuation and/or movement of electrical activity through a heart tissue
US11172860B2 (en) * 2014-05-06 2021-11-16 Peacs Investments B.V. Estimating distribution fluctuation and/or movement of electrical activity through a heart tissue
JP2017514597A (ja) * 2014-05-09 2017-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングする医療用デバイス
WO2015187229A1 (en) * 2014-06-05 2015-12-10 Chen Guangren Systems and methods for detecting ecg subwaveforms
US9538930B2 (en) * 2014-06-05 2017-01-10 Guangren CHEN Linear multi-domain electrocardiogram
US9545203B2 (en) * 2014-06-05 2017-01-17 Guangren Chen Systems and methods for cardiomyocyte conduction speed mapping
US9949662B2 (en) 2014-06-12 2018-04-24 PhysioWave, Inc. Device and method having automatic user recognition and obtaining impedance-measurement signals
US9943241B2 (en) 2014-06-12 2018-04-17 PhysioWave, Inc. Impedance measurement devices, systems, and methods
US9546898B2 (en) 2014-06-12 2017-01-17 PhysioWave, Inc. Fitness testing scale
US9568354B2 (en) 2014-06-12 2017-02-14 PhysioWave, Inc. Multifunction scale with large-area display
US10130273B2 (en) 2014-06-12 2018-11-20 PhysioWave, Inc. Device and method having automatic user-responsive and user-specific physiological-meter platform
WO2015196140A1 (en) 2014-06-20 2015-12-23 The Regents Of The University Of California Patient-specific modeling of ventricular activation pattern using surface ecg-derived vectorcardiogram in bundle branch block
US9589379B2 (en) * 2014-06-24 2017-03-07 Siemens Healthcare Gmbh System and method for visualization of cardiac changes under various pacing conditions
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9693696B2 (en) 2014-08-07 2017-07-04 PhysioWave, Inc. System with user-physiological data updates
US9498137B2 (en) 2014-08-07 2016-11-22 PhysioWave, Inc. Multi-function fitness scale with display
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9707400B2 (en) 2014-08-15 2017-07-18 Medtronic, Inc. Systems, methods, and interfaces for configuring cardiac therapy
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US10675472B2 (en) 2014-10-17 2020-06-09 Cardiac Pacemakers, Inc. Multi-site pacing capture verification
ES2572142B1 (es) * 2014-10-30 2017-06-21 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón Dispositivo de localización de arritmias cardiacas
US10888235B2 (en) * 2015-01-07 2021-01-12 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for visualizing cardiac timing information using animations
US9750941B2 (en) 2015-01-23 2017-09-05 Medtronic, Inc. Criteria for determination of local tissue latency near pacing lead electrodes
US20160317840A1 (en) * 2015-01-29 2016-11-03 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US11253178B2 (en) 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9737223B2 (en) 2015-05-13 2017-08-22 Medtronic, Inc. Determining onset of cardiac depolarization and repolarization waves for signal processing
US10945671B2 (en) 2015-06-23 2021-03-16 PhysioWave, Inc. Determining physiological parameters using movement detection
US10092761B2 (en) * 2015-07-01 2018-10-09 Cardiac Pacemakers, Inc. Automatic vector selection for multi-site pacing
US11289207B2 (en) 2015-07-09 2022-03-29 Peacs Investments B.V. System for visualizing heart activation
US9782094B2 (en) 2015-07-31 2017-10-10 Medtronic, Inc. Identifying ambiguous cardiac signals for electrophysiologic mapping
US9610045B2 (en) 2015-07-31 2017-04-04 Medtronic, Inc. Detection of valid signals versus artifacts in a multichannel mapping system
WO2017099582A2 (en) * 2015-10-21 2017-06-15 Peacs B.V. Heart condition determination method, robot control and system
US10436630B2 (en) 2015-11-20 2019-10-08 PhysioWave, Inc. Scale-based user-physiological data hierarchy service apparatuses and methods
US10923217B2 (en) 2015-11-20 2021-02-16 PhysioWave, Inc. Condition or treatment assessment methods and platform apparatuses
US11561126B2 (en) 2015-11-20 2023-01-24 PhysioWave, Inc. Scale-based user-physiological heuristic systems
US10980483B2 (en) 2015-11-20 2021-04-20 PhysioWave, Inc. Remote physiologic parameter determination methods and platform apparatuses
US10395055B2 (en) 2015-11-20 2019-08-27 PhysioWave, Inc. Scale-based data access control methods and apparatuses
US10553306B2 (en) 2015-11-20 2020-02-04 PhysioWave, Inc. Scaled-based methods and apparatuses for automatically updating patient profiles
CN106880353B (zh) * 2015-12-16 2020-06-23 厦门大学 心电逆处理方法及装置
EP3394698A4 (en) * 2015-12-22 2019-07-24 The Regents of the University of California COMPUTED LOCALIZATION OF FIBRILLATION SOURCES
US11219769B2 (en) 2016-02-26 2022-01-11 Medtronic, Inc. Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing
US10780279B2 (en) 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
JP6937321B2 (ja) 2016-05-03 2021-09-22 アクタス メディカル インクAcutus Medical,Inc. 心臓情報動的表示システム
EP3451904B1 (en) 2016-05-03 2023-12-20 CardioInsight Technologies, Inc. Detecting conduction timing
US10390772B1 (en) 2016-05-04 2019-08-27 PhysioWave, Inc. Scale-based on-demand care system
US10349855B2 (en) * 2016-06-10 2019-07-16 Biosense Webster (Israel) Ltd. Identification and visualization of cardiac activation sequence in multi-channel recordings
US10215619B1 (en) 2016-09-06 2019-02-26 PhysioWave, Inc. Scale-based time synchrony
US11458320B2 (en) 2016-09-06 2022-10-04 Peacs Investments B.V. Method of cardiac resynchronization therapy
EP3318185A1 (en) 2016-11-04 2018-05-09 Aalborg Universitet Method and device for analyzing a condition of a heart
US10532213B2 (en) 2017-03-03 2020-01-14 Medtronic, Inc. Criteria for determination of local tissue latency near pacing electrode
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
CN111052255A (zh) * 2017-04-12 2020-04-21 皮斯公司 基于平均tsi特征的确定方法和系统
US10845955B2 (en) 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US10456056B2 (en) * 2017-06-21 2019-10-29 Biosense Webster (Israel) Ltd. Combination torso vest to map cardiac electrophysiology
WO2019014453A2 (en) 2017-07-12 2019-01-17 Cardioinsight Technologies, Inc. IMAGING TO DETERMINE ELECTRODE GEOMETRY
WO2019023472A1 (en) 2017-07-28 2019-01-31 Medtronic, Inc. GENERATION OF ACTIVATION TIME
EP3658227B1 (en) 2017-07-28 2021-05-12 Medtronic, Inc. Cardiac cycle selection
US10713790B2 (en) * 2017-08-01 2020-07-14 Catheter Precision, Inc. Methods of cardiac mapping and directional guidance
US11246662B2 (en) 2017-08-01 2022-02-15 Catheter Precision, Inc. Methods of cardiac mapping and model merging
US10398348B2 (en) * 2017-10-19 2019-09-03 Biosense Webster (Israel) Ltd. Baseline impedance maps for tissue proximity indications
US11103709B2 (en) 2017-11-02 2021-08-31 Cardiac Pacemakers, Inc. Systems and methods for recognizing His-bundle capture type and providing His-bundle pacing
US10433746B2 (en) 2017-12-22 2019-10-08 Regents Of The University Of Minnesota Systems and methods for anterior and posterior electrode signal analysis
US11419539B2 (en) 2017-12-22 2022-08-23 Regents Of The University Of Minnesota QRS onset and offset times and cycle selection using anterior and posterior electrode signals
US10786167B2 (en) 2017-12-22 2020-09-29 Medtronic, Inc. Ectopic beat-compensated electrical heterogeneity information
US10492705B2 (en) 2017-12-22 2019-12-03 Regents Of The University Of Minnesota Anterior and posterior electrode signals
US10799703B2 (en) 2017-12-22 2020-10-13 Medtronic, Inc. Evaluation of his bundle pacing therapy
US10617318B2 (en) 2018-02-27 2020-04-14 Medtronic, Inc. Mapping electrical activity on a model heart
US10668290B2 (en) 2018-03-01 2020-06-02 Medtronic, Inc. Delivery of pacing therapy by a cardiac pacing device
US10918870B2 (en) 2018-03-07 2021-02-16 Medtronic, Inc. Atrial lead placement for treatment of atrial dyssynchrony
DK180241B1 (en) * 2018-03-12 2020-09-08 Apple Inc User interfaces for health monitoring
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy
EP3768377B1 (en) 2018-03-23 2023-11-22 Medtronic, Inc. Vfa cardiac resynchronization therapy
CN111886046A (zh) 2018-03-23 2020-11-03 美敦力公司 Av同步vfa心脏治疗
CN111902082A (zh) 2018-03-29 2020-11-06 美敦力公司 左心室辅助设备调整和评估
US11065060B2 (en) 2018-04-26 2021-07-20 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11259871B2 (en) 2018-04-26 2022-03-01 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US10860754B2 (en) 2018-04-26 2020-12-08 Vektor Medical, Inc. Calibration of simulated cardiograms
US11564641B2 (en) 2018-04-26 2023-01-31 Vektor Medical, Inc. Generating simulated anatomies of an electromagnetic source
US11350867B2 (en) * 2018-04-27 2022-06-07 Duke University Small-scale time delay and single-shot conduction velocity analysis and mapping for cardiac electrophysiology
DK201870378A1 (en) 2018-05-07 2020-01-13 Apple Inc. DISPLAYING USER INTERFACES ASSOCIATED WITH PHYSICAL ACTIVITIES
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
US11304641B2 (en) 2018-06-01 2022-04-19 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
US10940321B2 (en) 2018-06-01 2021-03-09 Medtronic, Inc. Systems, methods, and interfaces for use in cardiac evaluation
CN112639998A (zh) 2018-07-05 2021-04-09 加利福尼亚大学董事会 解剖结构与体表电极定位的计算模拟
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
WO2020101864A1 (en) 2018-11-13 2020-05-22 Vektor Medical, Inc. Augmentation of images with source locations
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
US20220142600A1 (en) * 2019-01-31 2022-05-12 The Medical College Of Wisconsin, Inc. Systems and Methods for Sound Mapping of Anatomical and Physiological Acoustic Sources Using an Array of Acoustic Sensors
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11291845B2 (en) 2019-02-18 2022-04-05 Medtronic, Inc. Medical device system and method for determining His bundle pacing capture
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11547858B2 (en) 2019-03-29 2023-01-10 Medtronic, Inc. Systems, methods, and devices for adaptive cardiac therapy
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11071500B2 (en) 2019-05-02 2021-07-27 Medtronic, Inc. Identification of false asystole detection
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11813462B2 (en) 2019-05-07 2023-11-14 Medtronic, Inc. Supplementation of cardiac conduction system pacing therapy
US11209957B2 (en) 2019-06-01 2021-12-28 Apple Inc. User interfaces for cycle tracking
US11228835B2 (en) 2019-06-01 2022-01-18 Apple Inc. User interfaces for managing audio exposure
US11152100B2 (en) 2019-06-01 2021-10-19 Apple Inc. Health application user interfaces
US11234077B2 (en) 2019-06-01 2022-01-25 Apple Inc. User interfaces for managing audio exposure
DK201970534A1 (en) 2019-06-01 2021-02-16 Apple Inc User interfaces for monitoring noise exposure levels
US10595736B1 (en) 2019-06-10 2020-03-24 Vektor Medical, Inc. Heart graphic display system
US10709347B1 (en) 2019-06-10 2020-07-14 Vektor Medical, Inc. Heart graphic display system
US11511120B2 (en) 2019-06-19 2022-11-29 Aluna Health System Systems and methods for optimizing implantable medical device characteristics using data structures and graphical representations
US12002588B2 (en) 2019-07-17 2024-06-04 Apple Inc. Health event logging and coaching user interfaces
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11903700B2 (en) 2019-08-28 2024-02-20 Rds Vital signs monitoring systems and methods
WO2021051121A1 (en) 2019-09-09 2021-03-18 Apple Inc. Research study user interfaces
US11497431B2 (en) 2019-10-09 2022-11-15 Medtronic, Inc. Systems and methods for configuring cardiac therapy
US20210106227A1 (en) 2019-10-09 2021-04-15 Medtronic, Inc. Systems, methods, and devices for determining cardiac condition
US20210106832A1 (en) * 2019-10-09 2021-04-15 Medtronic, Inc. Synchronizing external electrical activity
US11642533B2 (en) 2019-11-04 2023-05-09 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
WO2021113187A1 (en) 2019-12-02 2021-06-10 Medtronic, Inc. Generating representative cardiac information
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US20210308458A1 (en) 2020-04-03 2021-10-07 Medtronic, Inc. Cardiac conduction system engagement
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
DK181037B1 (en) 2020-06-02 2022-10-10 Apple Inc User interfaces for health applications
WO2022011417A1 (en) * 2020-07-16 2022-01-20 Storm-Road Pty Ltd Generating animated images
US11964160B2 (en) 2020-07-27 2024-04-23 Medtronic, Inc. Method and apparatus for delivering bundle branch pacing
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
US20220031222A1 (en) 2020-07-31 2022-02-03 Medtronic, Inc. Stable cardiac signal identification
US11698710B2 (en) 2020-08-31 2023-07-11 Apple Inc. User interfaces for logging user activities
WO2022067247A1 (en) * 2020-09-28 2022-03-31 The Trustees Of Columbia University In The City Of New York Systems and methods for electromechanical wave imaging with machine learning for automated activation map generation
US11974853B2 (en) 2020-10-30 2024-05-07 Vektor Medical, Inc. Heart graphic display system
EP4255557A1 (en) 2020-12-02 2023-10-11 Medtronic, Inc. Evaluation and adjustment of left bundle branch (lbb) pacing therapy
US11338131B1 (en) 2021-05-05 2022-05-24 Vektor Medical, Inc. Guiding implantation of an energy delivery component in a body
EP4385042A2 (en) 2021-08-09 2024-06-19 Vektor Medical, Inc. Tissue state graphic display system
US11534224B1 (en) 2021-12-02 2022-12-27 Vektor Medical, Inc. Interactive ablation workflow system
WO2023105316A1 (en) 2021-12-07 2023-06-15 Medtronic, Inc. Determination of cardiac conduction system therapy benefit
WO2024018009A1 (en) 2022-07-20 2024-01-25 Corify Care, S.L. Methods to determine the morphology and the location of a heart within a torso

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593702A (en) * 1981-10-22 1986-06-10 Osrodek Badawczo-Rozwojowy Techniki Medycznej "Ormed" Measuring system for the electrical activity of the heart conducting system on the beat-to-beat basis by a noninvasive method
US5311873A (en) * 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
CN1253761A (zh) * 1999-09-27 2000-05-24 复旦大学 动态心电标测方法及其装置
CN1878595A (zh) * 2003-11-03 2006-12-13 坎纳基股份有限公司 带有无线功率供给的静脉内心脏起搏系统
CN101073502A (zh) * 2006-05-03 2007-11-21 韦伯斯特生物官能公司 增强的超声图像显示

Family Cites Families (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233987A (en) 1978-08-18 1980-11-18 Alfred Feingold Curvilinear electrocardiograph electrode strip
US4674511A (en) 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4497326A (en) 1981-04-06 1985-02-05 Curry Paul V L Heart pacing lead
US4402323A (en) 1981-05-12 1983-09-06 Medtronic, Inc. Disposable electrophysiological exploring electrode needle
US4428378A (en) 1981-11-19 1984-01-31 Medtronic, Inc. Rate adaptive pacer
US4566456A (en) 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US4763660A (en) 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US4787389A (en) 1987-07-16 1988-11-29 Tnc Medical Devices Pte. Ltd. Using an implantable antitachycardia defibrillator circuit
US4777955A (en) 1987-11-02 1988-10-18 Cordis Corporation Left ventricle mapping probe
DE3816042A1 (de) 1988-05-10 1989-11-23 Alt Eckhard Energiesparender herzschrittmacher
US5054496A (en) 1988-07-15 1991-10-08 China-Japan Friendship Hospital Method and apparatus for recording and analyzing body surface electrocardiographic peak maps
CN1030597C (zh) 1988-12-30 1996-01-03 中日友好医院 体表心电峰值记录分析方法及其标测图装置
US5052388A (en) 1989-12-22 1991-10-01 Medtronic, Inc. Method and apparatus for implementing activity sensing in a pulse generator
DE4131103C1 (en) 1991-09-16 1993-04-01 Medizinische Fakultaet (Charite) Der Humboldt-Universitaet Zu Berlin, O-1040 Berlin, De Evaluation of ECG maps, e.g in cardiography - using electrodes placed near patient thorax to measure electrical field of heart, and projecting voltages to form spherical image of heart with iso-intensity lines on surface
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5334220A (en) 1992-11-13 1994-08-02 Siemens Pacesetter, Inc. Dual-chamber implantable pacemaker having an adaptive AV interval that prevents ventricular fusion beats and method of operating same
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5443492A (en) 1994-02-02 1995-08-22 Medtronic, Inc. Medical electrical lead and introducer system for implantable pulse generator
US5552645A (en) 1994-06-08 1996-09-03 Siemens Medical Systems, Inc. Automatic probe activation
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
AU3814795A (en) 1994-11-07 1996-05-31 James Allen Bioelectric sensor device
US5628778A (en) 1994-11-21 1997-05-13 Medtronic Inc. Single pass medical electrical lead
US5514163A (en) 1995-02-21 1996-05-07 Medtronic, Inc. Dual chamber pacing system and method with optimized adjustment of the AV escape interval for treating cardiomyopathy
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
US6532379B2 (en) 1995-05-04 2003-03-11 Robert A. Stratbucker Bio-electic interface adapter with twelve-lead ECG capability and provision for defibrillation
WO1997017893A1 (en) 1995-11-13 1997-05-22 Heart Rhythm Technologies, Inc. System and method for analyzing electrogram waveforms
ATE290905T1 (de) 1996-01-08 2005-04-15 Impulse Dynamics Nv Vorrichtung zur steuerung der herzaktivität unter verwendung von nicht-erregender vorstimulation
US6915149B2 (en) 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US5683429A (en) 1996-04-30 1997-11-04 Medtronic, Inc. Method and apparatus for cardiac pacing to prevent atrial fibrillation
US6311089B1 (en) 1996-05-14 2001-10-30 Pacesetter, Inc. Implantable stimulation device and method for determining ventricular and atrial sensitivity thresholds
WO1998002090A1 (en) 1996-07-17 1998-01-22 Cambridge Heart, Inc. Generation of localized cardiac measures
AU730409B2 (en) 1996-12-18 2001-03-08 University Of Ulster Apparatus for body surface mapping
US6625482B1 (en) 1998-03-06 2003-09-23 Ep Technologies, Inc. Graphical user interface for use with multiple electrode catheters
US6975900B2 (en) 1997-07-31 2005-12-13 Case Western Reserve University Systems and methods for determining a surface geometry
AU8600598A (en) * 1997-07-31 1999-02-22 Case Western Reserve University Electrolphysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor
US5922014A (en) 1997-09-02 1999-07-13 Medtronic, Inc. Single pass lead and method of use
JP4208275B2 (ja) 1997-10-30 2009-01-14 株式会社東芝 心臓内電気現象の診断装置およびその現象の表示方法
US6128535A (en) 1997-12-05 2000-10-03 Cardiac Pacemakers, Inc. Automatic capture verification in multisite cardiac pacing
US6141588A (en) 1998-07-24 2000-10-31 Intermedics Inc. Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6358214B1 (en) 1998-08-19 2002-03-19 Misha Tereschouk ECG scanner
US6243603B1 (en) 1998-09-15 2001-06-05 Uab Research Foundation Methods and apparatus for detecting medical conditions of the heart
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6205357B1 (en) 1998-12-04 2001-03-20 Uab Research Foundation Methods and apparatus for detecting and treating medical conditions of the heart
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
EP1178855B1 (en) 1999-05-12 2006-08-02 Medtronic, Inc. Monitoring apparatus using wavelet transforms for the analysis of heart rhythms
US7238158B2 (en) 1999-05-28 2007-07-03 Allez Physionix, Ltd. Pulse interleaving in doppler ultrasound imaging
US6377856B1 (en) 1999-06-14 2002-04-23 Pacesetter, Inc. Device and method for implanting medical leads
US6539259B1 (en) 1999-07-15 2003-03-25 Pacesetter, Inc. System and method of automatically adjusting sensitivity in an implantable cardiac stimulation device
US6442433B1 (en) 1999-10-26 2002-08-27 Medtronic, Inc. Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6473638B2 (en) 1999-12-24 2002-10-29 Medtronic, Inc. Medical device GUI for cardiac electrophysiology display and data communication
US6556860B1 (en) 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
JP2003527186A (ja) 2000-03-17 2003-09-16 メドトロニック・インコーポレーテッド 患者管理システム用の心不全モニタのクイックルック概要
US6507756B1 (en) 2000-04-03 2003-01-14 Medtronic, Inc. Dual chamber pacing system having time-adaptive AV delay
DE60134223D1 (de) 2000-05-09 2008-07-10 Paieon Inc System und verfahren für drei-dimentionale rekonstruktion von einer arterie
US7349734B2 (en) 2000-05-15 2008-03-25 Cardiac Pacemakers, Inc. Method and apparatus for delivering defibrillation shock therapy while reducing electrical dispersion due to ventricular conduction disorder
KR200225362Y1 (ko) 2000-07-07 2001-06-01 박종윤 거리감지 센서를 설치한, 고출력 반도체 레이저 다이오드(high power semiconductor laser diode)를 이용한, 일체형 휴대용 의료용 레이저 치료기구
WO2002005700A2 (en) 2000-07-18 2002-01-24 Motorola, Inc. Wireless electrocardiograph system and method
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6980675B2 (en) 2000-10-18 2005-12-27 Paieon, Inc. Method for processing images of coronary arteries
WO2002036013A1 (en) 2000-10-18 2002-05-10 Paieon Inc. Method and system for positioning a device in a tubular organ
US7062315B2 (en) 2000-11-28 2006-06-13 Medtronic, Inc. Automated template generation algorithm for implantable device
AU2002240363A1 (en) 2001-02-13 2002-08-28 Quetzal Biomedical, Inc. Multi-electrode apparatus and method for treatment of congestive heart failure
US6993389B2 (en) 2001-03-30 2006-01-31 Cardiac Pacemakers, Inc. Identifying heart failure patients suitable for resynchronization therapy using QRS complex width from an intracardiac electrogram
US6766189B2 (en) 2001-03-30 2004-07-20 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy
US7058443B2 (en) 2001-04-26 2006-06-06 Medtronic, Inc. Diagnostic features in biatrial and biventricular pacing systems
JP2002328439A (ja) 2001-04-27 2002-11-15 Nippon Sheet Glass Co Ltd 原稿台ガラス
US7697977B2 (en) 2002-11-27 2010-04-13 Cardiac Pacemakers, Inc. Method and apparatus for determining relative depolarization at multiple cardiac sensing sites
US6804555B2 (en) 2001-06-29 2004-10-12 Medtronic, Inc. Multi-site ventricular pacing system measuring QRS duration
US6856830B2 (en) 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
US9326695B1 (en) 2004-11-12 2016-05-03 Orbital Research Inc Electrode harness and method of taking biopotential measurements
US6640136B1 (en) 2001-09-12 2003-10-28 Pacesetters, Inc. Implantable cardiac stimulation device with automatic electrode selection for avoiding cross-chamber stimulation
US6701186B2 (en) 2001-09-13 2004-03-02 Cardiac Pacemakers, Inc. Atrial pacing and sensing in cardiac resynchronization therapy
AU2002362438A1 (en) 2001-10-04 2003-04-14 Case Western Reserve University Systems and methods for noninvasive electrocardiographic imaging (ecgi) using generalized minimum residual (gmres)
US7113823B2 (en) 2001-10-26 2006-09-26 Cardiac Pacemakers, Inc. Morphology-based optimization of cardiac resynchronization therapy
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
US6980866B2 (en) 2001-12-05 2005-12-27 Cardiac Pacemakers, Inc. Apparatus for sensing cardiac contractile function
US6847836B1 (en) 2002-02-08 2005-01-25 Lenny Sujdak Emergency ECG electrode chest pad
IL148299A (en) 2002-02-21 2014-04-30 Technion Res & Dev Foundation Ultrasonic to the heart
US7499743B2 (en) 2002-03-15 2009-03-03 General Electric Company Method and system for registration of 3D images within an interventional system
US7346381B2 (en) 2002-11-01 2008-03-18 Ge Medical Systems Global Technology Company Llc Method and apparatus for medical intervention procedure planning
US6882882B2 (en) 2002-04-22 2005-04-19 Medtronic, Inc. Atrioventricular delay adjustment
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US7778686B2 (en) 2002-06-04 2010-08-17 General Electric Company Method and apparatus for medical intervention procedure planning and location and navigation of an intervention tool
US7043292B2 (en) 2002-06-21 2006-05-09 Tarjan Peter P Single or multi-mode cardiac activity data collection, processing and display obtained in a non-invasive manner
US7041061B2 (en) 2002-07-19 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for quantification of cardiac wall motion asynchrony
US20070167809A1 (en) 2002-07-22 2007-07-19 Ep Medsystems, Inc. Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking
US6978184B1 (en) 2002-07-29 2005-12-20 Marcus Frank I Optimization method for cardiac resynchronization therapy
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7031777B2 (en) 2002-09-27 2006-04-18 Medtronic, Inc. Cardiac vein lead with flexible anode and method for forming same
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7142922B2 (en) 2002-12-20 2006-11-28 Cardiac Pacemakers, Inc. Method and apparatus for predicting acute response to cardiac resynchronization therapy at a given stimulation site
US7215998B2 (en) 2003-01-06 2007-05-08 Medtronic, Inc. Synchronous pacemaker with AV interval optimization
US7013176B2 (en) 2003-01-28 2006-03-14 Cardiac Pacemakers, Inc. Method and apparatus for setting pacing parameters in cardiac resynchronization therapy
US7610088B2 (en) 2003-02-28 2009-10-27 Medtronic, Inc. Method and apparatus for assessing left ventricular function and optimizing cardiac pacing intervals based on left ventricular wall motion
US6885889B2 (en) 2003-02-28 2005-04-26 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy based on left ventricular acceleration
US7079895B2 (en) 2003-04-25 2006-07-18 Medtronic, Inc. Cardiac pacing for optimal intra-left ventricular resynchronization
US7107093B2 (en) 2003-04-29 2006-09-12 Medtronic, Inc. Use of activation and recovery times and dispersions to monitor heart failure status and arrhythmia risk
US7747047B2 (en) 2003-05-07 2010-06-29 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning left atrial appendage isolation
US7565190B2 (en) 2003-05-09 2009-07-21 Ge Medical Systems Global Technology Company, Llc Cardiac CT system and method for planning atrial fibrillation intervention
US7142911B2 (en) 2003-06-26 2006-11-28 Pacesetter, Inc. Method and apparatus for monitoring drug effects on cardiac electrical signals using an implantable cardiac stimulation device
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US7587074B2 (en) 2003-07-21 2009-09-08 Paieon Inc. Method and system for identifying optimal image within a series of images that depict a moving organ
US7092759B2 (en) 2003-07-30 2006-08-15 Medtronic, Inc. Method of optimizing cardiac resynchronization therapy using sensor signals of septal wall motion
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US7818040B2 (en) 2003-09-05 2010-10-19 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
WO2005031635A1 (en) 2003-09-25 2005-04-07 Paieon, Inc. System and method for three-dimensional reconstruction of a tubular organ
US7233824B2 (en) 2003-10-07 2007-06-19 Medtronic, Inc. Secure and efficacious therapy delivery for an extra-systolic stimulation pacing engine
US7308299B2 (en) 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US7142919B2 (en) 2003-10-24 2006-11-28 Medtronic, Inc. Reconfigurable, fault tolerant multiple-electrode cardiac lead systems
US7308297B2 (en) 2003-11-05 2007-12-11 Ge Medical Systems Global Technology Company, Llc Cardiac imaging system and method for quantification of desynchrony of ventricles for biventricular pacing
US7684861B2 (en) 2003-11-13 2010-03-23 Cardiac Pacemakers, Inc. Implantable cardiac monitor upgradeable to pacemaker or cardiac resynchronization device
EP1703946A2 (en) 2003-12-03 2006-09-27 Medtronic, Inc. Method and apparatus for determining an efficacious atrioventricular delay interval
US7184835B2 (en) 2003-12-12 2007-02-27 Cardiac Pacemakers, Inc. Method and apparatus for adjustable AVD programming using a table
US7787951B1 (en) 2003-12-24 2010-08-31 Pacesetter, Inc. System and method for determining optimal stimulation sites based on ECG information
US20050149138A1 (en) 2003-12-24 2005-07-07 Xiaoyi Min System and method for determining optimal pacing sites based on myocardial activation times
US7486991B2 (en) 2003-12-24 2009-02-03 Cardiac Pacemakers, Inc. Baroreflex modulation to gradually decrease blood pressure
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US7454248B2 (en) 2004-01-30 2008-11-18 Ge Medical Systems Global Technology, Llc Method, apparatus and product for acquiring cardiac images
EP1723570A4 (en) 2004-02-09 2010-06-02 Inst Cardiologie De Montreal M CALCULATION OF CARDIAC CAVITY GEOMETRIC PARAMETER FROM A CARDIAC TOMOGRAPHY DATA SET
US7792572B1 (en) 2004-05-17 2010-09-07 Pacesetter, Inc. Ischemia detection using intra-cardiac signals
US7765001B2 (en) 2005-08-31 2010-07-27 Ebr Systems, Inc. Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices
CA2481631A1 (en) 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for physiological signal processing
US20060074285A1 (en) 2004-09-24 2006-04-06 Paieon Inc. Apparatus and method for fusion and in-operating-room presentation of volumetric data and 3-D angiographic data
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7426412B1 (en) 2004-10-13 2008-09-16 Pacesetter, Inc. Evoked potential and impedance based determination of diaphragmatic stimulation
US7664550B2 (en) 2004-11-30 2010-02-16 Medtronic, Inc. Method and apparatus for detecting left ventricular lead displacement based upon EGM change
US8010191B2 (en) * 2004-12-20 2011-08-30 Cardiac Pacemakers, Inc. Systems, devices and methods for monitoring efficiency of pacing
US8050756B2 (en) 2004-12-20 2011-11-01 Cardiac Pacemakers, Inc. Circuit-based devices and methods for pulse control of endocardial pacing in cardiac rhythm management
US7684863B2 (en) 2004-12-20 2010-03-23 Medtronic, Inc. LV threshold measurement and capture management
US20090099468A1 (en) 2004-12-21 2009-04-16 Aravinda Thiagalingam Automated Processing of Electrophysiological Data
WO2006069215A2 (en) 2004-12-21 2006-06-29 Ebr Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
US20060178586A1 (en) 2005-02-07 2006-08-10 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac function and identification of LV target pacing zones
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US7515959B2 (en) 2005-03-31 2009-04-07 Medtronic, Inc. Delivery of CRT therapy during AT/AF termination
US8036743B2 (en) 2005-03-31 2011-10-11 Proteus Biomedical, Inc. Automated optimization of multi-electrode pacing for cardiac resynchronization
US7555340B2 (en) 2005-04-01 2009-06-30 Cardiac Pacemakers, Inc. Electrogram morphology-based CRT optimization
US8214041B2 (en) 2005-04-19 2012-07-03 Medtronic, Inc. Optimization of AV intervals in single ventricle fusion pacing through electrogram morphology
US8412314B2 (en) 2005-04-25 2013-04-02 Charles Olson Location and displaying an ischemic region for ECG diagnostics
US8332030B2 (en) 2005-04-27 2012-12-11 Medtronic, Inc. Device and method for providing atrial-synchronized ventricular pacing with selective atrial tracking
US7769451B2 (en) 2005-04-28 2010-08-03 Medtronic, Inc. Method and apparatus for optimizing cardiac resynchronization therapy
US8700128B2 (en) 2005-05-03 2014-04-15 Paieon Inc. Method and apparatus for positioning a biventrivular pacemaker lead and electrode
EP1906821B1 (en) 2005-07-22 2020-01-15 Case Western Reserve University System for noninvasive electrocardiographic imaging (ecgi)
US10406366B2 (en) 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US7570999B2 (en) 2005-12-20 2009-08-04 Cardiac Pacemakers, Inc. Implantable device for treating epilepsy and cardiac rhythm disorders
US7751882B1 (en) 2005-12-21 2010-07-06 Pacesetter, Inc. Method and system for determining lead position for optimized cardiac resynchronization therapy hemodynamics
US7848807B2 (en) 2005-12-30 2010-12-07 Medtronic, Inc. Closed loop optimization of A-V and V-V timing
US8175703B2 (en) 2006-01-25 2012-05-08 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy parameter optimization
US7567836B2 (en) 2006-01-30 2009-07-28 Cardiac Pacemakers, Inc. ECG signal power vector detection of ischemia or infarction
US7860580B2 (en) 2006-04-24 2010-12-28 Medtronic, Inc. Active fixation medical electrical lead
US7792584B2 (en) 2006-04-25 2010-09-07 Medtronic, Inc. System and method for characterization of atrial wall using digital signal processing
WO2007134190A2 (en) * 2006-05-10 2007-11-22 Regents Of The University Of Minnesota Methods and apparatus of three dimensional cardiac electrophysiological imaging
US20090187426A1 (en) 2006-05-31 2009-07-23 Kerstna Juergen Implantable medical device system and method for adapting functions of the clinician's workstation thereof
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7801604B2 (en) * 2006-08-29 2010-09-21 Cardiac Pacemakers, Inc. Controlled titration of neurostimulation therapy
US8725255B2 (en) 2006-11-17 2014-05-13 Cardiac Pacemakers, Inc. Cardiac resynchronization therapy optimization using cardiac activation sequence information
US7616993B2 (en) 2006-11-27 2009-11-10 Biotronik Crm Patent Ag Heart stimulator using a Bezier function to define AV-delay values
US7765002B2 (en) 2006-12-08 2010-07-27 Cardiac Pacemakers, Inc. Rate aberrant beat selection and template formation
US7941213B2 (en) 2006-12-28 2011-05-10 Medtronic, Inc. System and method to evaluate electrode position and spacing
US8155756B2 (en) 2007-02-16 2012-04-10 Pacesetter, Inc. Motion-based optimization for placement of cardiac stimulation electrodes
US8195292B2 (en) 2007-02-16 2012-06-05 Pacestter, Inc. Cardiac resynchronization therapy optimization using parameter estimation from realtime electrode motion tracking
US20080242976A1 (en) 2007-03-30 2008-10-02 Proteus Biomedical, Inc. Electric field tomography
US7912544B1 (en) 2007-04-20 2011-03-22 Pacesetter, Inc. CRT responder model using EGM information
US7957799B2 (en) 2007-04-30 2011-06-07 Medtronic, Inc. Non-invasive cardiac potentiation therapy
US7706879B2 (en) 2007-04-30 2010-04-27 Medtronic, Inc. Apparatus and methods for automatic determination of a fusion pacing pre-excitation interval
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
WO2008138009A1 (en) * 2007-05-08 2008-11-13 C.R. Bard, Inc. Rapid 3d mapping using multielectrode position data
US20080281195A1 (en) 2007-05-09 2008-11-13 General Electric Company System and method for planning LV lead placement for cardiac resynchronization therapy
US8160700B1 (en) 2007-05-16 2012-04-17 Pacesetter, Inc. Adaptive single site and multi-site ventricular pacing
US8213693B1 (en) 2007-05-16 2012-07-03 General Electric Company System and method to track and navigate a tool through an imaged subject
US20090005831A1 (en) 2007-06-01 2009-01-01 Wilson Lon P Method, apparatus and protocol for screening appropriate patient candidates and for cardiac resychronization therapy (crt), determining cardiac functional response to adjustments of ventricular pacing devices and follow-up of crt patient outcomes
US8301246B2 (en) 2007-06-07 2012-10-30 Pacesetter, Inc. System and method for improving CRT response and identifying potential non-responders to CRT therapy
US8265736B2 (en) * 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US20090048528A1 (en) 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
WO2009025817A2 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Evaluating therapeutic stimulation electrode configurations based on physiological responses
WO2009025824A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Implantable medical lead with biased electrode
WO2009025828A1 (en) 2007-08-20 2009-02-26 Medtronic, Inc. Stimulation field management
WO2009027812A2 (en) 2007-08-31 2009-03-05 Medicalgorithmics Sp. Zo.O Reconstruction of geometry of a body component and analysis of spatial distribution of electrophysiological values
US7917214B1 (en) 2007-09-06 2011-03-29 Pacesetter, Inc. Methods and systems for identifying a preferred pacing configuration for a multi-electrode implantable cardiac electrotherapy device
US8485980B2 (en) 2007-09-28 2013-07-16 Maquet Critical Care Ab Electrode positioning
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US20090099469A1 (en) 2007-10-11 2009-04-16 Flores Pamela A Wireless ECG/EKG patient telemetry monitoring system
US8145306B2 (en) 2007-10-15 2012-03-27 Lessmeier Timothy J Method for optimizing CRT therapy
DE102007054178A1 (de) 2007-11-14 2009-05-20 Biotronik Crm Patent Ag Biventrikulärer Herzstimulator
EP2070562B1 (fr) 2007-12-13 2010-12-29 Ela Medical Dispositif médical pour la caractérisation de l'état cardiaque d'un patient appareillé avec un implant actif à stimulation biventriculaire
US20100280355A1 (en) 2007-12-14 2010-11-04 Grimm Richard A System and method to characterize cardiac function
RU2472442C2 (ru) * 2007-12-18 2013-01-20 Конинклейке Филипс Электроникс, Н.В. Система для комплексного слияния данных формирования изображения на основании статистических моделей анатомии
US20090234414A1 (en) 2008-03-13 2009-09-17 Sambelashvili Aleksandre T Apparatus and methods of optimizing atrioventricular pacing delay intervals
US20090232448A1 (en) 2008-03-14 2009-09-17 Eci Technology, Inc. Fiber optic multiplexer
US7996070B2 (en) 2008-04-24 2011-08-09 Medtronic, Inc. Template matching method for monitoring of ECG morphology changes
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
CN102098958B (zh) 2008-05-16 2013-08-07 韦拉索恩公司 电极贴片监视装置
WO2009148429A1 (en) 2008-06-02 2009-12-10 Medtronic, Inc. Electrogram storage for suspected non-physiological episodes
WO2009148428A1 (en) 2008-06-02 2009-12-10 Medtronic, Inc. Electrode lead integrity reports
US20090299423A1 (en) 2008-06-03 2009-12-03 Pacesetter, Inc. Systems and methods for determining inter-atrial conduction delays using multi-pole left ventricular pacing/sensing leads
US8379539B2 (en) 2008-06-03 2013-02-19 Cardiac Pacemakers, Inc. Methods and systems for providing multiple access within a network
US8019409B2 (en) 2008-06-09 2011-09-13 Pacesetter, Inc. Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking
US8155739B2 (en) 2008-06-20 2012-04-10 Pacesetter, Inc. Cardiac resynchronization therapy optimization using mechanical dyssynchrony and shortening parameters from realtime electrode motion tracking
US9259166B2 (en) 2008-08-11 2016-02-16 Washington University In St. Louis Systems and methods for on-site and real-time electrocardiographic imaging (ECGI)
US20100094149A1 (en) 2008-09-12 2010-04-15 Philadelphia Health & Education Corporation, D/B/A Drexel University College Of Medicine Noninvasive Ultrasound Cardiac Pacemaker and Defibrillator
US8090443B2 (en) 2008-09-15 2012-01-03 Xiaoyi Min Monitoring HF exacerbation and cardiac resynchronization therapy performance
EP2349468B1 (en) 2008-10-03 2014-08-13 Cardiac Pacemakers, Inc. Apparatuses for cardiac resynchronization therapy mode selection based on intrinsic conduction
RU2529481C2 (ru) 2008-10-23 2014-09-27 Конинклейке Филипс Электроникс Н.В. Система получения изображений с кардио-и/или дыхательной синхронизацией и способ 2-мерной визуализации в реальном времени с дополнением виртуальными анатомическими структурами во время процедур интервенционной абляции или установки кардиостимулятора
US8554314B2 (en) 2008-10-31 2013-10-08 Medtronic, Inc. Device and method to detect the severity of ischemia and heart attack risk
US9446246B2 (en) 2008-11-07 2016-09-20 Pacesetter, Inc. Identification of electro-mechanical dysynchrony with a non-cardiac resynchronization therapeutic device
JP5911726B2 (ja) 2008-11-10 2016-04-27 カーディオインサイト テクノロジーズ インコーポレイテッド 電気生理学データの視覚化
US8442634B2 (en) 2008-12-04 2013-05-14 Pacesetter, Inc. Systems and methods for controlling ventricular pacing in patients with long inter-atrial conduction delays
US9055880B2 (en) 2008-12-18 2015-06-16 Maquet Critical Care Ab Method and apparatus for determining an in vivo position of an esophageal catheter
US20100174137A1 (en) 2009-01-06 2010-07-08 Youngtack Shim Adaptive stimulation systems and methods
JP4527191B1 (ja) 2009-01-16 2010-08-18 パナソニック株式会社 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法
US8204590B2 (en) 2009-01-30 2012-06-19 Medtronic, Inc. Fusion pacing interval determination
US20100198292A1 (en) 2009-01-30 2010-08-05 Medtronic, Inc. Evaluating electrode configurations for delivering cardiac pacing therapy
US8755881B2 (en) 2009-01-30 2014-06-17 Medtronic, Inc. Pacing therapy adjustment based on ventriculo-atrial delay
US8219186B2 (en) 2009-03-05 2012-07-10 Chen Guangren Non-invasive system and method for scanning the heart
US20100234916A1 (en) 2009-03-11 2010-09-16 The Board Of Trustees Of The Leland Stanford Junior University System and method for ventricular pace timing based on isochrones
US8010194B2 (en) 2009-04-01 2011-08-30 David Muller Determining site-to-site pacing delay for multi-site anti-tachycardia pacing
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
EP2435132B1 (en) 2009-05-27 2013-08-21 Cardiac Pacemakers, Inc. Phrenic nerve activation detection
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US8391980B2 (en) 2009-07-07 2013-03-05 Pacesetter, Inc. Method and system for identifying a potential lead failure in an implantable medical device
US9387329B2 (en) 2009-07-22 2016-07-12 Pacesetter, Inc. Systems and methods for determining ventricular pacing sites for use with multi-pole leads
US8626260B2 (en) 2009-08-27 2014-01-07 William Crosby Expandable electrode pad
US20110054560A1 (en) 2009-09-03 2011-03-03 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US8285377B2 (en) 2009-09-03 2012-10-09 Pacesetter, Inc. Pacing, sensing and other parameter maps based on localization system data
US20110075896A1 (en) 2009-09-25 2011-03-31 Kazuhiko Matsumoto Computer readable medium, systems and methods for medical image analysis using motion information
US8731642B2 (en) 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
US8412327B2 (en) 2009-11-18 2013-04-02 Pacesetter, Inc. Cardiac resynchronization therapy optimization using vector measurements obtained from realtime electrode position tracking
US9381363B2 (en) 2009-12-07 2016-07-05 Pacesetter, Inc. Optimal pacing configuration via ventricular conduction delays
SE534636C2 (sv) 2009-12-12 2011-11-01 Anna Bjaellmark Ett system för kvantifiering och visualisering av hjärtats rotationsmönster
US20110144510A1 (en) 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information
US8983619B2 (en) 2009-12-30 2015-03-17 Medtronic, Inc. Testing communication during implantation
JP2013519428A (ja) 2010-02-12 2013-05-30 ブリガム・アンド・ウイミンズ・ホスピタル・インコーポレイテッド 心臓再同期療法の調節パラメータの自動調整のためのシステムおよび方法
US20110213260A1 (en) 2010-02-26 2011-09-01 Pacesetter, Inc. Crt lead placement based on optimal branch selection and optimal site selection
US20110319954A1 (en) 2010-06-28 2011-12-29 Pacesetter, Inc. Metrics and techniques for optimization of cardiac therapies
EP2588190A1 (en) 2010-07-01 2013-05-08 Cardiac Pacemakers, Inc. Rhythm correlation diagnostic measurement
JP5632539B2 (ja) 2010-09-17 2014-11-26 カーディオインサイト テクノロジーズ インコーポレイテッド 興奮伝播図を計算するためのシステムおよび方法
US8401646B2 (en) 2010-10-21 2013-03-19 Medtronic, Inc. Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors
US8718770B2 (en) 2010-10-21 2014-05-06 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US20120109244A1 (en) 2010-11-03 2012-05-03 Pacesetter, Inc. Parameters in monitoring cardiac resynchronization therapy response
US8583230B2 (en) 2011-01-19 2013-11-12 Pacesetter, Inc. Systems and methods for selectively limiting multi-site ventricular pacing delays during optimization of cardiac resynchronization therapy parameters
WO2012106297A2 (en) 2011-02-01 2012-08-09 Brigham And Women's Hospital, Inc. System and method for cardiac resychronization therapy control parameter generation using ventricular activation simulation and surface ecg registration
US10016607B2 (en) 2011-02-08 2018-07-10 Pacesetter, Inc. Systems and methods for tracking stroke volume using hybrid impedance configurations employing a multi-pole implantable cardiac lead
CA2827042A1 (en) 2011-02-11 2012-08-16 Natalia Trayanova System and method for planning a patient-specific cardiac procedure
JP5883888B2 (ja) 2011-02-17 2016-03-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光形状検知を使用して電気的活動マップを提供するシステム
US8380308B2 (en) 2011-03-29 2013-02-19 Pacesetter, Inc. Systems and methods for optimizing ventricular pacing based on left atrial electromechanical activation detected by an AV groove electrode
US9510763B2 (en) 2011-05-03 2016-12-06 Medtronic, Inc. Assessing intra-cardiac activation patterns and electrical dyssynchrony
US20120296387A1 (en) 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US8718750B2 (en) 2011-05-26 2014-05-06 Biotronik Se & Co. Kg Heart stimulator and method for A-V delay optimization
US20120330179A1 (en) 2011-06-24 2012-12-27 Verathon, Inc. Electrode contact-quality evaluation
CA2841381C (en) 2011-07-05 2016-12-06 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
US10029103B2 (en) 2011-07-14 2018-07-24 The Brigham And Women's Hospital System and method for automated adjustment of cardiac resynchronization therapy control parameters
US8897851B2 (en) 2011-07-14 2014-11-25 Verathon Inc. Releasable liner for sensor device
US9615790B2 (en) 2011-07-14 2017-04-11 Verathon Inc. Sensor device with flexible joints
US8527050B2 (en) 2011-07-28 2013-09-03 Medtronic, Inc. Method for discriminating anodal and cathodal capture
US8744576B2 (en) 2011-07-29 2014-06-03 Medtronic, Inc. Sampling intrinsic AV conduction time
US8954160B2 (en) 2011-09-02 2015-02-10 Medtronic, Inc. Detection of extracardiac stimulation by a cardiac rhythm management device
US20130072790A1 (en) 2011-09-19 2013-03-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Selection and optimization for cardiac resynchronization therapy
CA2754429A1 (en) 2011-10-05 2013-04-05 Kingston General Hospital Method and system for differentiating between supraventricular tachyarrhythmia and ventricular tachyarrhythmia
JP6259762B2 (ja) 2011-10-12 2018-01-10 カーディオインサイト テクノロジーズ インコーポレイテッド 空間的に関連する電気情報用の検知ゾーン
US8861830B2 (en) 2011-11-07 2014-10-14 Paieon Inc. Method and system for detecting and analyzing heart mechanics
US9037238B2 (en) 2011-11-21 2015-05-19 Michael C. Soldner Method for efficient delivery of dual site pacing
US8639333B2 (en) 2011-11-21 2014-01-28 Medtronic, Inc. Method and apparatus for adaptive cardiac resynchronization therapy employing a multipolar left ventricular lead
US8682433B2 (en) 2011-11-21 2014-03-25 Medtronic, Inc. Method for efficient delivery of dual site pacing
US9199087B2 (en) 2011-11-21 2015-12-01 Medtronic, Inc. Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device
US9956416B2 (en) 2011-12-22 2018-05-01 Medtronic, Inc. Monitoring activation times for use in determining pacing effectiveness
US9002454B2 (en) 2011-12-23 2015-04-07 Medtronic, Inc. Tracking pacing effectiveness based on waveform features
US8886315B2 (en) 2011-12-23 2014-11-11 Medtronic, Inc. Effectiveness of ventricular sense response in CRT
US9381362B2 (en) 2012-01-20 2016-07-05 Medtronic, Inc. Modifying atrioventricular delay based on activation times
US8615298B2 (en) 2012-02-17 2013-12-24 Medtronic, Inc. Criteria for optimal electrical resynchronization derived from multipolar leads or multiple electrodes during biventricular pacing
WO2013130026A1 (en) 2012-02-28 2013-09-06 Google Inc. Previewing expandable content items
US10413203B2 (en) 2012-03-27 2019-09-17 Cardiac Pacemakers, Inc. Baseline determination for phrenic nerve stimulation detection
US8958876B2 (en) 2012-03-27 2015-02-17 Cardiac Pacemakers, Inc. Determination of phrenic nerve stimulation threshold
US20130289640A1 (en) 2012-04-27 2013-10-31 Medtronic, Inc. Heart sound-based pacing vector selection system and method
US9204815B2 (en) 2012-05-04 2015-12-08 The Cleveland Clinic Foundation Frequency analysis tool for cardiac resynchronization
US9155897B2 (en) 2012-05-04 2015-10-13 Medtronic, Inc. Criteria for optimal electrical resynchronization during biventricular pacing
EP2846684B1 (en) 2012-05-09 2021-11-03 CardioInsight Technologies, Inc. Channel integrity detection
JP2013252180A (ja) 2012-06-05 2013-12-19 Nippon Koden Corp 生体電極および生体電極ロール
US8527051B1 (en) 2012-07-10 2013-09-03 St. Jude Medical Ab Detection and reduction of phrenic nerve stimulation
US9272151B2 (en) 2012-07-12 2016-03-01 Cardiac Pacemakers, Inc. Adaptive phrenic nerve stimulation detection
US8781584B2 (en) 2012-11-15 2014-07-15 Medtronic, Inc. Capture threshold measurement for selection of pacing vector
US9320905B2 (en) 2012-12-06 2016-04-26 Medtronic, Inc. Effective capture test
US8738132B1 (en) 2012-12-06 2014-05-27 Medtronic, Inc. Effective capture test
US8929984B2 (en) 2013-02-21 2015-01-06 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US9604064B2 (en) 2013-02-21 2017-03-28 Medtronic, Inc. Criteria for optimal electrical resynchronization during fusion pacing
US9278219B2 (en) 2013-03-15 2016-03-08 Medtronic, Inc. Closed loop optimization of control parameters during cardiac pacing
US9179846B2 (en) 2013-03-15 2015-11-10 Pacesetter, Inc. Method and system for characterizing cardiac function based on dynamic impedance
US10064567B2 (en) 2013-04-30 2018-09-04 Medtronic, Inc. Systems, methods, and interfaces for identifying optimal electrical vectors
US9924884B2 (en) 2013-04-30 2018-03-27 Medtronic, Inc. Systems, methods, and interfaces for identifying effective electrodes
US9486151B2 (en) 2013-06-12 2016-11-08 Medtronic, Inc. Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
US10251555B2 (en) 2013-06-12 2019-04-09 Medtronic, Inc. Implantable electrode location selection
US9877789B2 (en) 2013-06-12 2018-01-30 Medtronic, Inc. Implantable electrode location selection
US9272148B2 (en) 2013-07-23 2016-03-01 Medtronic, Inc. Combination of feedback on mechanical and electrical resynchronization to select therapy parameters
US9282907B2 (en) 2013-07-23 2016-03-15 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9278220B2 (en) 2013-07-23 2016-03-08 Medtronic, Inc. Identification of healthy versus unhealthy substrate for pacing from a multipolar lead
US9265954B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9265955B2 (en) 2013-07-26 2016-02-23 Medtronic, Inc. Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy
US9511233B2 (en) 2013-11-21 2016-12-06 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
US9993172B2 (en) 2013-12-09 2018-06-12 Medtronic, Inc. Noninvasive cardiac therapy evaluation
US9320446B2 (en) 2013-12-09 2016-04-26 Medtronic, Inc. Bioelectric sensor device and methods
US9776009B2 (en) 2014-03-20 2017-10-03 Medtronic, Inc. Non-invasive detection of phrenic nerve stimulation
US10959618B2 (en) 2014-05-12 2021-03-30 The Johns Hopkins University Imaging toolbox for guiding cardiac resynchronization therapy implantation from patient-specific imaging and body surface potential mapping data
US9707401B2 (en) 2014-07-30 2017-07-18 Cardiac Pacemakers, Inc. Pacing site and configuration optimization using a combination of electrical and mechanical information
US9591982B2 (en) 2014-07-31 2017-03-14 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9764143B2 (en) 2014-08-15 2017-09-19 Medtronic, Inc. Systems and methods for configuration of interventricular interval
US9586052B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for evaluating cardiac therapy
US9586050B2 (en) 2014-08-15 2017-03-07 Medtronic, Inc. Systems and methods for configuration of atrioventricular interval
US9675798B2 (en) 2014-08-26 2017-06-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
US20160317840A1 (en) * 2015-01-29 2016-11-03 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US11253178B2 (en) * 2015-01-29 2022-02-22 Medtronic, Inc. Noninvasive assessment of cardiac resynchronization therapy
US9687654B2 (en) 2015-04-23 2017-06-27 Medtronic, Inc. System and method for dual-chamber pacing
US10780279B2 (en) * 2016-02-26 2020-09-22 Medtronic, Inc. Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event
US10926094B2 (en) 2016-11-24 2021-02-23 Biotronik Se & Co. Kg Bi-ventricular implantable medical device
US10987517B2 (en) 2017-03-15 2021-04-27 Medtronic, Inc. Detection of noise signals in cardiac signals
US11426578B2 (en) 2017-09-15 2022-08-30 Medtronic, Inc. Electrodes for intra-cardiac pacemaker
US10780281B2 (en) 2018-03-23 2020-09-22 Medtronic, Inc. Evaluation of ventricle from atrium pacing therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593702A (en) * 1981-10-22 1986-06-10 Osrodek Badawczo-Rozwojowy Techniki Medycznej "Ormed" Measuring system for the electrical activity of the heart conducting system on the beat-to-beat basis by a noninvasive method
US5311873A (en) * 1992-08-28 1994-05-17 Ecole Polytechnique Comparative analysis of body surface potential distribution during cardiac pacing
CN1253761A (zh) * 1999-09-27 2000-05-24 复旦大学 动态心电标测方法及其装置
CN1878595A (zh) * 2003-11-03 2006-12-13 坎纳基股份有限公司 带有无线功率供给的静脉内心脏起搏系统
CN101073502A (zh) * 2006-05-03 2007-11-21 韦伯斯特生物官能公司 增强的超声图像显示

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiographic Imaging (ECGI);SUBHAM GHOSH and YORAM RUDY;《Annals of Biomedical Engineering》;20050930;第33卷(第9期);第1187-1201页 *
An Experimental-Computational Framework for Validating in-vivo ECG Inverse Algorithms;M.P. nash et al;《IJBEM》;20001231;第2卷(第2期);第1-9页 *

Also Published As

Publication number Publication date
CN103547212B (zh) 2016-03-16
CN103547212A (zh) 2014-01-29
EP2704626B1 (en) 2020-03-25
WO2012151389A1 (en) 2012-11-08
CN103561642A (zh) 2014-02-05
US9962097B2 (en) 2018-05-08
US20120284003A1 (en) 2012-11-08
US20150216434A1 (en) 2015-08-06
US9974457B2 (en) 2018-05-22
EP2704627A1 (en) 2014-03-12
EP2704627B1 (en) 2016-03-16
WO2012151364A1 (en) 2012-11-08
US20180242871A1 (en) 2018-08-30
EP3692905A1 (en) 2020-08-12
US20210290960A1 (en) 2021-09-23
US8972228B2 (en) 2015-03-03
US9510763B2 (en) 2016-12-06
US20120283587A1 (en) 2012-11-08
US20170049347A1 (en) 2017-02-23
EP2704626A1 (en) 2014-03-12
US11027135B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
CN103561642B (zh) 评估心脏内激动模式
CN108712878B (zh) 确定由于心脏起搏的组织夺获的程度非侵入性方法和系统
CN108697895B (zh) 相对于心房事件和左心室事件优化针对患者的仅右心室起搏的系统
US9474457B2 (en) Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes
EP3319521B1 (en) System for visualizing heart activation
CN103415320B (zh) 使用心室激动模拟和体表ecg记录进行心脏再同步治疗控制参数生成的系统与方法
US8326419B2 (en) Therapy optimization via multi-dimensional mapping
US20130245473A1 (en) System and methods for assessing heart function

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant