CN103489962B - 大面积制备半导体量子点的方法 - Google Patents

大面积制备半导体量子点的方法 Download PDF

Info

Publication number
CN103489962B
CN103489962B CN201310459051.6A CN201310459051A CN103489962B CN 103489962 B CN103489962 B CN 103489962B CN 201310459051 A CN201310459051 A CN 201310459051A CN 103489962 B CN103489962 B CN 103489962B
Authority
CN
China
Prior art keywords
substrate
quantum
quantum dot
solution
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310459051.6A
Other languages
English (en)
Other versions
CN103489962A (zh
Inventor
莫晓亮
陈国荣
郑凯波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201310459051.6A priority Critical patent/CN103489962B/zh
Publication of CN103489962A publication Critical patent/CN103489962A/zh
Application granted granted Critical
Publication of CN103489962B publication Critical patent/CN103489962B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于半导体与纳米材料技术领域,具体为一种大面积制备半导体量子点的方法。本方法采用喷雾的方法将不同的前驱液和清洗溶液分别连续喷到衬底上,由人工或自动控制所需的循环次数,在衬底上制备出量子点。本发明方法简化了量子点的制备工艺,降低了设备成本;制备过程中不同前驱液和清洗液不会在各自的容器中相互污染,提高了材料利用率;由于不需要浸入大面积衬底的容器,衬底大小不受限制,特别适合于太阳电池这类需要大面积衬底的光电子器件;而且量子点只在需要生长的衬底面上生长。另外可以附加衬底加热组件,对某些需要在量子点生长过程中加热或生长结束后退火的产品进行热处理。

Description

大面积制备半导体量子点的方法
技术领域
本发明属于半导体与纳米材料技术领域,具体涉及一种大面积制备半导体量子点的方法。
背景技术
量子点由于具有许多不同于宏观体材料的物理化学性质,在非线形光学、磁介质、催化、医药及功能材料等方面具有极为广阔的应用前景,特别是它的独特电子和发光性质使其在发光二极管,激光和太阳能电池等领域被深入地研究并渐渐走向实际应用。以太阳电池为例,目前晶体硅太阳电池是最主流的形式,但是这类太阳电池的光电转换效率理论上最多仅为30%,而半导体量子点太阳电池在理论上可以实现60%以上的高转换效率。这是因为在半导体量子点的作用下,具有充足能量的单光子激发产生多激子,而且量子点在带隙里形成中间带,可以有多个带隙起作用,来产生电子空穴对,这两个效应大大增加了光电转换效率。
目前常用的半导体量子点制备方法,一是外延技术,如分子束外延(MBE)、有机金属化学气相沉积(MOCVD)和化学束外延(CBE)等方法,这也是目前制备高质量量子点的方法,缺点是这类方法一般需要高真空或超高真空环境,且控制复杂,成本高。二是化学腐蚀法,缺点是量子点尺寸控制不好。三是溶液方法,包括胶体法,这类方法利用前驱溶液在衬底上生长量子点,具有工艺简单,成本底等特点。在第三类方法中,连续离子层吸附反应法(SILAR)能够在室温下成膜,量子点尺寸可控,污染小等优点,近几年越来越受到关注。它是将衬底分别连续浸入阴离子和阳离子的溶液中,利用异性离子的吸附产生化学反应生成量子点。可以通过多次以上的循环来控制量子点的尺寸。但该方法目前有一些缺点,衬底需要浸入到溶液中,因此如果衬底面积很大,所需的溶液容器体积也相应变大;通常量子点只需要制备在衬底的一个面上,而以上工艺导致衬底两面都会有量子点,在制备器件的过程中需要多一道工序,清洗不需要量子点的一面;由于衬底是连续浸入不同离子溶液中,即使可以增加另一种清洗溶液,也不可避免不同离子溶液会被衬底带入另一种溶液中,导致两种溶液混合,相互污染,这样既浪费了离子溶液,也降低衬底上量子点质量。
发明内容
本发明的目的在于提出工艺简单、质量优异的大面积制备量子点的方法。
本发明提出的制备量子点的方法,是采用喷雾的方式,将不同溶液分别顺序喷在衬底上,经发生化学反应形成所需量子点。
本发明提出的制备量子点的方法,具体步骤为:
(1)配制制备量子点所需的前驱体溶液,包括阴离子溶液、阳离子溶液和清洗(或漂洗)溶液。也可以是制备量子点所需的溶胶。这些溶液或溶胶作为喷涂液;
(2)将衬底放置在衬底架上,衬底架可以水平放置或垂直放置,衬底架可以有旋转装置,以甩掉多余溶液;
(3)将不同的的喷涂液分别装入容器,用不同的喷枪将不同溶液按照所需的喷涂时间、顺序和间隔时间喷到衬底上;
(4)喷涂液在衬底表面发生化学反应形成半导体量子点;
(5)手工或利用自动控制,重复步骤(3)、(4);经过多次循环喷涂,形成所需尺寸和面积的半导体量子点。
本发明中,所制备的量子点材料可以是PbS,CdS,ZnS,Cd-ZnS,Ag2S,,Sb2S3,CuS,In2S3,Bi2Se3,As2Se3,ZnSe,CdSe,CuInS2,CuInSe2等等二元、三元或多元化合物。
本发明中,各种喷涂液的喷涂顺序、喷涂时间和间隔时间可根据要求改变。
本发明中,其喷雾方式可以是高压无气雾化、气体雾化、超声雾化以及静电雾化等不同方式。
本发明中,衬底可以附加加热系统,对产品制备过程中和制备后进行热处理。
本发明中,多次循环可采用手工或自动控制来完成。
本发明中,制备环境可以是在大气中、人为气氛(包括单一气体或混合气体)或真空环境中。
本发明中,量子点可以制备在光滑衬底材料和衬底上的薄膜上,也可以制备在表面修饰过的衬底表面上,如经过物理、化学处理或有纳米阵列(包含衬底材料和其它材料)的表面。
本发明方法简化了量子点的制备工艺,降低了设备成本;制备过程中不同前驱液和清洗液不会在各自的容器中相互污染,提高了材料利用率;由于不需要浸入大面积衬底的容器,衬底大小不受限制,特别适合于太阳电池这类需要大面积衬底的光电子器件;而且量子点只在需要生长的衬底面上生长。另外可以附加衬底加热组件,对某些需要在量子点生长过程中加热或生长结束后退火的产品进行热处理。
具体实施方式
实施例1:本发明在有ZnO纳米线阵列的玻璃衬底上制备CdSe量子点,包含以下步骤:
(1) 在玻璃衬底上制备出ZnO纳米线阵列;
(2) 配制前驱液和漂洗溶液,浓度0.5M的醋酸镉溶液作为阳离子溶液,0.5M硒代硫酸钠溶液作为阴离子溶液,1M醋酸钠作为漂洗溶液;
(3)利用空气雾化方式将衬底喷上一层醋酸镉溶液;
(4)保持2分钟,将衬底甩干;
(5)利用空气雾化方式将衬底喷上一层醋酸钠溶液;
(6)保持1分钟,将衬底甩干;
(7)利用空气雾化方式将衬底喷上一层硒代硫酸钠溶液;
(8)保持3分钟,将衬底甩干;
(9)利用空气雾化方式将衬底喷上一层醋酸钠溶液;
(10)保持1分钟,将衬底甩干;
(11)利用自动控制方式重复以上(3)-(10)步骤,循环20次;
(12)在有ZnO纳米线阵列的玻璃衬底上制备出所需的CdSe量子点。

Claims (8)

1.一种大面积制备半导体量子点的方法,其特征在于具体步骤为:
(1)配制制备量子点所需的前驱体溶液,包括阴离子溶液、阳离子溶液和清洗溶液;或者制备量子点所需的溶胶;这些溶液或溶胶作为喷涂液;
(2)将衬底放置在衬底架上,衬底架水平放置或垂直放置,衬底架设有旋转装置,以甩掉多余溶液;
(3)将不同的的喷涂液分别装入容器,用不同的喷枪,以喷雾方式将不同的喷涂液按照所需的喷涂时间、顺序和间隔时间喷到衬底上;
(4)喷涂液在衬底表面发生化学反应形成半导体量子点;
(5)重复步骤(3)、(4);经过多次循环喷涂,形成所需尺寸和面积的半导体量子点。
2.根据权利要求1所述的方法,其特征在于所制备的量子点材料是PbS,CdS,ZnS,Cd-ZnS,Ag2S,Sb2S3,CuS,In2S3,Bi2Se3,As2Se3,ZnSe,CdSe,CuInS2,或CuInSe2
3.根据权利要求1所述的方法,其特征在于各种喷涂液的喷涂顺序、喷涂时间和间隔时间根据要求改变。
4.根据权利要求1所述的方法,其特征在于所述喷雾方式是高压无气雾化、气体雾化、超声雾化或静电雾化。
5.根据权利要求1所述的方法,其特征在于所述衬底附加加热系统,用于对产品制备过程中和制备后进行热处理。
6.根据权利要求1所述的方法,其特征在于所述多次循环喷涂采用手工或自动控制来完成。
7.根据权利要求1所述的方法,其特征在于制备环境是在单一气体或混合气体环境,或真空环境。
8.根据权利要求1所述的方法,其特征在于量子点制备在光滑衬底材料上,或衬底上的薄膜上,或制备在表面修饰过的衬底表面上。
CN201310459051.6A 2013-10-07 2013-10-07 大面积制备半导体量子点的方法 Expired - Fee Related CN103489962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310459051.6A CN103489962B (zh) 2013-10-07 2013-10-07 大面积制备半导体量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310459051.6A CN103489962B (zh) 2013-10-07 2013-10-07 大面积制备半导体量子点的方法

Publications (2)

Publication Number Publication Date
CN103489962A CN103489962A (zh) 2014-01-01
CN103489962B true CN103489962B (zh) 2017-01-04

Family

ID=49830055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310459051.6A Expired - Fee Related CN103489962B (zh) 2013-10-07 2013-10-07 大面积制备半导体量子点的方法

Country Status (1)

Country Link
CN (1) CN103489962B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952627B (zh) * 2014-12-29 2018-04-27 中国科学院物理研究所 量子点敏化太阳电池及其制备方法
CN104992840B (zh) * 2014-12-29 2018-08-07 中国科学院物理研究所 量子点敏化太阳电池及其制备方法
CN110379932A (zh) * 2019-08-08 2019-10-25 上海南麟电子股份有限公司 一种电驱动量子点单光子源及其制备方法
CN113247879B (zh) * 2021-04-16 2022-12-23 昆明理工大学 一种喷雾热解制备碳化聚合物量子点的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
CN1346412A (zh) * 1999-04-06 2002-04-24 哈恩-迈特纳研究所柏林有限公司 制备难溶薄涂层的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI281691B (en) * 2004-08-23 2007-05-21 Ind Tech Res Inst Method for manufacturing a quantum-dot element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906670A (en) * 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
CN1346412A (zh) * 1999-04-06 2002-04-24 哈恩-迈特纳研究所柏林有限公司 制备难溶薄涂层的方法

Also Published As

Publication number Publication date
CN103489962A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103489962B (zh) 大面积制备半导体量子点的方法
US9673348B2 (en) Buffer layer deposition for thin-film solar cells
Zhao et al. Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Large‐Area Fabrication
CN103469179B (zh) 一种真空环境下基于溶液的无机梯度薄膜制备方法
CN102194925A (zh) 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN106986373A (zh) 一种ZnO纳米棒的制备方法
CN101009228A (zh) 高度取向的氧化锌纳米柱阵列的超声辅助水溶液制备方法
CN104952627A (zh) 量子点敏化太阳电池及其制备方法
CN205887257U (zh) 一种用于制备薄膜的全自动脉冲喷涂装置
CN102515248B (zh) 采用脉冲电磁场制备ZnO纳米棒阵列的方法
CN103590022A (zh) 一种超声波雾化-微波热解制备薄膜的方法
CN109019663B (zh) 一种ZnO纳米棒、QLED器件及其制备方法
CN102666905A (zh) 制造衬底的方法和设备
CN105355720B (zh) 一种制备铜锡硫薄膜太阳能电池吸收层的方法
CN103466960A (zh) 一种光诱导自清洁玻璃的制备方法
CN105981149A (zh) 量子点阵列和量子点超晶格的制备方法
TW201504464A (zh) 蒸氣分配裝置及成型太陽能面板之方法
CN103346206A (zh) 一种表面富硫的铜铟镓硒薄膜的制备方法
CN101244895B (zh) 控制ZnO纳米柱阵列密度的方法
CN106158389A (zh) 硫硒化镉和硫硒化锌修饰的二氧化钛薄膜结构及制备方法
CN102199770B (zh) 一种大面积制备氧化锌纳米棒阵列的方法
CN107683347A (zh) 金属氧化膜的成膜方法
CN104310403B (zh) 一种窄带发光黄色纳米硅颗粒的制备方法
CN105980067B (zh) 在缓冲层沉积期间的溶液遏制
CN210457482U (zh) 新型连续激光制备石墨烯装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20191007