CN103477559B - 栅极驱动装置 - Google Patents

栅极驱动装置 Download PDF

Info

Publication number
CN103477559B
CN103477559B CN201280018788.8A CN201280018788A CN103477559B CN 103477559 B CN103477559 B CN 103477559B CN 201280018788 A CN201280018788 A CN 201280018788A CN 103477559 B CN103477559 B CN 103477559B
Authority
CN
China
Prior art keywords
voltage
circuit
grid
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280018788.8A
Other languages
English (en)
Other versions
CN103477559A (zh
Inventor
小滨考德
增泽和孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of CN103477559A publication Critical patent/CN103477559A/zh
Application granted granted Critical
Publication of CN103477559B publication Critical patent/CN103477559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Abstract

本发明能够在处理供电电压中的变动所需的电容被省去的情况下处理供电电压中的变动,还能应对供电电压始终较低的情况,由此确保对有源元件的驱动。在本发明中,对IGBT(3)的栅极进行驱动的栅极驱动装置包括:第1开关部(20),该第1开关部(20)使IGBT(3)导通;第2开关部(40),该第2开关部(40)使IGBT(3)截止;电流控制部(50),该电流控制部(50)对IGBT(3)的栅极上的电荷向接地线(12)的流出进行控制,以使流入IGBT(3)的电流保持一定;第1保护电路(30),该第1保护电路(30)对IGBT(3)的栅极上的电荷向供电线(11)的流出进行抑制;以及第2保护电路(60),该第2保护电路(60)对内部供电电压Vdc中的规定变动进行检测,当检测到所述变动时,断开电流控制部(50)与接地线(12)之间的连接。

Description

栅极驱动装置
技术领域
本发明涉及一种栅极驱动装置,该栅极驱动装置对IGBT(InsulatedGateBipolarTransistor:绝缘栅双极晶体管)、功率MOSFET(MetalOxideSemiconductorFieldEffectTransistor:金属氧化物半导体场效应晶体管)等具有大输入电容的有源元件的栅极进行驱动,
背景技术
对于这种栅极驱动装置提出有多种结构,例如专利文献1及2所示的示例。
专利文献1中公开了一种装置,该装置利用IGBT对流过一次侧绕组的电流进行控制,从而对利用连接于线圈的二次侧绕组的火花塞进行的点火加以控制,并且,该装置在减小低电池电压时的导通电压的同时确保了足够的通电开始时间。
如图11所示,专利文献2公开了一种栅极驱动装置,其负载为电感L,控制IC4对具有电流感测功能的IGBT或其它有源元件的栅极进行驱动。
在本示例的栅极驱动装置中,作为负载的电感L以及IGBT3串联地连接于供电线1与接地线2之间,其中,对所述供电线1施加有作为外部电源的电池的供电电压Vbatt,所述供电线2与地gnd相连接。
另外,该控制IC4以及电流限制电阻RB与电感L及IGBT3并联连接,其中,该电流限制电阻RB是在A-B间施加有IC4的箝位电压以上的电压时的电阻。该控制IC4中输入有从IGBT3的电流感测端子s输出的电流感测电压Vsns。从控制IC4输出的栅极电压Vg被施加到IGBT3的栅极。
此外,用于去除电感L的高频噪声的去噪电容C1并联连接于电流限制电阻RB与控制IC4的串联电路。高通电容C2与控制IC4并联地连接至所述供电线1和接地线2。L1与L2是供电线1和接地线2的布线电感。
图12示出了关于用图11所示的控制IC4来对IGBT3进行驱动控制的部分的具体结构。
如图12所示,在该控制IC4中,恒流源5、P型MOS晶体管M1以及N型MOS晶体管M3串联连接于施加有内部供电电压Vdc0的供电线11与连接地gnd的接地线12之间。电流控制用的P型MOS晶体管M2与MOS晶体管M3并联连接。寄生二极管D1~D3与MOS晶体管M1~M3并联连接。运算放大器6及电阻R1和R2构成误差放大器,以对MOS晶体管M2的栅极电压进行控制。
在采用如上结构的控制IC4的情况下,如图11所示,利用与输入至控制IC4的控制信号Sin同步的开关信号SWp、SWn来对MOS晶体管M1和M3的导通/截止进行控制,从而对IGBT3的充放电进行控制。即,当MOS晶体管M1导通时,使IGBT3充电,当MOS晶体管M1截止时,使IGBT3放电。
该运算放大器6对MOS晶体管M2的栅极电压进行控制,以使得通过利用感测电阻将从IGBT3的电流感测端子S输入的感测电流转换成电压而得到的电流感测电压Vsns等于参考电压Vref,由此,对IGBT3的栅极电压Vg进行控制,从而对IGBT3的集电极电流Ic进行控制。
若电池电压Vbatt的幅度因电池纹波而发生变动,则在电池电压Vbatt下降时,图11中的点A-B间的电压将因为由布线电感L1、L2和电容C1所构成的谐振电路而瞬间下降。上述电压的瞬间下降会随着IGBT3的集电极电流Ic的增大而逐渐增大,并瞬间地下降至控制IC4的最小动作供电电压以下。
然而,旁路电容C2与控制IC4并联连接,该旁路电容C2和电流限制电阻RB构成低通滤波器。由于该低通滤波器的效应,使得通过旁通电容C2的电压反复地逐渐增大与逐渐减小。因此,控制IC4的内部供电电压Vdc被保持为足够大于控制IC4的最小动作供电电压的基本恒定的电压。
在出于减少元件个数的目的而去除旁路电容C2时,低通滤波器的效应消失。因此,图11所示的控制IC4的点C-B之间的电压呈现与点A-B间的电压相同的波形。因此,内部供电电压Vdc产生瞬间的电压下降,IGBT3的栅极电压Vg也产生大的瞬间的电压下降。其结果是,对流过IGBT3的电流Ic产生剧烈的变化,在作为负载的电感L上产生与该电流变化成正比的感应电压。
栅极电压Vg产生大的瞬间电压下降的原因有两个。
其一是,控制IC4的内部供电电压Vdc与栅极电压Vg之间的关系暂时变为Vdc<Vg,并且聚集在IGBT3的栅极上的栅极电荷通过MOS晶体管M1的寄生二极管D1流出至供电线11。其二是,若在电流限制控制的过程中出现剧烈的电压下降,则聚集在IGBT3的栅极上的栅极电荷通过MOS晶体管M2流出至接地线12。
专利文献1:日本专利特开2008-291728号公报
专利文献2:日本专利特开2010-288444号公报
然而,为了去除旁路电容C2,上述问题必须得到解决,作为一种改进方法、改进装置,已知有图13所示的控制IC4a(参见专利文献2)。
如图13所示,该控制IC4a具有图12所示的控制IC4的基本结构,但还增加有如下的构成元件。
也就是说,包括电阻R3、二极管D11以及电压下降抑制电路80的并联电路被追加入内部供电线11。此外,二极管D12与恒流源5和MOS晶体管M1的串联电路并联连接,追加有插入至运算放大器6的输出端子与MOS晶体管M2的栅极之间的电阻R4。
电压下降抑制电路80包括:低电压检测电路8,该低电压检测电路8对内部供电电压Vdc0中的瞬间的电压下降进行检测;以及MOS晶体管M4,该MOS晶体管M4在低电压检测电路8检测到电压下降的情况下立刻截止。寄生二极管D4与MOS晶体管M4并联连接。
在控制IC4a采用上述结构的情况下,若电池电压Vbatt的幅度因电池纹波而发生变动,则在电压下降时,控制IC4a的内部供电电压Vdc0将产生瞬间的过冲。内部供电电压Vdc0的过冲会随着IGBT3的集电极电流Ic的增大而增大,并最后下降至控制IC4的最小动作电压以下。
即,端子电压Vab因布线电感L1、L2与去噪电容C1之间产生的谐振而下降。在该影响下,如下状态继而发生:内部电源电压Vdc0下降,并瞬间地下降至控制IC4a的最小动作电压以下。
然而,低电压检测电路8检测出该内部供电电压Vdc0的瞬间的电压下降,并基于该检测立刻使MOS晶体管M4截止。因此,能可靠地避免聚集于IGBT3的栅极的电荷通过MOS晶体管M2及M4释放至接地线12。其结果是,IGBT3能继续在该状态下工作。
另一方面,在内部供电电压Vdc0由于瞬间的下降而低于IGBT3的栅极电压Vg的情况下,聚集在IGBT3的栅极的电荷通过MOS晶体管M1的寄生二极管D1(或二极管D12)流出至供电线11。
然而,二极管D11与电阻R3的并联电路插入至供电线11。因此,该二极管D11能防止栅极电荷流出至与供电线11相连的内部供电电路(未图示)。此外,电阻R3与IGBT3的栅极的电容构成低通滤波器,因此能防止栅极电荷向内部供电电路的瞬间移动,并且,还能提供与内部电源相连的电路所能进行工作的最小限制电流。
如上所述,如图13所示,当控制IC4a中内部供电电压Vdc0发生瞬间的电压下降时,能可靠地对栅极电荷从IGBT3流出至内部供电电路及流出至接地线12进行抑制。因此,IGBT3能保持栅极电荷,并抑制栅极电压Vg的下降,位于由控制IC4a中的二极管D11和电阻R3构成的并联电路下游侧的内部供电电压Vdc能被保持为与内部供电电压Vdc刚要下降前的电压相比有稍许减小的电压。
另外,尽管在内部供电电压Vdc0中产生了大的变动,内部供电电压Vdc中产生的极小的变动还是能被抑制,从而能稳定内部电源。因此,还能起到暂时增大(提供)将内部供电电压Vdc用作为电源的其它电路的电压的作用。
然而,在图13所示的控制IC4a中,例如在供电电压始终为低电压的情况下,在提供供电线11的内部供电电压Vdc0的点与IGBT3的栅极之间所产生的电压下降将无法被忽略,并且IGBT3的栅极电压Vg可能下降,使得无法充分驱动IGBT3。
另一方面,提出有图14所示的控制IC4b。
该控制IC4b对图13所示的控制IC4a的结构增加有调节器电路7。该调节器电路7使图11中的点C-B之间的电压Vbin稳定,并输出稳定的电压Vreg。
图15示出了图14所示的低电压检测电路8的具体示例(参照专利文献2)。
如图15所示,该低电压检测(欠电压检测器)电路8包括自偏置型比较器81,该自偏置型比较器81连接于施加有内部供电电压Vdc的内部供电线11、与连接于地gnd的接地线12之间。
比较器81的非反相输入连接于电阻R11与N型MOS晶体管M11之间的连接点,该电阻R11和N型MOS晶体管M11串联连接于内部供电线11与接地线12之间。比较器81的反相输入连接于二极管D31与电阻R13之间的连接点,该二极管D31和电阻R13串联连接于施加有调节器电路7的输出电压Vreg的布线13、与接地线12之间。
比较器81的输出侧与N型MOS晶体管M4之间插入有反相器82、以及电阻R14与负极设于比较器81一侧的二极管D32的并联电路,栅极信号从该并联电路输出至MOS晶体管M4的栅极。C10是MOS晶体管M4的栅极与发射极之间的电容。
接下来,参照图14至图16,对图15所示的低电压检测电路8的动作示例进行说明。
如图16(A)所示,图11中的点C-B之间的电压Vbin从最小值(0V)上升(增加)到最大值,并在到达最大值后,下降(减小)至最小值。
伴随着电压Vbin的这一变化,图14所示的调节器电路7的输出电压Vreg、以及内部供电电压Vdc如图16(A)所示,保持Vreg>Vdc关系并上升,并且均达到一个恒定值并保持该恒定值。此后,这两个电压从各自的恒定值下降至最小值。
随着这一变化的发生,图15所示的比较器81的非反相输入端子(+)的输入电压V+、以及反相输入端子(-)的输入电压V-也发生变化,如图16(B)所示,输入电压V-始终大于输入电压V+。这是由于,输出电压Vreg的上升早于内部供电电压Vdc的上升,此外,二极管D31的正向电压小于MOS晶体管M11的阈值电压。
其结果是,如图16(C)所示,比较器81的输出CMPout变为L电平(低电平)。在图16(C)中,在具有微小电压处,电源的上升和下降过程中产生不稳定状态。
反相器82对比较器81的输出进行逻辑反相,由此,反相器82的输出变为H电平(高电平)。因此,如图16(D)所示,图15所示的低电压检测电路8的输出电压OUTB始终为H电平,并被施加到图14所示的MOS晶体管M4的栅极。
其结果是,MOS晶体管M4的漏极电流Id变为图16(E)所示的电流。也就是说,在供电电压较低的状态下(低供电电压状态),原本应保持一定的VREF电位下降,并且由于运算放大器6的动作,而使得应当对IGBT3的栅极进行充电的电荷通过MOS晶体管M4流出至接地线12,由此,IGBT3的栅极电压下降。其结果是,在低供电电压状态下,流过IGBT3的电流Ic被限制在较小的电流范围内。
发明内容
本发明针对于解决上述问题,其目的在于,提供一种栅极驱动装置,即使在不使用应对供电电压中的变动所需的电容器的情况下,也能应对供电电压中的变动,并确保对有源元件的驱动,此外,该栅极驱动装置即使在供电电压始终为低供电电压的情况下,也能确保对有源元件的驱动。
为了达成如上目的,本发明的一个方式是一种栅极驱动装置,该栅极驱动装置对具有大输入电容的有源元件的栅极进行驱动,该装置包括:第1开关部,该第1开关部设于高电位侧的第1供电线与所述有源元件的栅极之间,并使所述有源元件导通;第2开关部,该第2开关部连接于所述有源元件的栅极与低电位侧的第2供电线与之间,并使所述有源元件截止;电流控制部,该电流控制部与所述第2开关部并联设置,并对所述有源元件的栅极上的电荷向所述第2供电线的流出进行控制,以使流过所述有源元件的电流保持一定;第1保护电路,该第1保护电路设于所述第1开关部与所述有源元件的栅极之间,并对所述有源元件的栅极上的电荷向所述第1供电线的流出进行抑制;以及第2保护电路,该第2保护电路设于所述电流控制部与所述第2供电线之间,并对所述第1供电线与所述第2供电线之间的施加电压的规定变动进行检测,并且,当检测到所述变动时,断开所述电流控制部与所述第2供电线之间的连接。
在本发明的另一方式中,所述第1开关部包括第1晶体管,当所述有源元件导通时,所述第1晶体管作为恒流源进行动作,当所述有源元件截止时,所述第1晶体管停止作为恒流源的动作。
此外,在本发明的另一方式中,所述第1开关部包括:第2晶体管,该第2晶体管与所述第1晶体管构成电流镜像电路;以及第3晶体管,该第3晶体管与所述第2晶体管串联连接,并且,该第3晶体管根据所述有源元件是导通还是截止来进行导通或截止。
此外,在本发明的另一方式中,所述第2保护电路包括:二极管,该二极管防止所述有源元件的栅极上的电荷流出至所述第1供电线;以及电阻,该电阻与所述二极管并联连接,并与所述有源元件的栅极电容构成低通滤波器。
本发明的另一方式是一种栅极驱动装置,对具有大输入电容的有源元件的栅极进行驱动,该装置包括:第1开关部,该第1开关部设于高电位侧的第1电源线与所述有源元件的栅极之间,并使所述有源元件导通;第2开关部,该第2开关部连接于所述有源元件的栅极与低电位侧的第2供电线与之间,并使所述有源元件截止;电流控制部,该电流控制部与所述第2开关部并联设置,并对所述有源元件的栅极上的电荷向所述第2供电线的流出进行控制,以使流过所述有源元件的电流保持一定;第1保护电路,该第1保护电路设于外部电源与所述第1供电线之间,并对所述有源元件的栅极上的电荷向所述外部电源的流出进行抑制;以及第2保护电路,该第2保护电路设于所述电流控制部与所述第2供电线之间,当检测到所述外部电源的电压发生瞬间的下降、或检测到所述外部电源的电压处于低供电电压状态时,断开所述电流控制部与所述第2供电线之间的连接。
另外,在本发明的一个方式中,由于设有第1保护电路和第2保护电路,因此可省去旁通电容,并且,即使在供电电压发生变动时,有源元件的栅极电压的变动也能被最大程度地抑制,从而能够确保对有源元件的栅极充分地进行驱动。
此外,在本发明的一个方式中,第1开关部及第1保护电路仅设置在所述第1供电线与所述有源元件的栅极之间,由此,与现有技术相比,第1供电线与有源元件的栅极之间的电压下降可被减小。因此,即使在所述供电电压始终为较小的供电电压的情况下,也能确保对有源元件的驱动。
此外,在本发明的一个方式中,当检测到外部电源的电压处于低供电电压状态时,第2保护电路中断所述电流控制部与所述第2供电线之间的连接。因此,在低供电电压动作中,可在不对流过有源元件的电流进行限制、且输入至所述有源元件的电压不减小的情况下,对所述有源元件进行驱动。
附图说明
图1是表示本发明的实施方式1的栅极驱动装置的电路图。
图2是图1所示的控制IC的电路图。
图3是用于对图2所示的控制IC进行说明的不同部分的波形图。
图4是表示图2所示的控制IC的变形例的结构的电路图。
图5是表示本发明的实施方式2的栅极驱动装置的控制IC的电路图。
图6是表示图5所示的低电压检测电路的具体结构的电路图。
图7是用于对根据图6所示的低电压检测电路中的直流电压的变化来进行的动作进行说明的不同部分的波形图。
图8是用于对根据图6所示的低电压检测电路中的交流电压的变化来进行的动作进行说明的不同部分的波形图。
图9是用于对实施方式2中的供电电压处于低电压时的动作进行说明的不同部分的波形图。
图10是用于对实施方式2中的供电电压产生瞬间的电压下降时的动作进行说明的不同部分的波形图。
图11是表示现有技术的装置的结构的电路图。
图12是图11所示的控制IC的电路图。
图13是表示作为图12所示的控制IC的改进方案的、现有的控制IC的电路图。
图14是表示作为图13所示的控制IC的改进方案的控制IC的电路图。
图15是表示图14所示的低电压检测电路的具体结构的电路图。
图16是用于对根据图15所示的低电压检测电路中的直流电压的变化进行的动作进行说明的不同部分的波形图。
具体实施方式
下面,参照附图对本发明的实施方式进行说明。
(实施方式1的结构)
图1是表示本发明的实施方式1的栅极驱动装置的电路图。
如图1所示,实施方式1的栅极驱动装置对像IGBT3这样的具有大输入电容的有源元件的栅极进行驱动,将图11中的控制IC4替换成控制IC4c,并去除图11中的旁路电容C2。
也就是说,在实施方式1中,作为负载的电感L及IGBT3串联连接于供电线1与接地线2之间,其中,对所述供电线1提供有作为外部电源的电池供电电压Vbatt,所述接地线2连接于地gnd。
该控制IC4c以及电流限制电阻RB与电感L及IGBT3并联连接,其中,该电流限制电阻RB是在点A-B间施加有IC4c的箝位电压以上的电压时的电阻。该控制IC4c中输入有从IGBT3的电流感测端子s输出的电流感测电压Vsns。从控制IC4c输出的栅极电压Vg被施加到IGBT3的栅极。
此外,用于去除来自电感L的高频噪声的去噪电容C1与电流限制电阻RB和控制IC4c的串联电路并联连接。L1和L2是供电线1和接地线2的布线电感。
(控制IC的结构)
下面,参照图2对图1所示的控制IC4c的栅极控制部的具体结构进行说明。
如图2所示,在控制IC4c中,栅极控制部连接于内部供电线11与接地线12之间,其中,所述内部供电线11连接于调节器电路(未图示),该调节器电路基于通过图1所示的电流限制电阻RB输入的电池供电电压Vbatt来生成内部供电电压Vdc(=Vreg),所述接地线12连接于地gnd。
如图2所示,该栅极控制部包括:第1开关部20、第1保护电路30、第2开关部40、电流控制部50、以及第2保护电路60。这些元器件设于供电线11与接地线12之间,其中,所述供电线11是高电位一侧的供电线,所述接地线12是低电位一侧的供电线。
具体而言,该第1开关部20、第1保护电路30、以及第2开关部40串联连接于供电线11与接地线12之间。此外,第1保护电路30和第2开关部40共用的连接部与输出端子70相连,该输出端子70连接于IGBT3的栅极。电流控制部50和第2保护电路60的串联电路与第2开关部40并联。
第1开关部20设置于供电线11与第1保护电路30之间,并包括开关元件SW,该开关元件SW由开关信号Swp对其进行导通及截止的控制。该开关元件SW导通时,对IGBT3的栅极进行充电。
第1保护电路30对IGBT3的栅极上的电荷向供电线11的流出进行抑制,并与IGBT3的栅极电容形成低通滤波器,并且,该第1保护电路30包括由二极管D21与电阻R5并联连接而成的并联电路。该并联电路的一端与开关元件SW相连,另一端与连接于IGBT3的栅极的输出端子70相连。
第2开关部40包括N型MOS晶体管M3,该N型MOS晶体管M3具有与其并联连接的寄生二极管D3。MOS晶体管M3与二极管D3的并联电路连接于输出端子70与接地线12之间。在MOS晶体管M3导通的情况下,IGBT3栅极处的电荷被释放。这里,在开关元件SW接通(导通)时起到箝位功能的二极管D22与第2开关部40并联连接。
电流控制部50与第2开关部40并联连接,并对IGBT3的栅极上的电荷向接地线12的流出进行控制,以使得流入IGBT3的集电极电流保持一定。
为此,电流控制部50包括连接于输出端子70与第2保护电路60的MOS晶体管M4之间的MOS晶体管M3、以及对该MOS晶体管M2的栅极电压进行控制的误差放大器51。误差放大器51包括运算放大器6以及电阻R1、R2、R4。误差放大器51根据从IGBT3的电流感测端子s输入的电流感测电压Vsns、以及参考电压Vref的差值,来生成电压,并将该电压输出至MOS晶体管M2。
第2保护电路60设于电流控制部50与接地线12之间,对内部供电电压Vdc中的规定变动进行检测,在检测到所述变动的情况下,断开电流控制部50与接地线12之间的连接。
为此,第2保护电路60包括:低电压检测电路61,该低电压检测电路61对内部供电电压Vdc中的瞬间的电压下降进行检测;以及MOS晶体管M4,该MOS晶体管M4在低电压检测电路61检测到电压下降的情况下立刻截止。寄生二极管D4与MOS晶体管M4并联连接。该并联电路连接于电流控制部50的MOS晶体管M2、与接地线12之间。
(控制IC的动作)
接下来,参照图1至图3对控制IC4c的动作的示例进行说明。
如图3(a)所示,在图3中的时刻t0,图1所示的电池电压Vbatt是规定的定电压,且处于正常状态,而图1中的点A-B之间的电压及点C-B之间的电压如图3(b)及图3(c)所示。因此,施加在图2中的内部供电线11上的内部供电电压Vdc如图3(e)所示,与电池电压Vbatt基本相等。
此时,如图3(d)所示,当输入至控制IC4c栅极的控制信号Sin的逻辑值为“低电平(Low)”时,对开关元件SW进行导通、截止的开关信号SWp、以及输入至MOS晶体管M3中的开关信号SWn的逻辑值如图3(f)所示那样为“高电平(High)”。因此,开关元件SW进入截止状态,MOS晶体管M3进入导通状态。
因此,如图3(h)所示,IGBT3的栅极电压Vg变为接地电平,使得IGBT3进入截止状态,流入IGBT3的电流Ic如图3(i)那样变为“0”。其结果是,如图3(g)所示,从IGBT3的电流感测端子s输出的电流感测电压Vsns也变为“0”。
此后,在图3中的时刻t1,当控制信号Sin的逻辑值如图3(d)所示那样从“低电平”变为“高电平”时,开关信号SWp及SWn的逻辑值如图3(f)所示那样从“高电平”转换为“低电平”。与此相对应,开关元件SW进入导通状态,MOS晶体管M3截止,使得IGBT3的栅极电压Vg变为正电压,并如图3(h)所示那样与内部供电电压Vdc基本相一致。
因此,如图3(i)所示,IGBT3进入导通状态,流入IGBT3的电流Ic逐渐增大。与此相对应,如图3(g)所示,基于从IGBT3的电流感测端子s输出的感测电流而生成的电流感测电压Vsns逐渐增大。此后,电流控制部50执行电流限制处理,使得感测电压Vsns与参考电压Vref基本相一致。
如图3(a)所示,假设在图3中的时刻t2产生电压变动,即,电池电压Vbatt在规定的周期内反复地发生电压下降。
在该情况下,如图3(e)所示,控制IC4c中的内部供电电压Vdc与电池电压Vbatt中的电压变动相对应地,在电压变动的下降沿处发生瞬间的过冲,该过冲随着集电极电流Ic的增大而增大,最后,下降至控制IC4c的最小动作电压以下。
也就是说,图1中的点A-B之间的电压由于图1所示的布线电感L1、L2与去噪电容C1的谐振而下降(参照图3(b))。在该影响下,如图3(e)所示,内部供电电压Vdc下降,并瞬间地低于控制IC4c的最小动作电压。
然而,当内部供电电压Vdc开始发生变动时,低电压检测电路61检测到内部供电电压Vdc发生瞬间的电压下降,低电压检测电路61基于该检测结果立刻将MOS晶体管M4截止。
因此,即使在电流控制部50对MOS晶体管M2进行导通控制、以使得电流感测电压Vsns与参考电压Vref相一致的情况下,MOS晶体管M4也能持续地处于截止状态。由此,能可靠地避免聚集于IGBT3栅极处的电荷通过MOS晶体管M2释放至接地线12。采用上述方法能使IGBT3继续地处于导通状态。
另一方面,若IGBT3的栅极电压Vg由于内部供电电压Vdc发生瞬间的剧烈下降而变为高于内部供电电压Vdc,则聚集在IGBT3栅极上的电荷会试图流出至内部供电线11。
然而,第1保护电路30被插入至输出端子70(IGBT3的栅极)与开关元件SW之间,其中,在所述第1保护电路30中,电阻R5与二极管D21并联连接。由此,二极管D21对聚集的电荷向内部供电线11的流出进行抑制。此外,IGBT3的栅极电容与电阻R5构成低通滤波器,从而能够防止上述聚集的电荷瞬间移动至内部供电线11,并提供使与内部电源相连的电路动作所需的最小电流。
由此,在图2所示的控制IC4c中,当内部供电电压Vdc中发生瞬间的电压下降时,能够可靠地抑制聚集在IGBT3栅极处的电荷流出至内部供电线11和接地线12。其结果是,IGBT3能够保持栅极电荷并抑制栅极电压Vg的下降。
由此,如图3(h)所示,能将IGBT3的栅极电压Vg限制至小幅度变动,而没有任何剧烈的电压下降。与此相对应,如图3(i)所示,流入IGBT3的电流Ic能稳定地增大。因此,能可靠地避免在作为负载的电感L处产生与电流变化成正比的感应电压。
(控制IC的变形例)
接下来,参照图4对控制IC的变形例的结构进行说明。
如图4所示,该变形例中的控制IC4d基于图2所示的控制IC4c的结构,但将图2的开关元件SW替换成图4所示的第1开关部20的结构。
因此,对与图2所示的控制IC4c的组成元件相同的组成元件标注相同的标记,并省略说明。
如图4所示,控制IC4d的第1开关部20包括N型MOS晶体管M5以及P型晶体管M6、M7。各MOS晶体管M5至M7与寄生二极管D5至D7并联连接。
在第1开关部20中,MOS晶体管M7起到作为恒流源的作用,MOS晶体管M5基于开关信号SWp而导通、截止,并通过这种导通-截止动作来对上述恒流源的作用进行开启及关闭。
具体而言,MOS晶体管M7设于内部供电线11与第1保护电路30之间。此外,MOS晶体管M7与MOS晶体管M6构成电流镜像电路。并且,MOS晶体管M5与MOS晶体管M6串联连接,由开关信号SWp对MOS晶体管M5进行导通及截止控制。
这里,生成施加到MOS晶体管M5栅极的开关信号SWp的电路的供电电压低于控制IC4d的栅极控制部的供电电压Vdc,因此,MOS晶体管M5对开关信号SWp进行电平转换。
通过采用这种结构,通过将MOS晶体管M6与MOS晶体管M7的晶体管尺寸比(镜像比)设为任意值,从而能将流入MOS晶体管M7的电流设定成任意值。并且,通过使用开关信号SWp来导通MOS晶体管M5,从而能使MOS晶体管M7起到作为恒流源的作用。
此外,在将MOS晶体管M7用作为恒流源时,二极管D22用于在箝位时限流。
(实施方式1的效果)
如上所述,实施方式1中设有第1保护电路30和第2保护电路60。因此,在控制IC4c中省去并联旁通电容的状态下,即使输入至控制IC4c的供电电压瞬间下降至最小动作电压以下,也能最大程度地抑制IGBT3的栅极电压Vg的变动,并确保对IGBT3栅极充分地进行驱动。
此外,在实施方式1中,如图2所示,在内部供电线11与输出端子70之间仅设有开关元件SW(MOS晶体管M7)以及第1保护电路30,因此,与现有技术相比,内部供电线11与输出端子70之间的电压下降能被保持得较小(参照图13)。其结果是,即使例如内部供电电压Vdc始终为低供电电压,也能确保IGBT3的栅极电压Vg,并可以对IGBT3充分地进行驱动。
(实施方式1的变形例)
(1)在图2及图4的控制IC中,内部供电电路(未图示)基于电池供电电压Vbatt生成施加到内部供电线11的内部供电电压Vdc。
然而,此处,施加到内部供电线11的电压可能是图1中点C-B之间的电压,在该情况下,也能实现本发明的实施方式1的上述效果。
(实施方式2的结构)
本发明的实施方式2的栅极驱动装置基于图1中的实施方式1的结构,但将图1及图2所示的控制IC4c替换成图5所示的控制IC4d。
(控制IC的结构)
下面,参照图5对控制IC4d的栅极控制部的具体结构进行说明。
如图5所示,控制IC4d的栅极控制部连接于内部供电线11与连接于地gnd的接地线12之间。
即,如图5所示,控制IC4d的栅极控制部包括调节器电路7、第1保护电路30a、第1开关部20a、第2开关部40、电流控制部50、以及第2保护电路60a。上述元器件中,除了第1保护电路30a,其它均设于高电位一侧的供电线11与低电位一侧的接地线12之间。
具体而言,该第1开关部20a以及第2开关部40串联连接于供电线11与接地线12之间。此外,第1开关部20a与第2开关部40共用的连接部与输出端子70相连,该输出端子70连接于IGBT3的栅极。电流控制部50与第2保护电路60a的串联电路与第2开关部40并联。
调节器电路7与第1保护电路30a插入至供电线11。调节器电路7中输入有图1中的点C-B之间的电压Vbin,并基于该输入电压生成并输出稳定的输出电压Vreg。将该稳定的输出电压Vreg施加到第1保护电路30a。
第1保护电路30a由二极管D11与电阻R3的并联电路构成,防止或抑制IGBT3栅极处的电荷流出至调节器电路7。
第1开关部20a设于供电线11与输出端子70之间,包括由开关信号Swp来控制通断的P型MOS晶体管M1、以及与该P型MOS晶体管M1串联连接的电流源5。在MOS晶体管M1导通时,MOS晶体管M1对IGBT3的栅极进行充电。寄生二极管D1与二极管D12均并联连接于MOS晶体管M1与电流源5的串联电路。
第2开关部40包括N型MOS晶体管M3以及寄生二极管D3,其中,由开关信号Swn来对所述N型MOS晶体管M3进行导通及截止的控制,所述寄生二极管D3与所述N型MOS晶体管M3并联连接。MOS晶体管M3与二极管D3的并联电路连接于输出端子70与接地线12之间。在MOS晶体管M3导通的情况下,MOS晶体管M3致使IGBT3栅极处的电荷被释放。
电流控制部50对IGBT3的栅极上的电荷向接地线12的流出进行控制,以使得流入IGBT3的集电极电流为恒定值。
为此,电流控制部50包括连接于输出端子70与第2保护电路60a的MOS晶体管M4之间的MOS晶体管M2、以及对MOS晶体管M2的栅极电压进行控制的误差放大器51。误差放大器51包括运算放大器6以及电阻R1、R2、R4。误差放大器51根据从IGBT3的电流感测端子s输入的电流感测电压Vsns、与参考电压Vref的差值来生成电压,并将所生成的电压输出至MOS晶体管M2。
第2保护电路60a设于电流控制部50与接地线12之间。第2保护电路60a对产生于外部电源的电压Vbin中的瞬间的电压下降进行检测,在检测到供电电压与正常情况相比较处于低供电电压状态的情况下,断开电流控制部50与接地线12之间的连接。
为此,第2保护电路60a包括:低电压检测电路62,该低电压检测电路62对外部电源的电压Vbin中的瞬间的电压下降、及其低供电电压状态进行检测;以及MOS晶体管M4,该MOS晶体管M4在低电压检测电路62检测到上述情况时立刻截止。MOS晶体管M4与寄生二极管D4并联连接。该并联电路连接于电流控制部50的MOS晶体管M2、与接地线12之间。
接下来,参照图6,对图5所示的低电压检测电路62的具体结构进行说明。
如图6所示,低电压检测电路62包括参考电压生成电路621、电压检测电路622、自偏置型比较器623、输出电路624、以及输出端子625。
参考电压生成电路621连接于内部供电电压Vdc,该内部供电电压Vdc即为供电线11的电压,并且该参考电压生成电路621生成以接地gnd为基准的电压,该电压经过滤波,被输出至比较器623的非反相输入端子(+)
电压检测电路622中输入有调节器电路7的输出电压Vreg,并根据该输入电压生成电压,并将所生成的电压输出至比较器623的反相输入端子(-)。
这里,设定参考电压生成电路621的输出电压(比较器623的非反相输入端子(+)上的电压V+),使得相比于电压检测电路622的输出电压(比较器623的反相输入端子(-)上的电压V-),参考电压生成电路621的输出电压上升得较早,并且在上升后低于电压检测电路622的输出电压(参考图7(B))。此外,当在外部电源的电压Vbin中存在瞬间的下降时,参考电压生成电路621的输出电压的下降量较小,而电压检测电路622的输出电压的下降量较大(参考图8(C))。
具体而言,参考电压生成电路621包括:分压电路6211,该分压电路6211对内部供电电压Vdc进行分压;以及低通滤波器6212,该低通滤波器6212对经过分压电路6211分压后的电压进行滤波,并将其输出。
分压电路6211包括由电阻R11与连接有二极管的晶体管M11串联连接而成的串联电路,该串联电路连接于供电线11与接地线12之间。与分压电路6211共用的连接部连接于低通滤波器6212的输入端子。低通滤波器6212的输出端子与比较器623的非反相输入端子(+)相连。
电压检测电路622包括分压电路,该分压电路中输入有调节器电路7的输出电压Vreg,并对该输入电压进行分压。分压电路包括由二极管D33、电阻R12、及电阻R13串联连接而成的串联电路。
在该串联电路中,二极管D33的正极连接于供电线11、以及施加有电压Vreg的布线13,电阻R13的一端连接于接地线12。电阻R12与电阻R13共用的连接部连接于比较器623的反相输入端子(-)。并且,二极管D33与电阻R12串联连接的部分与二极管D31反向并联。即,二极管D31的正极连接于电阻R12的一端,其负极连接于二极管D33的正极。
这里,对由二极管D33、电阻R12以及电阻R13串联连接而成的串联电路设定电阻值等,以对比较器623的反相输入端子(-)的输入电压V-的直流电平进行确定。此外,当供电电压瞬间下降时,二极管D31能瞬间降低比较器623的反相输入端子(-)的输入电压V-。
此外,在二极管D33的正极不与二极管D31的负极相连、而如图6中的虚线所示那样与内部电压Vdc相连的情况下,能实现同样的功能。
比较器623由施加在供电线11上的内部供电电压Vdc驱动,并将参考电压生成电路621的输出电压、与电压检测电路622的输出电压进行比较,基于该比较结果输出信号,并将所生成的信号输出至输出电路624。
输出电路624基于比较器623的输出信号,生成使MOS晶体管M4导通或截止的信号。
为此,输出电路624包括:反相器6241、电阻R14、二极管D32、以及耗尽型MOS晶体管M12。
反相器6241将比较器623的输出信号进行逻辑反相,并输出该经逻辑反相后的信号。电阻R14连接于反相器6241的输出侧与输出端625之间,二极管D32与电阻R14并联连接。
耗尽型MOS晶体管M12在反相器6241的阈值以下的低供电电压区域内可靠地将输出端子625的电压箝位至接地gnd,并将输出端子625与接地线12相连。
图6中,C10是输出端子625与接地gnd之间的电容,并在充电过程中与电阻R14构成滤波器,然而,在放电过程中,起到立刻通过二极管D32释放电荷的作用。
接下来,参照图5至图7,对在供电电压变为直流电压时的图6所示的低电压检测电路62的动作示例进行说明。
如图7(A)所示,图1中的点C-B之间的电压Vbin从最小值(0V)上升(增加)到最大值,并在到达最大值后,下降(减小)至最小值。
图5所示的调节器电路7的输出电压Vreg、以及内部供电电压Vdc随着电压Vbin的这一变化而上升,在保持Vreg>Vdc关系的同时,如图7(A)所示,两个电压均达到一个恒定值并保持该恒定值。此后,这两个电压从各自的恒定值下降至最小值。
如图7(B)所示,图6中的比较器623的非反相输入端子(+)的输入电压V+以及反相输入端子(-)的输入电压V-也随着这些变化而发生变化。即,在供电电压较低的低供电电压区域中,输入电压V+大于输入电压V-。然而,在供电电压处于正常值范围时,输入电压V-大于输入电压V+。
如上所述,这是由于,对参考电压生成电路621的输出电压进行设定,使其上升得比电压检测电路622的输出电压要早,并且,另一方面,在电压上升后,将电压检测电路622的输出电压设定成比参考电压生成电路621的输出电压要高。
因此,如图7(C)所示,比较器623的输出CMPout在供电电压较低的低供电电压区域内变为H电平(高电平),当供电电压位于正常值区域时,变为L电平(低电平)。图7(C)中的微小电压值由电源不稳定的上升及下降所导致。
由反相器6241将比较器623的输出进行逻辑反相,因此,反相器6241根据比较器623的输出来输出电压。其结果是,如图7(D)所示,图6中的低电压检测电路62的输出电压OUTB在供电电压较低的低电压区域中变为L电平,当供电电压位于正常值区域时,变为H电平、
如图5所示,该输出电压OUTB被施加至MOS晶体管M4的栅极。其结果是,MOS晶体管M4的漏极电流Id变为图7(E)所示的电流。MOS晶体管M4的漏极电流Id不会在供电电压较低的低供电电压区域中流动,而会在供电电压位于正常区域时流动。
因此,MOS晶体管M4在供电电压较低的低供电电压区域截止。因此,对IGBT3的栅极进行充电的电荷不通过MOS晶体管M4流至接地线12,并且IGBT3的栅极电压不下降,流入IGBT3的电流Ic不受到限制。另一方面,MOS晶体管M4在供电电压的正常值区域内导通,使得由电流控制部50对IGBT3的集电极电流Ic的控制得到保持。
接下来,参照图5、图6以及图8,对在供电电压发生瞬间的电压下降时的图6所示的低电压检测电路62的动作示例进行说明。
如图8(A)所示,当输入至调节器电路7的电压Vbin发生瞬间的下降时,调节器电路7的输出电压Vreg下降至约等于电压Vbin,而如图8(B)所示,发生在内部供电电压Vdc中的下降得到了抑制。
这是由于,对IGBT3的栅极进行充电的电荷通过图5的控制IC4e的二极管D1、D12转移至供电线11,并且第1保护电路30a能防止电荷流动。
这里,由于电荷通过第1保护电路30a的电阻R3被施加到调节器电路7,使得内部供电电压Vdc中产生平缓的下降,并且,由于将内部供电电压Vdc用作电源的不同电路对电流的消耗,使得电荷同步地被释放。
随着这一电压变化的发生,图8(c)所示的比较器623的非反相输入端子(+)的输入电压V+、以及反相输入端子(-)的输入电压V-也发生变化。即,在输入电压V+由于滤波器6212的动作而较为稳定时,输入电压V-在具有大小为二极管D31的正向电压的冗余的状态下,跟随内部供电电压Vdc。
因此,在电压Vbin发生瞬间的下降时,比较器623的输入电压V-低于输入电压V+(参照图8(C)),因此,如图8(D)所示,比较器623的输出CMPout瞬间变为H电平。
其结果是,反相器6241的输出从H电平变为L电平,使得电容C10中的电荷瞬间通过二极管D32释放。因此,输出电路624的输出电压OUTB瞬间变为L电平(参照图8(E)),使得MOS晶体管M4截止。
在电压Vbin从瞬间的下降恢复时,反相器6241的输出从L电平变为H电平,但是,由于电阻R14和电容C10构成的滤波器,输出电压OUTB上升地较慢。通过对电容C10进行设定,来使该上升的时间与各个电路从瞬间下降恢复的时间相匹配,并在各电路处于正常工作状态时,使MOS晶体管M4导通。
因此,当电压Vbin发生瞬间的下降时,由于对IGBT3的栅极进行充电的电荷不通过MOS晶体管M4流至接地线12,使得IGBT3的栅极电压下降,流入IGBT3的电流Ic不受到限制。
接下来,参照图9,对实施方式2中供电电压处于低供电电压时的不同部分的波形图进行说明。
图9中,实线是实施方式2中不同部分的波形图的示例,虚线是现有技术示例的波形图的示例。此外,左半侧是供电电压处于稳定状态的波形图,而右半侧是处于低供电电压状态的波形图。
图9(A)示出了输入至图5的调节器电路7的供电电压(外部供电电压)Vbin。对应于输入至图1所示的控制IC4c的控制信号Sin,图9(B)示出了输入至图5的控制IC4e的控制信号Sin(未图示)。基于该控制信号Sin,生成开关信号Swp及Swn,所述开关信号Swp及Swn对图5所示的MOS晶体管M1及M3进行导通及截止。
图9(C)示出了图6的低电压检测电路62的输出电压OUTB(实线)、以及图15的低电压检测电路8的输出电压OUTB(虚线)。图9(D)示出了图5的控制IC4e的输出电压Vg(IGBT3的栅极电压)、以及图14的控制IC4b的输出电压Vg。图9(E)示出了IGBT3的集电极电流Ic。图9(F)示出了输入至图5的运算放大器6的非反相放大端子的电压Vref。
在图9(D)的左右侧,IGBT3的栅极电压Vg的电平不同,在图9(E)的左右侧,IGBT3的集电极电流Ic的电平不同,这是由于图9(F)中的参考电压Vref发生下降,引起图5的运算放大器6执行电流限制动作。
如上所述,在低供电电压时的动作过程中,图15所示的低电压检测电路8的输出电压OUTB变为H电平(参照图16(D))。因此,在现有技术示例中,IGBT3的栅极电压Vg下降,集电极电流Ic受到限制(参照图9(C)至9(F)中的虚线)。
然而,在实施方式2中所述的低供电电压时的动作过程中,低电压检测电路62的输出电压OUTB变为L电平(参照图7(D))。因此,在实施方式2中,IGBT3的栅极电压Vg不发生下降,集电极电流Ic不受到限制(参照图9(C)至9(F)中的实线)。
接下来,参照图10,对实施方式2中供电电压发生瞬间的下降时的不同部分的波形图示例进行说明。
假设如图10(A)所示,电池电压Vbatt(参照图1)处于波动状态。在该情况下,如图10(B)所示,由于图1所示的布线电感L1、L2与电容C1形成谐振电路并产生谐振,使得点A-B之间的电压发生瞬间的下降。与此同时,点C-B之间的电压如图10(C)所示,变为基本与点A-B之间的电压变化相同。
当如图10(B)所示那样点A-B之间的电压重复地发生瞬间的下降时,低电压检测电路62重复地在每次产生瞬间下降时检测到下降。因此,低电压检测电路62的输出电压OUTB重复产生如图10(E)所示的波形:即,在每次瞬间的下降时,电压都先变为L电平,再恢复至H电平。
因此,能够防止聚集在IGBT3栅极的电荷流出,并防止IGBT3的栅极电压Vg下降(参照图10(F)),由此,能够防止IGBT3的集电极电流Ic出现剧烈的下降(参照图10(G))。
(实施方式2的效果)
如上所述,如图5所示,在实施方式2中设有第1保护电路30a以及第2保护电路60a。因此,在省去与控制IC4e并联的旁通电容的状态下,即使输入至控制IC4e的供电电压出现瞬间的下降,也能尽可能地对IGBT3的栅极电压Vg中的变动进行抑制,并确保对IGBT3的栅极充分地进行驱动。
此外,在实施方式2中,若第2保护电路60a不仅检测出外部电源的电压Vbin中发生了瞬间的电压下降,还检测到供电电压低于正常值的低供电电压状态,则中断电流控制部50与接地线12之间的连接。因此,在采用实施方式2的情况下,在供电电压较低的动作过程中,IGBT3的栅极电压Vg不会产生下降,并且能在不对集电极电流Ic进行限制的情况下,对IGBT3进行驱动。
工业实用性
本发明能适用于对逆变器、转换器等功率转换装置的主开关装置的驱动控制。
附图标记
1供电线
2接地线
3IGBT
4c~4e控制IC
RB电流限制电阻
C1去噪电容
C2旁通电容
11内部供电线
12接地线
20第1开关部
30、30a第1保护电路
40第2开关部
50电流控制部
60、60a第2保护电路
61、62低电压检测电路
70输出端子
SW开关元件
M2~M7、D21、D22二极管

Claims (4)

1.一种栅极驱动装置,对具有大输入电容的有源元件的栅极进行驱动,其特征在于,
该栅极驱动装置包括:
第1开关部,该第1开关部设于高电位侧的第1供电线与所述有源元件的栅极之间,并使所述有源元件导通;
第2开关部,该第2开关部连接于所述有源元件的栅极与低电位侧的第2供电线之间,并使所述有源元件截止;
电流控制部,该电流控制部与所述第2开关部并联设置,并对所述有源元件的栅极上的电荷向所述第2供电线的流出进行控制,以使流过所述有源元件的电流保持一定;
第1保护电路,该第1保护电路设于外部电源与所述第1供电线之间,并对所述有源元件的栅极上的电荷向所述外部电源的流出进行抑制;以及
第2保护电路,该第2保护电路设于所述电流控制部与所述第2供电线之间,当检测到所述外部电源的电压发生瞬间的下降、或检测到所述外部电源的电压处于低供电电压状态时,断开所述电流控制部与所述第2供电线之间的连接,
所述第2保护电路包括:
第1检测电路,该第1检测电路接收所述第1保护电路的输出侧电压作为输入,并对该电压进行滤波,然后输出该输入电压;
第2检测电路,该第2检测电路接收所述第1保护电路的输入侧电压及输出侧电压作为输入,根据所述输入电压生成并输出电压;
比较器,该比较器将所述第1检测电路的输出电压与所述第2检测电路的输出电压进行比较,根据该比较结果输出信号;以及
输出电路,该输出电路基于所述比较器的输出信号生成并输出规定的信号,
对所述第1检测电路的所述输出电压进行设定,使其上升比所述第2检测电路的输出电压要早,并且,在该上升后,将所述第1检测电路的输出电压设定成比所述第2检测电路的输出电压要低,
对所述第1检测电路的输出电压的下降量进行设定,使得当所述外部电源的电压发生瞬间下降时,所述第1检测电路的输出电压的下降量比所述第2检测电路的输出电压的下降量要小。
2.如权利要求1所述的栅极驱动装置,其特征在于,
所述第1检测电路包括:
分压电路,该分压电路利用电阻及晶体管对所述第1保护电路的输出侧电压进行分压,并输出经分压后的电压;以及
低通滤波器,该低通滤波器对所述分压电路的分压输出进行滤波。
3.如权利要求1所述的栅极驱动装置,其特征在于,
所述第2检测电路包括分压电路,该分压电路接收所述第1保护电路的输出侧电压及输入侧电压作为输入,并通过利用包括第1二极管、第1电阻以及第2电阻的串联电路来对该输入电压进行分压,并输出该输入电压,
第2二极管连接于所述第1二极管与所述第1电阻的串联连接部。
4.如权利要求1所述的栅极驱动装置,其特征在于,
所述第2保护电路还包括连接于所述输出电路的输出端子间的箝位电路。
CN201280018788.8A 2011-07-07 2012-07-05 栅极驱动装置 Active CN103477559B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-150777 2011-07-07
JP2011150777 2011-07-07
PCT/JP2012/004383 WO2013005443A1 (ja) 2011-07-07 2012-07-05 ゲート駆動装置

Publications (2)

Publication Number Publication Date
CN103477559A CN103477559A (zh) 2013-12-25
CN103477559B true CN103477559B (zh) 2016-05-18

Family

ID=47436805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280018788.8A Active CN103477559B (zh) 2011-07-07 2012-07-05 栅极驱动装置

Country Status (5)

Country Link
US (1) US9401705B2 (zh)
EP (1) EP2688208B1 (zh)
JP (1) JP5585732B2 (zh)
CN (1) CN103477559B (zh)
WO (1) WO2013005443A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246740B2 (ja) 2012-02-16 2017-12-13 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション 高分解能画像走査のための拡張された焦点深度
JP2014206861A (ja) * 2013-04-12 2014-10-30 富士電機株式会社 レギュレータ回路およびレギュレータを形成した半導体集積回路装置
JP6340841B2 (ja) * 2014-03-13 2018-06-13 富士電機株式会社 絶縁ゲート型デバイスの駆動回路
US9322852B2 (en) 2014-07-15 2016-04-26 Ford Global Technologies, Llc Gate drive under-voltage detection
KR20160074253A (ko) * 2014-12-18 2016-06-28 에스케이하이닉스 주식회사 저전압 검출 회로, 이를 포함하는 비휘발성 메모리 장치 및 동작 방법
KR101721107B1 (ko) 2015-07-15 2017-03-29 엘에스산전 주식회사 게이트 드라이버 구동장치
US9780774B2 (en) * 2015-12-29 2017-10-03 Infineon Technologies Ag System and method for a switchable capacitance
JP2017212870A (ja) * 2016-05-20 2017-11-30 株式会社デンソー スイッチング素子の駆動制御装置
JP6950380B2 (ja) * 2017-09-05 2021-10-13 富士電機株式会社 半導体集積回路
CN109951179B (zh) * 2017-12-19 2022-12-23 炬芯科技股份有限公司 一种开关机电路
WO2019200612A1 (zh) * 2018-04-20 2019-10-24 华为技术有限公司 一种无线接收电路中mos管的过压防护电路
FR3084540B1 (fr) * 2018-07-24 2021-04-30 Valeo Systemes De Controle Moteur Bras de convertisseur de tension
CN111257792B (zh) * 2018-11-30 2022-06-07 中兴通讯股份有限公司 有源器件的检测和保护电路、供电电路及供电方法
CN109633223B (zh) * 2019-01-31 2024-01-30 深圳芯能半导体技术有限公司 一种高压igbt器件的饱和电压降测量电路
JP7268507B2 (ja) * 2019-07-08 2023-05-08 富士電機株式会社 ゲート駆動装置及び電力変換装置
JP2021078309A (ja) 2019-11-13 2021-05-20 富士電機株式会社 ゲート駆動装置及び電力変換装置
US11342749B1 (en) 2019-11-22 2022-05-24 Smart Wires Inc. Integration of a power flow control unit
WO2021253336A1 (zh) * 2020-06-18 2021-12-23 华为技术有限公司 车载驱动电路、车载驱动芯片、车载驱动器件及电子设备
JP7350702B2 (ja) * 2020-09-15 2023-09-26 株式会社東芝 駆動制御回路
CN112564053B (zh) * 2020-12-01 2023-03-10 广东澳鸿科技有限公司 一种多故障监测单元的igbt驱动电路
CN113794469B (zh) * 2021-09-03 2023-09-22 中国科学院电工研究所 一种倍频栅极驱动电路及其倍频控制方法
CN117277761B (zh) * 2023-11-23 2024-02-13 厦门腾睿微电子科技有限公司 集成米勒钳位保护电路的驱动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089043A (zh) * 1992-09-21 1994-07-06 株式会社东芝 功率晶体管过电流保护电路
JP2001143482A (ja) * 1999-08-27 2001-05-25 Denso Corp 車載用電子制御装置
JP2009141783A (ja) * 2007-12-07 2009-06-25 Toyota Industries Corp 駆動制御回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027714A (ja) 1988-06-27 1990-01-11 Hitachi Ltd 異常電流時の素子の保護装置
JP2811941B2 (ja) 1990-09-05 1998-10-15 富士電機株式会社 スイッチングトランジスタの制御回路
JPH05291886A (ja) * 1992-04-13 1993-11-05 Matsushita Electric Ind Co Ltd 半導体集積回路装置
JP3139223B2 (ja) 1992-11-26 2001-02-26 富士電機株式会社 半導体装置及びその製造方法
JP3348022B2 (ja) 1998-08-04 2002-11-20 三菱電機株式会社 ゲートドライブ回路
JP4321624B2 (ja) * 2007-05-21 2009-08-26 株式会社デンソー 半導体素子駆動回路
JP2008291728A (ja) 2007-05-24 2008-12-04 Denso Corp 内燃機関用点火装置
JP5747445B2 (ja) * 2009-05-13 2015-07-15 富士電機株式会社 ゲート駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089043A (zh) * 1992-09-21 1994-07-06 株式会社东芝 功率晶体管过电流保护电路
JP2001143482A (ja) * 1999-08-27 2001-05-25 Denso Corp 車載用電子制御装置
JP2009141783A (ja) * 2007-12-07 2009-06-25 Toyota Industries Corp 駆動制御回路

Also Published As

Publication number Publication date
JPWO2013005443A1 (ja) 2015-02-23
CN103477559A (zh) 2013-12-25
WO2013005443A1 (ja) 2013-01-10
US20140091850A1 (en) 2014-04-03
EP2688208A1 (en) 2014-01-22
US9401705B2 (en) 2016-07-26
EP2688208A4 (en) 2015-02-11
EP2688208B1 (en) 2020-04-22
JP5585732B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
CN103477559B (zh) 栅极驱动装置
CN1805259B (zh) 电流检测电路及电源装置、电源系统、电子装置
KR102202763B1 (ko) 오프―라인 전력 컨버터 및 이에 사용하기에 적합한 집적 회로
KR101158455B1 (ko) 무정전 전원 장치
US20140016381A1 (en) Current detecting circuit, controlling circuit and power conversion circuit
CN114123540A (zh) 可变电容装置及高功率无线能量传输系统
JP2013523080A (ja) 圧電振動ハーベスタから最大電力を抽出するためのコンバータ及び方法
CN102656787A (zh) 开关电源电路和功率因数控制器
JP5838776B2 (ja) 内燃機関用点火装置
CN102570434A (zh) 电力变换装置
CN107408892A (zh) 电源控制用半导体装置
CN104956580A (zh) 在非同步模式中使用同步转换器以防止在电池充电期间的电流反向
JP2010288444A (ja) ゲート駆動装置
CN103066954B (zh) 斜坡信号生成电路和斜坡信号调整电路
JP2015040823A (ja) 電池監視装置
KR20060109458A (ko) 에너지 축전기 간의 충전을 양방향으로 등화시키기 위한스위칭 디바이스 및 대응 방법
JP2013021831A (ja) 力率改善回路
JP2019062714A (ja) 同期整流回路及びスイッチング電源装置
JP6511769B2 (ja) 発電機
CN102005806B (zh) 直流电源装置
JP2015053225A (ja) Led駆動回路
CN105684286B (zh) 电源装置
JP6649622B2 (ja) コンデンサ放電回路
US11476755B2 (en) Circuit for servo-controlling the input impedance of an interface of a harvester
CN103427451A (zh) 充电控制电路以及充电电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant