CN103474460B - 一种高电子迁移率晶体管 - Google Patents

一种高电子迁移率晶体管 Download PDF

Info

Publication number
CN103474460B
CN103474460B CN201310405027.4A CN201310405027A CN103474460B CN 103474460 B CN103474460 B CN 103474460B CN 201310405027 A CN201310405027 A CN 201310405027A CN 103474460 B CN103474460 B CN 103474460B
Authority
CN
China
Prior art keywords
layer
grid
hemt
thermal conductivity
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310405027.4A
Other languages
English (en)
Other versions
CN103474460A (zh
Inventor
周伟
吴杰
刘绍斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310405027.4A priority Critical patent/CN103474460B/zh
Publication of CN103474460A publication Critical patent/CN103474460A/zh
Application granted granted Critical
Publication of CN103474460B publication Critical patent/CN103474460B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体器件领域,特别涉及一种高电子迁移率晶体管。针对氮化镓基高电子迁移率晶体管的自热效应进行优化设计,其技术方案为:一种高电子迁移率晶体管,包括衬底、衬底以上依次生长的成核层、沟道层、势垒层,以及势垒层上的源极、栅极、漏极、源极与栅极之间及栅极与漏极之间的钝化层;其特征在于,栅极与钝化层之间还设有高热导率材料层,高热导率材料层与势垒层接触。本发明通过高热导率材料层将栅极附近有源区的热能传导到器件的表面,从而有效降低器件有源区的温度,实现器件沟道温度的降低,改善器件的电气特性,使得器件可以在更高温度、更高功率下正常工作,提高器件的可靠性。

Description

一种高电子迁移率晶体管
技术领域
本发明属于半导体器件领域,特别涉及一种高电子迁移率晶体管。
背景技术
高电子迁移率晶体管器件(化合物半导体器件),由于其高电子饱和速度、高击穿电压、高电子迁移率,使其适用于高温、高频、抗辐射以及高功率等各领域应用,是射频和微波应用中最具应用潜力的半导体器件之一。而现有高电子迁移率晶体管器件中,氮化镓基高电子迁移率晶体管因其优良的性能得到广泛的关注和研究。
目前,铝镓氮/氮化镓(AlGaN/GaN)异质结高电子迁移率晶体管(HEMT)作为常用氮化镓基高电子迁移率晶体管,其结构的剖面示意图如图1所示,包括衬底1、衬底上依次生长的成核层2、沟道层3、势垒层4,势垒层上分别为源极5、栅极6、漏极7,以及源极与栅极、栅极与漏极之间的钝化层10、11,其中源极和漏极与势垒层形成欧姆接触,栅极与势垒层形成肖特基接触。当器件工作于一定的偏置条件下时,由于器件耗散功率及其导热性能较差的衬底,在导电沟道上会积累大量的热量,热量得不到及时移除,必然会引起自热效应。轻微的自热效应会导致电流输出能力和附加功率效率降低,以及输出端跨导的降低,从而导致器件的射频、微波性能的严重退化;严重的自热效应还会导致器件的功能失效,缩短器件的使用寿命甚至烧毁器件。因此,针对氮化镓基高电子迁移率晶体管的自热效应进行优化设计成为了我们研究的重点。
发明内容
本发明的目的是为了克服目前高电子迁移率晶体管的自热效应,提供了一种高电子迁移率晶体管。本发明在栅极与钝化层之间添加一种高热导率材料,形成高热导率材料层,通过该高热导率材料层将栅极附近有源区的热能传导到器件的表面,从而有效降低器件有源区的温度,实现器件沟道温度的降低,改善器件的电气特性,使得器件可以在更高温度、更高功率下正常工作,提高器件的可靠性。
本发明采用的技术方案为:一种高电子迁移率晶体管,包括衬底、衬底以上依次生长的成核层、沟道层、势垒层,以及势垒层上的源极、栅极、漏极、源极与栅极之间及栅极与漏极之间的钝化层;其特征在于,栅极与钝化层之间还设有高热导率材料层,高热导率材料层与势垒层接触。
具体所述衬底采用碳化硅材料,成核层为氮化铝层,沟道层为氮化镓层,势垒层为铝镓氮势垒层;源极、栅极、漏极、源极与栅极及栅极与漏极之间的钝化层分别位于铝镓氮势垒层上,其中钝化层为氮化硅材料。
综上,所述源极和漏极与势垒层形成欧姆接触,栅极与势垒层形成肖特基接触。所述的高热导率材料层是金刚石晶体、氮化铝、氧化铍、正立方氮化硼或是上述多种高热导率材料的多重薄层;一般要求材料的热导率K值大于100[W/(m·K)],所采用材料的热导率越高,越有助于克服高电子迁移率晶体管的自热效应。所述的高热导率材料层与钝化层接触面可以是垂直面、斜面或阶梯状表面。
本发明提供的高电子迁移率晶体管,高热导率材料层与有源层(势垒层)直接接触,通过热传导作用,将栅极附近的热能传导到器件的表面;由于该高热导率材料具有非常高的导热系数,可以将栅极附近的热点(温度的最高值点)变得相对平缓,同时大幅度的将栅极附近的温度降低;并且有源区的热能有很大一部分直接经由高热导率材料层导出,衬底以及成核层和沟道层的温度都会明显的降低,从而确保了该器件可以在更高的温度以及更大的功率条件下正常运行,在一定程度上确保了器件的可靠性。
附图说明
图1是铝镓氮/氮化镓(AlGaN/GaN)异质结高电子迁移率晶体管的剖面结构示意图。
图2是铝镓氮/氮化镓异质结高电子迁移率晶体管的有源区的温度分布示意图,其中y(um)表示以源极为零点,到漏极之间的距离。
图3是铝镓氮/氮化镓异质结高电子迁移率晶体管的剖面温度分布示意图。
图4是本发明实施例1高电子迁移率晶体管的剖面结构示意图,其中,1为衬底,2为AlN成核层,3为GaN沟道层,4为AlGaN势垒层,5为源极,6为栅极,7为漏极,9、10为高热导率材料层,10、11为SiN钝化层。
图5是本发明实施例1高电子迁移率晶体管的有源区的温度分布示意图,其中y(um)表示以源极为零点,到漏极之间的距离。
图6是本发明实施例1高电子迁移率晶体管的剖面温度分布示意图。
图7、图8是本发明其他实施方式高电子迁移率晶体管剖面结构示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案。
实施例1
本实施例高电子迁移率晶体管的结构示意图如图4所示,衬底采用碳化硅材料,厚度为70微米;衬底上外延生长厚度为10微米氮化铝层,作为成核层;氮化铝层层上外延生长厚度2微米的氮化镓层,作为沟道层;然后在氮化镓层上外延生长厚度为25纳米的铝镓氮势垒层;源极、栅极、漏极、源极与栅极及栅极与漏极之间的钝化层分别位于铝镓氮势垒层上,其中钝化层为氮化硅材料;栅极两侧与氮化硅钝化层之间设置高热导率材料层为金刚石,厚度为0.4微米。
使用有限元软件对该高电子迁移率晶体管进行模拟仿真,其中衬底底面温度设置为常温300K,四个侧面全部设置为绝缘条件,顶部设置为开边界,开边界的初始温度为300K,即当上表面温度高于300K时,可以与外界进行换热。由于氮化镓高电子迁移率晶体管的功耗主要分布于栅极附近,则在模拟仿真过程中设定热源在栅极下面的有源区。在相同参数条件下,传统铝镓氮/氮化镓(AlGaN/GaN)异质结高电子迁移率晶体管在功耗为0.5W的条件下,最高沟道温度为386K,相比于衬底下表面的温度,最大沟道温度升高了86K,如图2、图3所示;而本发明高电子迁移率晶体管在相同的功耗条件下,最高沟道温度为365K,并且在最高温度两侧温度变化趋势比较平缓,如图5、图6所示。同时,仿真结果表明,当器件的沟道的最高温度达到386K的时候,传统铝镓氮/氮化镓异质结高电子迁移率晶体管功耗为0.5W,而本发明提供的高电子迁移率晶体管的功耗为0.65W,表明器件的自热效应明显改善。由此可以看出,本发明提供的高电子迁移率晶体管有效降低了栅极附近的沟道温度,改善了高电子迁移率晶体管的自热效应,从而提高了高电子迁移率晶体管在高温、大功率条件下工作稳定性。
其他实施方式中,由于高电子迁移率晶体管的热点(器件沟道的最高温度点)处于栅极偏漏极一侧,所以高热导率材料层可仅设置于栅极偏漏极一侧,如图7所示。另外,高热导率材料层与钝化层接触面可以是垂直面、斜面或阶梯状表面,如图7、图8所示。

Claims (3)

1.一种高电子迁移率晶体管,包括衬底、衬底以上依次生长的成核层、沟道层、势垒层,以及势垒层上的源极、栅极、漏极、源极与栅极之间及栅极与漏极之间的钝化层;其特征在于,栅极与钝化层之间还设有高热导率材料层,高热导率材料层与势垒层接触,高热导率材料层与钝化层接触面为垂直面、斜面或阶梯状表面,所述的高热导率材料层是金刚石晶体、氮化铝、氧化铍、正立方氮化硼或是上述多种高热导率材料的多重薄层。
2.按权利要求1所述一种高电子迁移率晶体管,其特征在于所述衬底采用碳化硅材料,成核层为氮化铝材料,沟道层为氮化镓材料,势垒层为铝镓氮材料;源极、栅极、漏极、源极与栅极之间及栅极与漏极之间的钝化层分别位于势垒层上,其中钝化层为氮化硅材料。
3.按权利要求1所述一种高电子迁移率晶体管,其特征在于所述源极和漏极与势垒层形成欧姆接触,栅极与势垒层形成肖特基接触。
CN201310405027.4A 2013-09-09 2013-09-09 一种高电子迁移率晶体管 Expired - Fee Related CN103474460B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310405027.4A CN103474460B (zh) 2013-09-09 2013-09-09 一种高电子迁移率晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310405027.4A CN103474460B (zh) 2013-09-09 2013-09-09 一种高电子迁移率晶体管

Publications (2)

Publication Number Publication Date
CN103474460A CN103474460A (zh) 2013-12-25
CN103474460B true CN103474460B (zh) 2016-11-23

Family

ID=49799250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310405027.4A Expired - Fee Related CN103474460B (zh) 2013-09-09 2013-09-09 一种高电子迁移率晶体管

Country Status (1)

Country Link
CN (1) CN103474460B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745989B (zh) * 2013-12-31 2016-07-06 上海新傲科技股份有限公司 高电子迁移率晶体管
CN104347701B (zh) * 2014-09-10 2017-10-17 电子科技大学 一种具有复合钝化层结构的场效应晶体管
CN104573330B (zh) * 2014-12-20 2017-06-09 电子科技大学 氮化镓高电子迁移率晶体管i‑v模型参数的提取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396784B2 (ja) * 2008-09-09 2014-01-22 日本電気株式会社 半導体装置及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AlGaN/GaN HEMT热特性研究;钟红生;《中国优秀硕士学位论文全文数据库》;20111031;13-15、36-39 *
Dependence of Self-Heating Effect on Passivation Layer in AlGaN/GaN HEMT device;A. Haghshenas et al;《2011 International Semiconductor Device Research Symposium,IEEE》;20111109;1-2 *

Also Published As

Publication number Publication date
CN103474460A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6522102B2 (ja) 電界効果ダイオード及びその製造方法
CN108389903B (zh) 具有石墨烯散热层的AlGaN/GaN高电子迁移率晶体管及制备方法
US20090114948A1 (en) Semiconductor device
CN114122139A (zh) 具有集成二极管的碳化硅mosfet器件及制造方法
CN104282758B (zh) 具有增加的沟道外围的金属氧化物半导体(mos)器件及制造的方法
CN104051523A (zh) 一种低欧姆接触电阻的半导体器件及其制作方法
JP6241958B2 (ja) 高耐圧半導体装置およびその製造方法
CN109742135B (zh) 一种碳化硅mosfet器件及其制备方法
CN107275406B (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN104538450A (zh) 具有低特征导通电阻的SiC VDMOSFET结构及其制造方法
JP5995252B2 (ja) 縦型高耐圧半導体装置および縦型高耐圧半導体装置の製造方法
WO2021088231A1 (zh) 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
CN104900689A (zh) 降低基区电阻率的GaN基HBT外延结构及生长方法
TWI470802B (zh) 溝槽式金氧半導體電晶體元件及其製造方法
CN103474460B (zh) 一种高电子迁移率晶体管
CN103904114B (zh) 加源场板增强型AlGaN/GaN HEMT器件结构及其制作方法
CN113594247A (zh) 一种逆阻型氮化镓高电子迁移率晶体管
CN109671768A (zh) 一种低结温高耐压的GaN异质结场效应晶体管
WO2022041674A1 (zh) 低热阻硅基氮化镓微波毫米波器件材料结构及制备方法
CN109285882A (zh) 一种高电子迁移率晶体管
CN103779406B (zh) 加源场板耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN207925478U (zh) 具有背场板结构的hemt器件
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN106783993B (zh) 具有衬底内复合介质层结构的氮化镓异质结场效应管
CN214279987U (zh) 一种新型的槽栅型mos器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161123

Termination date: 20190909