CN109671768A - 一种低结温高耐压的GaN异质结场效应晶体管 - Google Patents

一种低结温高耐压的GaN异质结场效应晶体管 Download PDF

Info

Publication number
CN109671768A
CN109671768A CN201811592251.8A CN201811592251A CN109671768A CN 109671768 A CN109671768 A CN 109671768A CN 201811592251 A CN201811592251 A CN 201811592251A CN 109671768 A CN109671768 A CN 109671768A
Authority
CN
China
Prior art keywords
layer
gan
aln
channel
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811592251.8A
Other languages
English (en)
Other versions
CN109671768B (zh
Inventor
陈万军
李佳
肖立杨
李茂林
信亚杰
施宜军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811592251.8A priority Critical patent/CN109671768B/zh
Publication of CN109671768A publication Critical patent/CN109671768A/zh
Application granted granted Critical
Publication of CN109671768B publication Critical patent/CN109671768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明设计功率半导体技术,具体的说是一种低结温高耐压的GaN异质结场效应晶体管。本发明的GaN异质结场效应晶体管,主要为通过在势垒层插入AlN区域来降低沟道峰值电场,进而达到增大耐压和减少散热的目的。另外,本发明采用导热特性良好的AlN作为器件的钝化层,不仅有助于抑制电流崩塌,还起到了加快散热的作用。本发明的优异效果为,提高了器件的反向耐压,改善了器件的输出特性,并降低了器件的沟道温度,从而抑制了电流崩塌和自热效应带来的危害。本发明尤其适用于具有高耐压能力和低沟道温度的GaN异质结场效应晶体管。

Description

一种低结温高耐压的GaN异质结场效应晶体管
技术领域
本发明属于功率半导体技术领域,涉及一种低结温高耐压的GaN异质结场效应晶体管。
背景技术
随着科技的进步,人类社会对电能的需求与日俱增,如何高效地应用电能成为当下不得不思考的问题。目前,几乎所有的电能都必须经过功率半导体器件进行功率变换之后才能供电子设备使用。功率半导体技术作为新能源和节能减排的基础和核心技术之一,有效促进了电能更有效、更节能、更环保地应用。近年来,随着新能源汽车等领域的兴起,功率半导体技术拥有了更广阔的应用前景。
从最早的Si器件,到第二代GaAs器件,再到以GaN和SiC为代表的宽禁带半导体器件,功率半导体器件的发展历经数年。由于Si和GaAs为代表的前两代半导体材料的局限性,第三代宽禁带半导体材料因为其优异的性能得到了飞速发展。氮化镓(GaN)材料作为第三代半导体材料的核心之一,相比Si,GaAs和碳化硅(SiC)特殊之处在于其所具有极化效应。AlGaN/GaN异质结由于极化效应在异质结界面靠近GaN侧产生了高浓度、高电子迁移率的二维电子气导电沟道,使得AlGaN/GaN HEMT器件具有导通电阻小、开关速度快、正向导通饱和电流密度大等特点,在器件应用中占据较大优势,是制作高压、高温、高频和大功率器件的理想材料,因此得到广泛关注和研究。
高速电子迁移率晶体管(HEMT)是一种异质结场效应晶体管,GaN与AlGaN接触形成的异质结具有高二维电子气浓度和高二维电子气迁移率。在此结构中,通过改变栅电压就可以控制由源极到漏极的电流,从而达到功率放大的目的。另外,GaN在较大的温度范围内都能够精确的控制自由载流子浓度,适合高温工作,使器件稳定性大大提高。此外,GaN材料的高热导率、大的热容量和高的击穿电场等优点都有助于GaN功率器件在大功率的条件下工作。因而,GaN基HEMTs称为高频大功率的首选。
在GaN HEMT器件应用过程中,一个严重限制GaN HEMT性能的问题是电流崩塌现象,即在直流(DC)性能测量时,经过较高电压冲击后,饱和电流密度与最大跨到减小、膝点电压和导通电阻上升,其最大的危害在于使得器件在高频大信号驱动下的输出电流幅度和直流特性相比剧烈下降,导致输出功率密度和功率附加效率减小,如何抑制电流崩塌是GaNHEMT研究过程中不可回避的问题。
GaN HEMT主要应用于微波毫米波功率器件和大功率电力电子器件,工作时会受到强电场和大电流的反复冲击,当AlGaN/GaN HEM T输出高功率密度时,器件由于发热量增大而导致沟道温度升高,引起各种声子散射机制的增强,从而导致器件沟道载流子迁移率降低,电流在饱和区会随着源漏电压的升高而下降,这种现象称为“自热效应”。自热效应会加速电迁移从而使栅极退化,并且可能损坏连接管芯和封装外壳的导线,引起一系列可靠性方面的问题。因此,如何抑制自热效应、降低沟道温度,是GaN功率器件发展过程中亟待解决的一个重要问题。
发明内容
为了解决上述问题,本发明提出了一种低结温高耐压的GaN异质结场效应晶体管。该晶体管不仅可以有效抑制GaN HEMT的电流崩塌,还可以减低器件沟道温度,进而提高器件的工作性能。
本发明的技术方案为
如图1所示,一种低结温高耐压的GaN异质结场效应晶体管,从下到上依次包括SiC衬底9、AlN成核层过渡8、GaN缓冲层7、InGaN背势垒层6、GaN沟道层5、AlN插入层4、AlGaN势垒层3、AlN势垒区域2以及AlN钝化层1。在势垒层的上方,拥有欧姆金属源极11和欧姆金属漏极12。所述AlGaN势垒层3、AlN插入层4与GaN沟道层5一起形成二维电子气沟道,其特征在于AlN插入层4的应用可以较好的改善器件的2DEG传送能力,并优化器件的开关特性和栅肖特基10泄露特性;AlN成核层8位于GaN缓冲层7与SiC衬底9之间,其特征在于AlN可以减小GaN缓冲层7与SiC衬底9之间因晶格失配而导致的界面张力,该成核过渡层可减小界面失配、缺陷或陷阱效应引起的电流崩塌现象。
所述GaN沟道层5与GaN缓冲层7之间有InGaN背势垒层6,其特征在于InGaN背势垒层6的加入可以提高对2DEG的限域性,从而改善了器件高压下的夹断特性,有效地抑制了电流崩塌效应,提高了器件的效率和线性度。
所述AlN钝化层1用于降低器件沟道温度,其特征在于具有良好的导热能力,并能抑制电流崩塌;采用所述AlN势垒区域2代替传统的GaAlN,其特征在于可以减小沟道中的峰值电场、提高击穿电压并降低沟道温度。
作为优选方式,器件总宽度约为2.3um,其中栅极宽度为0.3um,源极和漏极宽度为0.3um,栅源、栅漏间距为0.7um。
作为优选方式,所述SiC衬底层厚度为150um。
作为优选方式,所述AlN成核层的厚度大约为50nm。
作为优选方式,所述GaN缓冲层厚度大约为1.8um。
作为优选方式,所述InGaN背势垒层厚度大约为5-10nm。
作为优选方式,所述GaN沟道层厚度大约为30-50nm。
作为优选方式,所述AlN插入层厚度大约为1-5nm。
作为优选方式,所述AlGaN势垒层厚度约为30-40nm。
作为优选方式,所述AlN势垒区域厚度约为20nm,长度为0.5um。
作为优选方式,所述AlN钝化层厚度为20nm。
作为优选方式,所述源电极和漏电极为欧姆接触,电极材料由下面一组材料中选出,该组材料包括但不限于Ti/Al/Ni/Au合金,Ti/Al/Ti/Au合金。所述栅电极为肖特基接触,电极材料由下面一组材料中选出,该组材料包括但不限于Ni/Au合金,Pd/Au合金。
为了解决目前GaN HEMT遇到的电流崩塌和沟道温度过高导致自热效应的问题,本发明提出了一种低结温高耐压的GaN异质结场效应晶体管,与传统GaN HEMT相比,本发明的创新性有以下几点:
1、相比于传统GaN HEMT单一的GaN缓冲层,本发明巧妙地将GaN区域分为GaN沟道层5和GaN缓冲层7,在缓冲层和沟道层之间插入InGaN背势垒层6,背势垒层的插入提高了对2DEG的限域性,从而改善了器件高压下的夹断特性,有效地抑制了电流崩塌效应,提高了器件的效率和线性度。
2、相比于传统GaN HEMT不采用钝化层或采用Si3N4作为钝化层,本发明采用AlN钝化层1,该钝化层不仅可以抑制电流崩塌,改善输出特性,而且AlN良好的导热特性可以使其加快器件沟道的散热,从而降低器件的沟道温度。
3、相比于传统GaN HEMT单一的AlGaN势垒层,本发明在栅极下方引入一块AlN势垒区域2,该区域的引入可以显著降低器件峰值电场,进而增大器件击穿电压,并减少沟道自身产热。值得注意的是,由于传统沟道峰值温度出现在器件栅极漏测,因此,本发明AlN势垒区域左侧与栅极左侧对齐,右侧与栅极右侧相比,伸长0.2um,这样可以有效降低器件峰值电场和峰值温度。
除此之外,本发明在GaN缓冲层7与SiC衬底9之间引入AlN成核过渡层8,成核过渡层AlN可以减小GaN缓冲层7与SiC衬底9之间因晶格失配而导致的界面张力,进而减小界面失配、缺陷或陷阱效应引起的电流崩塌现象。本发明在AlGaN势垒层3与GaN沟道层5之间引入AlN插入层4,三者一起形成二维电子气沟道,AlN插入层4的引入可以较好的改善器件的2DEG传送能力,并优化器件的开关特性和栅肖特基泄露特性。
本发明的有益效果为:
如仿真结果图2所示,本发明的HEMT结构与传统HEMT结构相比,峰值温度依旧出现在栅极漏测区域,这是由沟道电场分布决定的,但是本发明HEMT结构的器件峰值温度相比于传统HEMT结构下降了约20K。这说明一方面AlN势垒区域2的使用降低了沟道的峰值电场,进而抑制了沟道产热,降低了器件沟道温度,另一方面本发明钝化层材料选择导热特性良好的AlN,不仅可以抑制电流崩塌,而且有助于加快沟道散热,两者的使用导致了本发明HEMT结构沟道温度的下降。
如仿真结果图3所示,本发明的HEMT结构与传统HEMT结构相比,器件耐压提高了约47V,这说明AlN势垒区域2的使用改善了沟道的电场分布情况,降低了沟道电场峰值,进而提高了器件的耐压能力。
如仿真结果图4所示,本发明的HEMT结构与传统HEMT结构相比,在同样的栅电压下,器件输出饱和电流更高,输出特性得到了较好的改善。这说明钝化层1和背势垒层6的使用提高了对2DEG的限域性,从而有效地抑制了电流崩塌效应,提高了器件的效率和线性度,改善了器件的输出特性
附图说明
图1是本发明提出的一种低结温高耐压的GaN异质结场效应晶体管结构示意图;
图2是本发明HEMT新结构与传统HEMT结构相比,沟道温度分布情况示意图;
图3是本发明HEMT新结构与传统HEMT结构相比,器件反向耐压示意图;
图4是本发明HEMT新结构与传统HEMT结构相比,器件输出特性示意图。
具体实施方式
发明内容部分已经对本发明的技术方案做了详细描述,在此不再赘述。

Claims (3)

1.一种低结温高耐压的GaN异质结场效应晶体管,从下到上依次包括层叠设置的SiC衬底(9)、GaN缓冲层(7)、GaN沟道层(5)、AlGaN势垒层(3)以及AlN钝化层(1);在AlGaN势垒层(3)两端的上表面,具有欧姆金属源极(11)和欧姆金属漏极(12),在AlGaN势垒层(3)中部的上表面,具有栅电极(10),所述栅电极(10)为肖特基接触;其特征在于,
所述栅电极(10)正下方的AlGaN势垒层(3)上层,具有AlN势垒区域(2),且AlN势垒区域(2)还向靠近欧姆金属漏极(12)的一侧延伸;所述AlN势垒区域(2)用于减小沟道中的峰值电场、提高击穿电压并降低沟道温度;
所述SiC衬底(9)和GaN缓冲层(7)之间还具有AlN成核层(8),AlN成核层(8)用于减小GaN缓冲层(7)与SiC衬底(9)之间因晶格失配而导致的界面张力;
所述GaN缓冲层(7)和GaN沟道层(5)之间具有InGaN背势垒层(6),InGaN背势垒层(6)用于抑制电流崩塌效应;
所述GaN沟道层(5)和AlGaN势垒层(3)之间具有AlN插入层(4),AlN插入层(4)与GaN沟道层(5)和AlGaN势垒层(3)一起形成二维电子气沟道。
2.根据权利要求1所述的一种低结温高耐压的GaN异质结场效应晶体管,其特征在于,所述SiC衬底(9)厚度为150um,AlN成核层(8)的厚度为50nm,GaN缓冲层(7)厚度为1.8um,InGaN背势垒层(6)厚度为5-10nm,GaN沟道层(5)厚度为30-50nm,AlN插入层(4)厚度为1-5nm,AlGaN势垒层(3)厚度为30-40nm,AlN势垒区域(2)厚度为20nm,长度为0.5um,AlN钝化层(1)厚度为20nm。
3.根据权利要求2所述的一种低结温高耐压的GaN异质结场效应晶体管,其特征在于,所述欧姆金属源极(11)和欧姆金属漏极(12)采用的材料为Ti/Al/Ni/Au合金,或Ti/Al/Ti/Au合金;所述栅电极(10)采用的材料为i/Au合金,或Pd/Au合金。
CN201811592251.8A 2018-12-25 2018-12-25 一种低结温高耐压的GaN异质结场效应晶体管 Active CN109671768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811592251.8A CN109671768B (zh) 2018-12-25 2018-12-25 一种低结温高耐压的GaN异质结场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811592251.8A CN109671768B (zh) 2018-12-25 2018-12-25 一种低结温高耐压的GaN异质结场效应晶体管

Publications (2)

Publication Number Publication Date
CN109671768A true CN109671768A (zh) 2019-04-23
CN109671768B CN109671768B (zh) 2021-08-17

Family

ID=66146118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811592251.8A Active CN109671768B (zh) 2018-12-25 2018-12-25 一种低结温高耐压的GaN异质结场效应晶体管

Country Status (1)

Country Link
CN (1) CN109671768B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112208A (zh) * 2019-06-06 2019-08-09 电子科技大学 一种高频低结温的GaN异质结场效应晶体管
CN110231553A (zh) * 2019-07-12 2019-09-13 电子科技大学 一种电机槽绝缘电场冲击评估方法及评估装置
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041965A (ja) * 2012-08-23 2014-03-06 Renesas Electronics Corp 半導体装置
CN203707139U (zh) * 2014-01-06 2014-07-09 杭州电子科技大学 提高压电极化强度的新型hemt
US20160204222A1 (en) * 2013-05-13 2016-07-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Growth of High-Performance III-Nitride Transistor Passivation Layer for GaN Electronics
CN108470767A (zh) * 2017-02-15 2018-08-31 丰田自动车株式会社 氮化物半导体器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041965A (ja) * 2012-08-23 2014-03-06 Renesas Electronics Corp 半導体装置
US20160204222A1 (en) * 2013-05-13 2016-07-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Growth of High-Performance III-Nitride Transistor Passivation Layer for GaN Electronics
CN203707139U (zh) * 2014-01-06 2014-07-09 杭州电子科技大学 提高压电极化强度的新型hemt
CN108470767A (zh) * 2017-02-15 2018-08-31 丰田自动车株式会社 氮化物半导体器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112208A (zh) * 2019-06-06 2019-08-09 电子科技大学 一种高频低结温的GaN异质结场效应晶体管
CN110231553A (zh) * 2019-07-12 2019-09-13 电子科技大学 一种电机槽绝缘电场冲击评估方法及评估装置
CN110231553B (zh) * 2019-07-12 2024-04-09 电子科技大学 一种电机槽绝缘电场冲击评估方法及评估装置
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Also Published As

Publication number Publication date
CN109671768B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Uemoto et al. Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation
Kumar et al. AlGaN/GaN HEMTs on SiC with f T of over 120 GHz
JPWO2010021099A1 (ja) 電界効果トランジスタ
Li et al. An Al/sub 0.3/Ga/sub 0.7/N/GaN undoped channel heterostructure field effect transistor with F max of 107 GHz
Inoue et al. 30-GHz-band over 5-W power performance of short-channel AlGaN/GaN heterojunction FETs
CN109671768A (zh) 一种低结温高耐压的GaN异质结场效应晶体管
CN109192710B (zh) 石墨烯降低GaN基HEMT热阻的散热结构及制备方法
CN103904114B (zh) 加源场板增强型AlGaN/GaN HEMT器件结构及其制作方法
CN109004028A (zh) 一种具有源极相连P埋层和漏场板的GaN场效应晶体管
CN108878524A (zh) 一种氮化镓基高电子迁移率晶体管
Wang et al. Lateral AlGaN/GaN Schottky barrier diode with arrayed p-GaN islands termination
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
Li et al. GaN-based super-lattice Schottky barrier diode with low forward voltage of 0.81 V
Ueda et al. Present and future of GaN power devices
CN103779406B (zh) 加源场板耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN210897283U (zh) 一种半导体器件
CN108831932B (zh) 一种氮化镓横向mis-肖特基混合阳极二极管
CN103474460B (zh) 一种高电子迁移率晶体管
CN103762234B (zh) 基于超结漏场板的AlGaN/GaN MISHEMT高压器件及其制作方法
Duan et al. Novel Enhance-Mode AlGaN/GaN JFET With BV of Over 1.2 kV Maintaining Low R ON, sp
CN110112208A (zh) 一种高频低结温的GaN异质结场效应晶体管
CN211789028U (zh) 一种hemt器件
Felbinger et al. Fabrication and Characterization of Thin-Barrier $\hbox {Al} _ {0.5}\hbox {Ga} _ {0.5}\hbox {N/AlN/GaN} $ HEMTs
CN110518067A (zh) 基于沟道阵列的异质结场效应晶体管及其制作方法和应用
CN109285882A (zh) 一种高电子迁移率晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant