CN113594247A - 一种逆阻型氮化镓高电子迁移率晶体管 - Google Patents

一种逆阻型氮化镓高电子迁移率晶体管 Download PDF

Info

Publication number
CN113594247A
CN113594247A CN202110868565.1A CN202110868565A CN113594247A CN 113594247 A CN113594247 A CN 113594247A CN 202110868565 A CN202110868565 A CN 202110868565A CN 113594247 A CN113594247 A CN 113594247A
Authority
CN
China
Prior art keywords
pgan
metal
barrier layer
structures
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110868565.1A
Other languages
English (en)
Other versions
CN113594247B (zh
Inventor
孙瑞泽
罗攀
王方洲
刘超
陈万军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN202110868565.1A priority Critical patent/CN113594247B/zh
Publication of CN113594247A publication Critical patent/CN113594247A/zh
Priority to US17/876,582 priority patent/US20230036698A1/en
Application granted granted Critical
Publication of CN113594247B publication Critical patent/CN113594247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/806Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于半导体功率器件技术领域,涉及一种逆阻型氮化镓高电子迁移率晶体管。本发明包括从下至上设置的:衬底、成核层、缓冲层、势垒层,介质层,缓冲层和势垒层形成异质结结构,在材料极化效应下形成二维电子气沟道,势垒层上设有至少两个pGaN结构,其中第一pGaN结构为栅pGaN结构,上表面与栅极金属相连,其余pGaN依次间隔的设置在势垒层上,被介质层隔离开来。势垒层一端设置有源极金属,形成欧姆接触,另一端设置有漏极金属,形成欧姆接触,漏极金属与除第一pGaN结构的其余pGaN结构相连。正向导通时,与漏极金属相连的pGaN间隔下的二维电子气导电,器件开启电压小;反向阻断时,间隔处的二维电子气在反向偏置下迅速耗尽,形成耗尽区,提高器件阻断能力。

Description

一种逆阻型氮化镓高电子迁移率晶体管
技术领域
本发明属于半导体功率器件技术领域,具体涉及一种逆阻型氮化镓高电子迁移率晶体管。
背景技术
在电力电子系统,有AC-DC-AC变换和AC-AC转换两种电力转换方式,但AC-AC转换器具有体积小、重量低、转换效率高的优点,在工业设备和家用电器中都应用广泛。而逆阻型功率器件是AC-AC功率转换器的核心器件。
随着社会和科技的发展,各行业对电源转换效率、体积、散热、稳定性等各方面都提出了更加严格的要求,而氮化镓GaN相比于传统硅(Si)具有低相对介电常数、高临界击穿电场、高热导率等材料特性,更能满足行业需求。因此对GaN材料的逆阻器件的研究具有较为重要的意义。
GaN基肖特基漏极结构的逆阻型高电子迁移率晶体管想要具有较强的反向阻断能力,必须要高的漏极肖特基势垒,这种结构不仅会导致反向漏电流较大,同时正向开启电压也较高。而直接采用类似于GaN基增强型栅极结构,用pGaN或凹槽MIS结构做为具有反向阻断漏极,虽然能够具有较高的反向阻断电压,和较小的反向漏电流,但又会导致开启电压过大。因此目前,基于GaN基的逆阻器件多采用在漏极前设置一个pGaN结构或者凹槽MIS结构,与肖特基接触形成混合漏极来提高耐压,以同时实现较低的正向开启电压和较高的反向击穿电压;但是上述结构为了形成合适的正向开启电压,凹槽MIS与肖特基形成的混合漏极GaN基逆阻型器件需要刻蚀减薄势垒层,而pGaN结构和肖特基共同组成混合漏极结构则需要对漏极 pGaN进行单独进行减薄刻蚀;上述两种方法存在以下问题:
1、由于pGaN层和势垒层都较薄,单独减薄工艺相对复杂,同时还要精确控制减薄后的势垒层或pGaN层的厚度,加工制造难度较大。
2、现有pGaN肖特基混合漏极结构需要对pGaN层进行两次刻蚀,分别是在形成栅极pGaN时形成漏极一侧pGaN和对漏极一侧pGaN进行二次减薄,参见图1、图2(a),由于对准偏差很难将pGaN完全刻蚀,参见图2(b)和图2(c),将会导致实际制备的器件正向开启电压大于设计仿真中的电压。
发明内容
本发明所要解决的是,现有混合漏极GaN基逆阻型高电子迁移率晶体管,参见图1,其混合漏极工艺步骤复杂,减薄厚度需要精确控制,且存在多次刻蚀减薄的对准误差问题,参见图2;而单纯的肖特基或pGaN整流结构的漏极又存在反向阻断能力弱或开启电压高的问题;针对上述问题提出了一种具有间隔pGaN和肖特基共同形成混合漏极阻型氮化镓高电子迁移率晶体管结构,与现有GaN基pGaN增强型高电子迁移率晶体管工艺兼容,在不增加工艺步骤和制造难度的基础上,同时实现逆阻型GaN基高电子迁移率晶体管的高反向阻断能力,和低正向开启电压。本发明所提出结构具有以下特点:
1、反向阻断能力强,正向开启电压低。
2、工艺简单,间隔pGaN结构与栅pGaN结构同步形成。
3、可行性高,避免了传统pGaN或凹槽MIS混合漏极结构对pGaN层或势垒层的刻蚀减薄,而势垒层和pGaN层的刻蚀减薄涉及到精确控制刻蚀厚度、刻蚀损伤、光刻对准等多种问题。
尤其适用高功率双向开关的制备。
为实现上述目的,本发明采用的技术方案是:
一种逆阻型氮化镓高电子迁移率晶体管,包括从下至上依次层叠设置的衬底1、成核层2、缓冲层3、沟道层4、势垒层5,其中沟道层4和势垒层5形成异质结结构;所述势垒层5上表面两端分别具有第一金属9和第二金属10,第一金属9嵌入势垒层5中形成欧姆接触,第一金属9为漏极;第二金属10嵌入势垒层5中形成欧姆接触,第二金属10为源极;其特征在于,在势垒层5上表面靠近第二金属10一侧具有第一pGaN结构7,在势垒层5上表面靠近第一金属9一侧具有第二pGaN结构8,在第二金属10与第一pGaN结构7之间、第一pGaN 结构7与第二pGaN结构8之间、第二pGaN结构8与第一金属9之间具有介质层6;所述第二pGaN结构8由一个或多个沿器件纵向方向的并列设置的pGaN结构构成,所述设置的pGaN 结构沿器件纵向方向的长度小于势垒层5沿器件纵向方向的长度,每个pGaN结构之间由介质层6隔离;定义源极到漏极的方向为器件横向方向,则器件纵向方向是同时垂直于器件横向方向和器件垂直方向的第三维度方向;所述第一pGaN结构7的上表面具有第三金属11,第三金属11完全覆盖第一pGaN结构7的上表面并沿器件横向方向向两侧延伸至覆盖部分介质层6上表面,第三金属11为栅极;第一金属9沿第二pGaN结构8上表面向第二金属10的方向延伸至完全覆盖第二pGaN结构8的上表面及部分介质层6上表面。
进一步的,第二pGaN结构8由多个pGaN结构构成单行沿器件纵向方向的并列分布或多行沿器件纵向方向的交错并列分布构成。
本发明的有益效果在于:
1、工艺简单,可行性高;本发明采用间隔pGaN结构高度与栅pGaN层一致,与栅pGaN结构同步形成,不需要单独进行刻蚀减薄,加工制备工序与传统的GaN基pGaN增强型高电子迁移率晶体管完全兼容,因此相比现有的凹槽MIS或pGaN与肖特基接触共同形成混合漏极结构的GaN基高电子迁移率晶体管,工艺更简单,制备可行性更高。
2、高耐压,正向开启电压低。本发明采用间隔pGaN结构和肖特基接触共同组成的混合漏极,在正向导通时,由于间隔下的电子气未被耗尽,因此正向导通电压极低。而在反向阻断时,间隔处的沟道电子气在低反向偏压下就很容易被耗尽,使得器件具有很高的击穿电压和小的阻断电流。
附图说明
图1为现有技术,减薄pGaN和肖特基接混合漏极的逆向阻断器件结构示意图;
图2为现有技术,pGaN减薄刻蚀工艺,其中(a)理想的pGaN减薄情况(b)向左的对准偏差(c)向右的对准偏差;
图3为本发明提出的,一种逆阻型氮化镓高电子迁移率晶体管的3D结构示意图;
图4为本发明提出的,一种具有并列设置多pGaN结构的GaN基逆阻型高电子迁移率晶体管3D结构示意图;
图5为本发明提出的,其他形状的漏极pGaN结构以及相应的排列方式,其中(a)为结构的正试图(b)两行矩形pGaN结构交错排布方式(c)三角形pGaN结构排布(d)三角形和菱形 pGaN结构混合排布;
图6为本发明提出的,一种逆阻型氮化镓高电子迁移率晶体管工艺制备过程中,刻蚀 pGaN层,同时形成栅极pGaN和漏极pGaN的结构示意图,其中,(a)为刻蚀前GaN晶圆示意图,(b)为刻蚀形成栅极pGaN和漏极pGaN后的正视图,(c)为刻蚀形成栅极pGaN和漏极 pGaN结构后的俯视图;
图7为本发明提出的,一种逆阻型氮化镓高电子迁移率晶体管和现有的肖特基势垒逆阻型氮化镓高电子迁移率晶体管的反向阻断特性对比图;
图8为本发明提出的,一种逆阻型氮化镓高电子迁移率晶体管和现有的肖特基势垒逆阻型氮化镓高电子迁移率晶体管的正向输出特性对比图。
具体实施方式
下面结合附图对本发明的方案进行进一步描述。
本发明的一种逆阻型氮化镓高电子迁移率晶体管,从下至上依次层叠设置的衬底1、成核层2、缓冲层3、沟道层4、势垒层5,其中沟道层4和势垒层5形成异质结结构;所述势垒层5上表面两端分别具有第一金属9和第二金属10,第一金属9嵌入势垒层5中形成欧姆接触,第一金属9为漏极;第二金属10嵌入势垒层5中形成欧姆接触,第二金属10为源极;其特征在于,在势垒层5上表面靠近第二金属10一侧具有第一pGaN结构7,在势垒层5上表面靠近第一金属9一侧具有第二pGaN结构8,在第二金属10与第一pGaN结构7之间、第一pGaN结构7与第二pGaN结构8之间、第二pGaN结构8与第一金属9之间具有介质层6;所述第二pGaN结构8由一个或多个沿器件纵向方向的并列设置的pGaN结构构成,所述设置的pGaN结构沿器件纵向方向的长度小于势垒层5沿器件纵向方向的长度,每个pGaN结构之间由介质层6隔离;定义源极到漏极的方向为器件横向方向,则器件纵向方向是同时垂直于器件横向方向和器件垂直方向的第三维度方向;所述第一pGaN结构7的上表面具有第三金属 11,第三金属11完全覆盖第一pGaN结构7的上表面并沿器件横向方向向两侧延伸至覆盖部分介质层6上表面,第三金属11为栅极;第一金属9沿第二pGaN结构8上表面向第二金属 10的方向延伸至完全覆盖第二pGaN结构8的上表面及部分介质层6上表面。
通过上述步骤,利用第二pGaN结构对沟道中的电子气不完全耗尽,实现较低的开启电压,和较强的反向阻断能力。同时。间隔pGaN结构厚度与栅极pGaN结构一致,避免了当前薄GaN或凹槽MIS混合漏极技术需要额外工艺步骤对pGaN层和势垒层进行减薄的问题,也克服了减薄pGaN不能完全对准的问题。
第二pGaN结构8的形状、长度、宽度、以及排列方式,参见图5,可以根据实际的需要来确定。也就是说,第二pGaN结构8设置的方式有很多种,无论其形状、长度、宽度、以及排列方式设置是哪种,只要其厚度与栅pGaN结构7厚度一致,宽度小于势垒层宽度,都可以与传统的GaN基pGaN增强型高电子迁移晶体管制备工艺兼容,避免当前技术需要对pGaN层或势垒层再次刻蚀的问题,参见图7;制备出具有强反向阻断能力、低正向开启电压的GaN基逆阻型高电子迁移率晶体管,解决现有技术中的问题,并取得相应的效果。
参见图3为本发明提供的一种逆阻型氮化镓高电子迁移率晶体管的3D结构示意图,包括:
衬底1,衬底1上的成核层2,位于成核层2上的缓冲层3,位于缓冲层3上的沟道层4,位于沟道层4上的势垒层5,位于势垒层5上的源极金属10、漏极金属9、钝化层6、栅极 pGaN结构7以及由第二pGaN结构81、第三pGaN结构82、第四pGaN结构83组成的间隔 pGaN结构,位于栅极pGaN结构上的栅极金属11。
进一步的,所述源极金属10和漏极金属分别位于势垒层5的两端,其中所述源极金属 10一端嵌入势垒层5中形成为欧姆接触,所述漏极金属9一端嵌入势垒层5形成肖特基接触,漏极金属9另一端和由第三pGaN结构81、第四pGaN结构82、第五pGaN结构83组成的间隔第二pGaN结构8形成肖特基接触,所述栅金属11一端与栅极pGaN结构7形成肖特基接触,另一端向漏极延伸,形成场板。
具体的,漏极金属9由第三pGaN结构81、第四pGaN结构82、第五pGaN结构83组成的间隔第二pGaN结构8共同形成混合漏极结构,间隔pGaN下方的二维电子气部分被间隔pGaN耗尽,在反向阻断时,间隔pGaN下方电子气在较低偏压下就被耗尽,有效的阻断电流。而在正向导通时候,由于间隔pGaN下方的电子气并未被完全耗尽,因此器件具有较小的正向导通电压。
进一步的,所述衬底1所采用的材料为硅、SiC、蓝宝石、GaN中的一种或多种。
具体的,Si具有较低的成本,而SiC具有较好的导热性,同时不同衬底的晶格常数和GaN 材料的晶格失配度也存在很大差别,对整体的晶圆的生长质量产生直接影响,可以根据不同的需求和应用场景选择不同的衬底材料。
进一步,所述成核层2所采用的材料为AlN,所述AlN厚度在10nm-50nm之间。
进一步,所述缓冲层3所采用的材料为AlGaN,所述AlGaN中的Al、Ga、N组分分别为x、1-x、1,Al组分x在0-0.05之间。
具体的,缓冲层3采用AlGaN,可以削弱势垒层5和沟道层4之间由于极化作用而产生的电子的浓度,和栅极pGaN结构7以及第二pGaN结构8共同耗尽沟道电子气浓度,使器件具有更好的正反向阻断能力,但是过高的Al组分又会影响正向导通特性。
进一步,所述势垒层5所采用的材料为AlGaN,所述AlGaN中的Al、Ga、N组分分别为x、1-x、1,Al组分x在0.2-0.32之间,
具体的,势垒层5和沟道层4形成异质结结构,在势垒层5和沟道层4的晶体结构导致自发极化作用和材料应变产生的压电极化作用下,在异质结界面形成二维势陷,导致电子在界面积累形成二维电子气。
进一步的,势垒层5上的第二pGaN结构8与栅极pGaN结构7的厚度保持一致。
具体的,参见图4,由第三pGaN结构81、第四pGaN结构82、第五pGaN结构83组成的间隔第二pGaN结构8与栅极pGaN结构7的工艺制备过程,所有的pGaN结构在一步工艺中形成,确保工艺简单可行,同时避免了减薄时二次对准存在的偏差问题。
进一步的,第二pGaN结构81、第三pGaN结构82、第四pGaN结构83宽度小于势垒层宽度,所述宽度为垂直于纸面向里结构前表面和后表面之间的距离。
具体的,第三pGaN结构81、第四pGaN结构82、第五pGaN结构83宽度小于势垒层宽度,确保间隔pGaN结构下方电子气在向导通是没有完全耗尽,具有较好的正向导通特性,同时在反向阻断间隔pGaN结构的间隔处的电子气能被快速耗尽,有效的提高阻断能力。
综上所述,在第二pGaN结构和肖特基接触共同组成的混合漏极结构下,逆阻型GaN基高电子迁移率管,同时实现了强的反向阻断能力和低的正向开启电压;此外,漏极间隔pGaN 结构与栅极pGaN结构同步形成,参见图6,简化了工艺步骤,降低了器件制备难度。有效的避免了现有pGaN混合漏极和凹槽MIS混合漏极技术需要多次刻蚀减薄的问题,
参见图4,通过Sentaurus TCAD对上述一种具有间隔pGaN结构的逆阻型氮化镓高电子迁移率晶体管进行了仿真,得到图7,图7为本发明一种具有间隔pGaN结构的逆阻型氮化镓高电子迁移率晶体管和传统的肖特基势垒逆阻型氮化镓高电子迁移率晶体管的反向阻断特性对比图,由图可见,传统的肖特基漏极结构击穿电压只有122V,而在本发明击穿电压高达517.9V,器件的反向阻断能力得到明显的提高。
参见图8,为本发明一种具有间隔pGaN结构的逆阻型氮化镓高电子迁移率晶体管和传统的肖特基势垒逆阻型氮化镓高电子迁移率晶体管的正向输出特性对比图,可以看到本发明提出的器件结构具有极低的开启电压,几乎可以达到与低功函数肖特基漏极结构的正向开启电压。

Claims (3)

1.一种逆阻型氮化镓高电子迁移率晶体管,包括从下至上依次层叠设置的衬底(1)、成核层(2)、缓冲层(3)、沟道层(4)、势垒层(5),其中沟道层(4)和势垒层(5)形成异质结结构;所述势垒层(5)上表面两端分别具有第一金属(9)和第二金属(10),第一金属(9)嵌入势垒层(5)中形成欧姆接触,第一金属(9)为漏极;第二金属(10)嵌入势垒层(5)中形成欧姆接触,第二金属(10)为源极;其特征在于,在势垒层(5)上表面靠近第二金属(10)一侧具有第一pGaN结构(7),在势垒层(5)上表面靠近第一金属(9)一侧具有第二pGaN结构(8),在第二金属(10)与第一pGaN结构(7)之间、第一pGaN结构(7)与第二pGaN结构(8)之间、第二pGaN结构(8)与第一金属(9)之间具有介质层(6);所述第二pGaN结构(8)由一个或多个沿器件纵向方向的并列设置的pGaN结构构成,所述构成第二pGaN结构(8)的pGaN结构沿器件纵向方向的长度小于势垒层(5)沿器件纵向方向的长度,所有pGaN结构在器件垂直方向的厚度相等,不同pGaN结构由介质层(6)隔离;定义源极到漏极的方向为器件横向方向,则器件纵向方向是同时垂直于器件横向方向和器件垂直方向的第三维度方向;所述第一pGaN结构(7)的上表面具有第三金属(11),第三金属(11)完全覆盖第一pGaN结构(7)的上表面并沿器件横向方向向两侧延伸至覆盖部分介质层(6)上表面,第三金属(11)为栅极;第一金属(9)沿第二pGaN结构(8)上表面向第二金属(10)的方向延伸至完全覆盖第二pGaN结构(8)的上表面及部分介质层(6)上表面。
2.根据权利要求1所述的一种逆阻型氮化镓高电子迁移率晶体管,其特征在于,第二pGaN结构(8)由多个pGaN结构构成,其具有以下构成方式:单行沿器件纵向方向的并列分布或多行沿器件纵向方向的交错并列分布。
3.根据权利要求1或2所述的所述的一种逆阻型氮化镓高电子迁移率晶体管,其特征在于,第二pGaN结构(8)由多个pGaN结构构成,所述pGaN结构形状为矩形、三角形、圆形、椭圆形、菱形的一种或多种组合。
CN202110868565.1A 2021-07-30 2021-07-30 一种逆阻型氮化镓高电子迁移率晶体管 Active CN113594247B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110868565.1A CN113594247B (zh) 2021-07-30 2021-07-30 一种逆阻型氮化镓高电子迁移率晶体管
US17/876,582 US20230036698A1 (en) 2021-07-30 2022-07-29 Reverse blocking gallium nitride high electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110868565.1A CN113594247B (zh) 2021-07-30 2021-07-30 一种逆阻型氮化镓高电子迁移率晶体管

Publications (2)

Publication Number Publication Date
CN113594247A true CN113594247A (zh) 2021-11-02
CN113594247B CN113594247B (zh) 2024-01-26

Family

ID=78252197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110868565.1A Active CN113594247B (zh) 2021-07-30 2021-07-30 一种逆阻型氮化镓高电子迁移率晶体管

Country Status (2)

Country Link
US (1) US20230036698A1 (zh)
CN (1) CN113594247B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701116A (zh) * 2020-12-28 2021-04-23 厦门市三安集成电路有限公司 密封环结构及其制备方法
CN114420743A (zh) * 2021-12-13 2022-04-29 晶通半导体(深圳)有限公司 反向阻断高迁移率晶体管
CN117577680A (zh) * 2024-01-17 2024-02-20 深圳市威兆半导体股份有限公司 氮化镓双向功率器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217507A1 (en) * 2011-02-24 2012-08-30 Fujitsu Limited Semiconductor apparatus and method for manufacturing semiconductor apparatus
CN104037212A (zh) * 2013-03-05 2014-09-10 首尔半导体株式会社 氮化物半导体元件及其制造方法
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法
US20170117376A1 (en) * 2015-09-24 2017-04-27 Epistar Corporation Heterostructure device
CN107170808A (zh) * 2017-05-24 2017-09-15 电子科技大学 一种逆阻型氮化镓器件
CN107768439A (zh) * 2016-08-23 2018-03-06 万国半导体(开曼)股份有限公司 非对称闭锁双向氮化镓开关
CN111863950A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 结型栅-漏功率器件
CN111863961A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 异质结场效应晶体管
CN112768505A (zh) * 2020-12-31 2021-05-07 西安电子科技大学 异质结功率器件及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217507A1 (en) * 2011-02-24 2012-08-30 Fujitsu Limited Semiconductor apparatus and method for manufacturing semiconductor apparatus
CN104037212A (zh) * 2013-03-05 2014-09-10 首尔半导体株式会社 氮化物半导体元件及其制造方法
CN105336770A (zh) * 2014-08-06 2016-02-17 江西省昌大光电科技有限公司 氮化镓基高电子迁移率晶体管外延结构及其制造方法
US20170117376A1 (en) * 2015-09-24 2017-04-27 Epistar Corporation Heterostructure device
CN107768439A (zh) * 2016-08-23 2018-03-06 万国半导体(开曼)股份有限公司 非对称闭锁双向氮化镓开关
CN107170808A (zh) * 2017-05-24 2017-09-15 电子科技大学 一种逆阻型氮化镓器件
CN111863950A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 结型栅-漏功率器件
CN111863961A (zh) * 2020-07-28 2020-10-30 西安电子科技大学 异质结场效应晶体管
CN112768505A (zh) * 2020-12-31 2021-05-07 西安电子科技大学 异质结功率器件及其制作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701116A (zh) * 2020-12-28 2021-04-23 厦门市三安集成电路有限公司 密封环结构及其制备方法
CN114420743A (zh) * 2021-12-13 2022-04-29 晶通半导体(深圳)有限公司 反向阻断高迁移率晶体管
CN114420743B (zh) * 2021-12-13 2023-05-26 晶通半导体(深圳)有限公司 反向阻断高迁移率晶体管
CN117577680A (zh) * 2024-01-17 2024-02-20 深圳市威兆半导体股份有限公司 氮化镓双向功率器件
CN117577680B (zh) * 2024-01-17 2024-04-12 深圳市威兆半导体股份有限公司 氮化镓双向功率器件

Also Published As

Publication number Publication date
CN113594247B (zh) 2024-01-26
US20230036698A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US11362205B2 (en) Group III nitride enhancement-mode HEMT based on composite barrier layer structure and manufacturing method thereof
CN113594247B (zh) 一种逆阻型氮化镓高电子迁移率晶体管
CN109585545B (zh) 一种增强型半导体器件及其制备方法
US8304811B2 (en) HEMT device and a manufacturing of the HEMT device
EP2955757B1 (en) Nitride power component and manufacturing method therefor
CN111477690B (zh) 基于P-GaN帽层和叉指结构的横向肖特基二极管及其制备方法
CN1937249A (zh) 铝镓氮化物/氮化镓高电子迁移率晶体管及制造方法
CN113644129B (zh) 一种具有台阶式P型GaN漏极结构的逆阻型HEMT
CN107623032A (zh) 一种新型的GaN异质结场效应晶体管
WO2021237901A1 (zh) Iii族氮化物凹槽栅常关型p沟道hemt器件及其制作方法
CN108598163A (zh) 一种GaN异质结纵向功率器件
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN111952355A (zh) 基于多漏指结构的GaN HEMT器件及其制备方法
CN111384171B (zh) 高沟道迁移率垂直型umosfet器件及其制备方法
CN210897283U (zh) 一种半导体器件
CN112820648A (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN111933709A (zh) 一种具有高可靠性的氮化物器件及其制备方法
CN114843337A (zh) 双栅结构氮化镓高电子迁移率晶体管及其制作方法
CN114784088A (zh) 一种结条氮化镓基高电子迁移率晶体管
CN213635994U (zh) 增强型半导体结构
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN113594243A (zh) 一种渐变极化掺杂的增强型GaN纵向场效应晶体管
CN108831932B (zh) 一种氮化镓横向mis-肖特基混合阳极二极管
CN107527952B (zh) 一种Nano-Fin栅结构的混合阳极二极管
CN212342636U (zh) 半导体结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant