CN103454312B - 基于光催化反应的气相有机物浓度检测装置及检测方法 - Google Patents

基于光催化反应的气相有机物浓度检测装置及检测方法 Download PDF

Info

Publication number
CN103454312B
CN103454312B CN201310359663.8A CN201310359663A CN103454312B CN 103454312 B CN103454312 B CN 103454312B CN 201310359663 A CN201310359663 A CN 201310359663A CN 103454312 B CN103454312 B CN 103454312B
Authority
CN
China
Prior art keywords
tio
nano
film
gas phase
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310359663.8A
Other languages
English (en)
Other versions
CN103454312A (zh
Inventor
徐光青
吕珺
刘家琴
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201310359663.8A priority Critical patent/CN103454312B/zh
Publication of CN103454312A publication Critical patent/CN103454312A/zh
Application granted granted Critical
Publication of CN103454312B publication Critical patent/CN103454312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及纳米材料、光催化材料、环境分析和传感技术领域,具体是涉及一种基于光催化反应的气相有机物浓度检测装置及检测方法。该检测装置包括有紫外光源;基于导电金属基体的纳米TiO2膜,置于紫外光源的光路上并用于负载待测气相有机物;信号采集系统,用于采集光催化降解该待测气相有机物的过程中纳米TiO2膜与导电金属基体之间的电位或电流变化数据,以检测该待测气相有机物的浓度。本发明可针对冰箱、汽车和家居环境中存在的气相有机污染物的快速检测,检测装置灵敏度高、响应速度快。由于其信号来源于纳米TiO2薄膜光催化氧化有机物过程中产生的电信号变化,无需使用任何化学试剂,环境友好。检测装置结构简单、传感器制造及检测成本低廉。

Description

基于光催化反应的气相有机物浓度检测装置及检测方法
技术领域
本发明涉及纳米材料、光催化材料、环境分析和传感技术领域,具体是涉及一种基于光催化反应的气相有机物浓度检测装置及检测方法。
背景技术
有机物污染已经成为近代社会一项重要污染源之一,这其中既包括水体有机物污染和气相有机物污染。水体有机物污染有各种农药厂、化肥厂及其他化工厂所排放的废水中含有大量的有机污染物,气相有机物污染有冰箱中果蔬及肉类腐烂产生的异味、汽车及家居装饰产生的甲醛污染以及众多化工企业废弃排放产生的有机物污染物。
水体有机物污染物具有国家标准规定的检测方法,即高锰酸钾和重铬酸钾氧化法检测水体化学需氧量(COD),并且也有大量的研究人员将电催化、光催化等反应体系引入水体有机污染物的快速检测领域。譬如中国发明专利(02111970.8)“纳米COD传感器、制备及其用途”公开了一种以PbO2修饰电极作为工作电极,通过电催化氧化的方式测定COD。上海交通大学周保学研究组(中国发明专利200510026210.9“光电催化测定化学需氧量的方法”)采用TiO2纳米阵列做工作电极,实现水体有机物COD的光电化学检测。
目前还没有专门针对气相有机物浓度检测的方法和设备,大多数采用电子狗或气相色谱对气相成分做定性和定量分析,这些方法设备复杂、价格昂贵,不适合在冰箱、汽车和家居环境下的实时检测。
纳米TiO2是一类特殊的半导体材料,紫外光照射下能够产生大量的光生电子-空穴对,其中光生空穴具有很强的氧化能力,能够直接催化氧化大多数的有机物,因而在光催化降解有机物、光解水、太阳能染料电池等领域具有广阔的应用前景。本课题组(中国发明专利201210336420.8“循环式水体化学需氧量检测的光电化学传感器”)采用电化学的方法,分离光生电子-空穴对,建立光电流与水体有机物浓度(空穴的催化氧化速度)的线性关系,进行水体有机物浓度的检测。基于此,我们利用TiO2纳米材料的光催化性能,设计一种基于电位法和电流法的气相有机物检测方法。
发明内容
针对现有技术中存在的技术问题,本发明的目的之一是提供一种基于光催化反应的气相有机物浓度检测装置,该检测装置通过实时采集光催化降解气相中有机物过程中TiO2膜的电位或电流变化数据,从而实现气相有机物浓度的定量检测。
为了实现上述目的,采用的技术方案为:一种基于光催化反应的气相有机物浓度检测装置,包括有:
紫外光源;
基于导电金属基体的纳米TiO2膜,置于所述紫外光源的光路上并用于负载待测气相有机物;
信号采集系统,用于采集光催化降解该待测气相有机物的过程中纳米TiO2膜与导电金属基体之间的电位或电流变化数据,以检测该待测气相有机物的浓度。
进一步的,所述紫外光源为光功率可连续调节式紫外光源设备,优选LED紫外光源或氙灯光源,且紫外光源的光功率为5~1500mW/cm2,波长为200~400nm。
优选的,所述导电金属基体为Pt、Au、Ag、Cu或Ti,且所述基于导电金属基体的纳米TiO2膜是通过气相沉积法、溶胶凝胶法、水解沉淀法、水热法或阳极氧化法制备的。
进一步优选的,所述基于导电金属基体的纳米TiO2膜是通过阳极氧化法制备的,导电金属基体为Ti且纳米TiO2膜为TiO2纳米管阵列膜,制备工艺为:以高纯Ti片为阳极,石墨为阴极,电解液为含0.3mol/L HF的乙二醇溶液,阳极电压为100V,阳极氧化时间为10h;阳极氧化完成后,TiO2/Ti纳米管阵列膜在超声波中震荡1min去除表面破碎的纳米管,经高纯水中清洗5min,40℃恒温箱中保温5h干燥,阳极氧化的TiO2纳米管阵列膜在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
进一步优选的,所述基于导电金属基体的纳米TiO2膜是通过水热法制备的,导电金属基体为Ti且纳米TiO2膜为纳米TiO2管膜,制备工艺为:取10mol/LNaOH水溶液10mL置于聚四氟乙烯内衬的反应釜中,并将Ti片置于其中,将密封的反应釜加热至180℃,保温10h,获得TiO2/Ti纳米管膜。待完全冷却后,取出TiO2/Ti纳米管膜,置于高纯水中清洗5min;将TiO2/Ti纳米管膜置于10mL浓度为1mol/L的盐酸中浸泡30min酸化,高纯水中清洗5min,烘干后在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
进一步优选的,所述基于导电金属基体的纳米TiO2膜是通过溶胶凝胶法制备的,导电金属基体为Ti且纳米TiO2膜为纳米TiO2颗粒膜,制备工艺为:取17mL的钛酸四丁酯加入到40mL的无水乙醇中搅拌30min获得均匀溶液A;取10mL冰醋酸和42.5mL的95%乙醇搅拌30min获得均匀溶液B;强烈搅拌过程中将A溶液缓慢滴加到B溶液中,并继续搅拌30min,得到透明而均匀的TiO2溶胶;将直径为20cm的高纯Ti片用双面胶固定于旋涂仪的中心位置,设置旋转速度为1000rpm,取TiO2溶胶10μL滴在Ti片表面,并在旋转过程中均匀涂覆在Ti片表面,烘干;重复上述过程5次,获得TiO2胶体膜,并在马弗炉中进行热处理晶化,热处理温度为500℃,时间为2h,获得纳米TiO2颗粒膜。
进一步的,所述信号采集系统包括有与导电金属基体电连接的开关和与开关电连接的微安表,所述微安表的电流输出端接地。
进一步的,所述信号采集系统还包括有分别与导电金属基体和纳米TiO2膜电连接的毫伏表。
作为本发明的另一目的,提供了一种该基于光催化反应的气相有机物浓度检测装置的检测方法,主要包括电流检测法和电位检测法。
为了实现上述目的,本发明所采用的技术方案为:
基于光催化反应的气相有机物浓度检测装置的检测方法,包括电流检测法,步骤为:合上开关,且紫外光源发出紫外光,在光照条件下,纳米TiO2膜被光激发产生光生电子-空穴对,由于纳米TiO2膜与导电金属基体之间存在能带差异,光生电子会自发向导电金属基体迁移,进而在纳米TiO2膜与导电金属基体的界面上形成空间电荷层;
当空间电荷层达到稳定状态时,电流为0,激发产生的光生电子-空穴对的形成速度与光生电子、光生空穴的复合速度保持平衡;
当纳米TiO2膜表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,多余的光生电子则通过微安表形成电流信号,电流的大小取决于光生空穴的反应速度,即气相有机物的浓度。
基于光催化反应的气相有机物浓度检测装置的检测方法,包括电位检测法,步骤为:断开开关,且紫外光源发出紫外光,在光照条件下,纳米TiO2膜被光激发产生光生电子-空穴对,由于纳米TiO2膜与导电金属基体之间存在能带差异,光生电子会自发向导电金属基体迁移,进而在纳米TiO2膜与导电金属基体的界面上形成空间电荷层,并具有一定的电位差;
当空间电荷层达到稳定状态时,持续光照形成的光生电子-空穴对通过再复合消耗,两层间电位达到一个稳定值;
当纳米TiO2膜表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,相应的光生电子转移到导电金属基体上,使得纳米TiO2膜与导电金属基体之间的电位差发生变化;
当光生电子-空穴对的激发形成、对应于气相有机物浓度的空穴反应消耗以及光生电子-空穴对再复合消耗达到再次平衡时,自毫伏表得出的电位差变化即反映了气相有机物的浓度;
检测完毕后,合上开关,多余的光生电子通过接地消除,电位差恢复初始状态。
本发明的基于光催化反应的气相有机物浓度检测装置及检测方法,与现有技术相比,其有益效果表现在:
1)、通过实时采集光催化降解气相中有机物过程中TiO2膜的电位或电流变化数据,从而实现气相有机物浓度的定量检测。特别是针对冰箱、汽车和家居环境中存在的气相有机污染物的快速检测,检测装置灵敏度高、响应速度快。
2)、由于其信号来源于纳米TiO2薄膜光催化氧化有机物过程中产生的电信号变化,无需使用如强氧化剂等其它任何化学试剂,环境友好,并且该检测装置结构简单、传感器制造及检测成本低廉。
附图说明
图1是基于光催化反应的气相有机物浓度检测装置的结构示意图。
具体实施方式
请参阅图1,一种基于光催化反应的气相有机物浓度检测装置,包括有紫外光源1、基于导电金属基体3的纳米TiO2膜2以及信号采集系统5。
紫外光源1优选光功率可连续调节的LED紫外光源或氙灯光源,且紫外光源1的光功率为5~1500mW/cm2,波长为200~400nm。
基于导电金属基体3的纳米TiO2膜2置于紫外光源1的光路上,用于负载待测气相有机物,导电金属基体3为Pt、Au、Ag、Cu或Ti,且基于导电金属基体3的纳米TiO2膜2是通过气相沉积法、溶胶凝胶法、水解沉淀法、水热法或阳极氧化法制备的。
作为基于导电金属基体3的纳米TiO2膜2制备的第一种优选,通过阳极氧化法制备,导电金属基体3为Ti且纳米TiO2膜2为TiO2纳米管阵列膜,制备工艺为:以高纯Ti片为阳极,石墨为阴极,电解液为含0.3mol/L HF的乙二醇溶液,阳极电压为100V,阳极氧化时间为10h;阳极氧化完成后,TiO2/Ti纳米管阵列膜在超声波中震荡1min去除表面破碎的纳米管,经高纯水中清洗5min,40℃恒温箱中保温5h干燥,阳极氧化的TiO2纳米管阵列膜在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
作为基于导电金属基体3的纳米TiO2膜2制备的第二种优选,通过水热法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2管膜,制备工艺为:取10mol/L NaOH水溶液10mL置于聚四氟乙烯内衬的反应釜中,并将Ti片置于其中,将密封的反应釜加热至180℃,保温10h,获得TiO2/Ti纳米管膜。待完全冷却后,取出TiO2/Ti纳米管膜,置于高纯水中清洗5min;将TiO2/Ti纳米管膜置于10mL浓度为1mol/L的盐酸中浸泡30min酸化,高纯水中清洗5min,烘干后在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
作为基于导电金属基体3的纳米TiO2膜2制备的第三种优选,通过溶胶凝胶法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2颗粒膜,制备工艺为:取17mL的钛酸四丁酯加入到40mL的无水乙醇中搅拌30min获得均匀溶液A;取10mL冰醋酸和42.5mL的95%乙醇(体积百分比)搅拌30min获得均匀溶液B;强烈搅拌过程中将A溶液缓慢滴加到B溶液中,并继续搅拌30min,得到透明而均匀的TiO2溶胶;将直径为20cm的高纯Ti片用双面胶固定于旋涂仪的中心位置,设置旋转速度为1000rpm,取TiO2溶胶10μL滴在Ti片表面,并在旋转过程中均匀涂覆在Ti片表面,烘干;重复上述过程5次,获得具有一定厚度的TiO2胶体膜,并在马弗炉中进行热处理晶化,热处理温度为500℃,时间为2h,获得纳米TiO2颗粒膜。
作为基于导电金属基体3的纳米TiO2膜2制备的第四种优选,通过水解沉淀法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2颗粒膜,制备工艺为:冰水浴下配制250mL浓度为0.1mol/L的TiCl4水溶液待用,采用H2SO4溶液调整其pH值为2.5。在85℃水浴、搅拌条件下,配制质量浓度为30%的尿素溶液135mL,并将剪成一定形状的Ti片加入尿素溶液中,持续搅拌。蠕动泵以1mL/min的速度将TiCl4水溶液滴加进入钛片的尿素溶液中,滴加完成后在85℃水浴条件下继续搅拌30min,取出Ti片再分别用蒸馏水和无水乙醇交替清洗3遍。将Ti片负载纳米TiO2放入马弗炉中500℃热处理2h,实现负载水解沉淀的非晶TiO2颗粒膜的晶化。
信号采集系统5用于采集光催化降解该待测气相有机物的过程中纳米TiO2膜2与导电金属基体3之间的电位或电流变化数据,以检测该待测气相有机物的浓度。它包括有与导电金属基体3电连接的开关7和与开关7电连接的微安表6,微安表6的电流输出端接地。
在该种信号采集系统设计情况下,可通过电流检测法实现气相有机物浓度的检测,具体检测方法为:合上开关7,且紫外光源1发出紫外光,在光照条件下,纳米TiO2膜2被光激发产生光生电子-空穴对,由于纳米TiO2膜2与导电金属基体3之间存在能带差异,光生电子会自发向导电金属基体3迁移,进而在纳米TiO2膜2与导电金属基体3的界面上形成空间电荷层。
当空间电荷层达到稳定状态时,电流为0,激发产生的光生电子-空穴对的形成速度与光生电子、光生空穴的复合速度保持平衡。
当纳米TiO2膜2表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,多余的光生电子则通过微安表6形成电流信号,电流的大小取决于光生空穴的反应速度,即气相有机物的浓度。
另外,上述信号采集系统5还包括有分别与导电金属基体3和纳米TiO2膜2电连接的毫伏表4。
在该种信号采集系统设计情况下,可通过电位检测法实现气相有机物浓度的检测,具体检测方法为:断开开关7,且紫外光源1发出紫外光,在光照条件下,纳米TiO2膜2被光激发产生光生电子-空穴对,由于纳米TiO2膜2与导电金属基体3之间存在能带差异,光生电子会自发向导电金属基体3迁移,进而在纳米TiO2膜2与导电金属基体3的界面上形成空间电荷层,并具有一定的电位差。
当空间电荷层达到稳定状态时,持续光照形成的光生电子-空穴对通过再复合消耗,两层间电位达到一个稳定值。
当纳米TiO2膜2表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,相应的光生电子转移到导电金属基体3上,使得纳米TiO2膜2与导电金属基体3之间的电位差发生变化。
当光生电子-空穴对的激发形成、对应于气相有机物浓度的空穴反应消耗以及光生电子-空穴对再复合消耗达到再次平衡时,自毫伏表4得出的电位差变化即反映了气相有机物的浓度。
检测完毕后,合上开关7,多余的光生电子通过接地消除,电位差恢复初始状态。
为了便于本领域技术人员理解,下面结合实施例对本发明作进一步的说明。
实施例1
①、基于导电金属基体3的纳米TiO2膜2的制备
通过阳极氧化法制备,导电金属基体3为Ti且纳米TiO2膜2为TiO2纳米管阵列膜,以高纯Ti片为阳极,石墨为阴极,电解液为含0.3mol/L HF的乙二醇溶液,阳极电压为100V,阳极氧化时间为10h;阳极氧化完成后,TiO2/Ti纳米管阵列膜在超声波中震荡1min去除表面破碎的纳米管,经高纯水中清洗5min,40℃恒温箱中保温5h干燥,阳极氧化的TiO2纳米管阵列膜在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
②、紫外光源1选择LED紫外光源,且光功率为120mW/cm2,波长为300nm。
③、气相有机物浓度的检测
按照图1安装信号采集系统以及整个检测装置,并采用电位法测量气相有机物的浓度。
实施例2
基于导电金属基体3的纳米TiO2膜2的制备、紫外光源的选择同实施例1,不同的是采用电流法测量气相有机物的浓度。
实施例3
①、基于导电金属基体3的纳米TiO2膜2的制备
通过水热法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2管膜,取10mol/L NaOH水溶液10mL置于聚四氟乙烯内衬的反应釜中,并将Ti片置于其中,将密封的反应釜加热至180℃,保温10h,获得TiO2/Ti纳米管膜。待完全冷却后,取出TiO2/Ti纳米管膜,置于高纯水中清洗5min;将TiO2/Ti纳米管膜置于10mL浓度为1mol/L的盐酸中浸泡30min酸化,高纯水中清洗5min,烘干后在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
②、紫外光源1选择氙灯光源,且光功率为1000mW/cm2,波长为200nm。
③、气相有机物浓度的检测
按照图1安装信号采集系统以及整个检测装置,并采用电位法测量气相有机物的浓度。
实施例4
基于导电金属基体3的纳米TiO2膜2的制备同实施例3,不同的是紫外光源1选择LED紫外光源,且光功率为1500mW/cm2,波长为400nm,并且采用电流法测量气相有机物的浓度。
实施例5
①、基于导电金属基体3的纳米TiO2膜2的制备
通过溶胶凝胶法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2颗粒膜,取17mL的钛酸四丁酯加入到40mL的无水乙醇中搅拌30min获得均匀溶液A;取10mL冰醋酸和42.5mL的95%乙醇(体积百分比)搅拌30min获得均匀溶液B;强烈搅拌过程中将A溶液缓慢滴加到B溶液中,并继续搅拌30min,得到透明而均匀的TiO2溶胶;将直径为20cm的高纯Ti片用双面胶固定于旋涂仪的中心位置,设置旋转速度为1000rpm,取TiO2溶胶10μL滴在Ti片表面,并在旋转过程中均匀涂覆在Ti片表面,烘干;重复上述过程5次,获得具有一定厚度的TiO2胶体膜,并在马弗炉中进行热处理晶化,热处理温度为500℃,时间为2h。
紫外光源的选择、气相有机物浓度的检测均同实施例1。
实施例6
①、基于导电金属基体3的纳米TiO2膜2的制备
通过溶胶凝胶法制备,导电金属基体3为Cu且纳米TiO2膜2为纳米TiO2颗粒膜,取17mL的钛酸四丁酯加入到40mL的无水乙醇中搅拌30min获得均匀溶液A;取10mL冰醋酸和42.5mL的95%乙醇(体积百分比)搅拌30min获得均匀溶液B;强烈搅拌过程中将A溶液缓慢滴加到B溶液中,并继续搅拌30min,得到透明而均匀的TiO2溶胶;将直径为20cm的高纯Cu片用双面胶固定于旋涂仪的中心位置,设置旋转速度为1000rpm,取TiO2溶胶10μL滴在Cu片表面,并在旋转过程中均匀涂覆在Cu片表面,烘干;重复上述过程5次,获得具有一定厚度的TiO2胶体膜,并在马弗炉中进行热处理晶化,热处理温度为500℃,时间为2h。
紫外光源的选择、气相有机物浓度的检测均同实施例5。
实施例7
基于导电金属基体3的纳米TiO2膜2的制备方法、紫外光源的选择、气相有机物浓度的检测均同实施例1,不同的是电解液为含0.3mol/L NH4F的乙二醇溶液,同时,阳极电压为60V,阳极氧化时间为6h。
实施例8
①、基于导电金属基体3的纳米TiO2膜2的制备
通过水解沉淀法制备,导电金属基体3为Ti且纳米TiO2膜2为纳米TiO2颗粒膜,冰水浴下配制250mL浓度为0.1mol/L的TiCl4水溶液待用,采用H2SO4溶液调整其pH值为2.5。在85℃水浴、搅拌条件下,配制质量浓度为30%的尿素溶液135mL,并将剪成一定形状的Ti片加入尿素溶液中,持续搅拌。
蠕动泵以1mL/min的速度将TiCl4水溶液滴加进入钛片的尿素溶液中,滴加完成后在85℃水浴条件下继续搅拌30min,取出Ti片再分别用蒸馏水和无水乙醇交替清洗3遍。将Ti片负载纳米TiO2放入马弗炉中500℃热处理2h,实现负载水解沉淀的非晶TiO2颗粒膜的晶化。
紫外光源的选择、气相有机物浓度的检测均同实施例4。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (10)

1.一种基于光催化反应的气相有机物浓度检测装置,其特征是该检测装置包括有:
紫外光源(1);
基于导电金属基体(3)的纳米TiO2膜(2),置于所述紫外光源(1)的光路上并用于负载待测气相有机物;
信号采集系统(5),用于采集光催化降解该待测气相有机物的过程中纳米TiO2膜(2)与导电金属基体(3)之间的电位或电流变化数据,以检测该待测气相有机物的浓度。
2.根据权利要求1所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述紫外光源(1)为光功率可连续调节式紫外光源设备,且紫外光源(1)的光功率为5~1500mW/cm2,波长为200~400nm。
3.根据权利要求1所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述导电金属基体(3)为Pt、Au、Ag、Cu或Ti,且所述基于导电金属基体(3)的纳米TiO2膜(2)是通过气相沉积法、溶胶凝胶法、水解沉淀法、水热法或阳极氧化法制备的。
4.根据权利要求3所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述基于导电金属基体(3)的纳米TiO2膜(2)是通过阳极氧化法制备的,导电金属基体(3)为Ti且纳米TiO2膜(2)为TiO2纳米管阵列膜,制备工艺为:以高纯Ti片为阳极,石墨为阴极,电解液为含0.3mol/L HF的乙二醇溶液,阳极电压为100V,阳极氧化时间为10h;阳极氧化完成后,TiO2/Ti纳米管阵列膜在超声波中震荡1min去除表面破碎的纳米管,经高纯水中清洗5min,40℃恒温箱中保温5h干燥,阳极氧化的TiO2纳米管阵列膜在马弗炉 中热处理晶化,热处理温度为500℃,时间为2h。
5.根据权利要求3所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述基于导电金属基体(3)的纳米TiO2膜(2)是通过水热法制备的,导电金属基体(3)为Ti且纳米TiO2膜(2)为纳米TiO2管膜,制备工艺为:取10mol/L NaOH水溶液10mL置于聚四氟乙烯内衬的反应釜中,并将Ti片置于其中,将密封的反应釜加热至180℃,保温10h,获得TiO2/Ti纳米管膜,待完全冷却后,取出TiO2/Ti纳米管膜,置于高纯水中清洗5min;将TiO2/Ti纳米管膜置于10mL浓度为1mol/L的盐酸中浸泡30min酸化,高纯水中清洗5min,烘干后在马弗炉中热处理晶化,热处理温度为500℃,时间为2h。
6.根据权利要求3所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述基于导电金属基体(3)的纳米TiO2膜(2)是通过溶胶凝胶法制备的,导电金属基体(3)为Ti且纳米TiO2膜(2)为纳米TiO2颗粒膜,制备工艺为:取17mL的钛酸四丁酯加入到40mL的无水乙醇中搅拌30min获得均匀溶液A;取10mL冰醋酸和42.5mL的95%乙醇搅拌30min获得均匀溶液B;强烈搅拌过程中将A溶液缓慢滴加到B溶液中,并继续搅拌30min,得到透明而均匀的TiO2溶胶;将直径为20cm的高纯Ti片用双面胶固定于旋涂仪的中心位置,设置旋转速度为1000rpm,取TiO2溶胶10μL滴在Ti片表面,并在旋转过程中均匀涂覆在Ti片表面,烘干;重复上述过程5次,获得TiO2胶体膜,并在马弗炉中进行热处理晶化,热处理温度为500℃,时间为2h,获得纳米TiO2颗粒膜。
7.根据权利要求1~6任一项所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述信号采集系统(5)包括有与导电金属基体(3)电 连接的开关(7)和与开关(7)电连接的微安表(6),所述微安表(6)的电流输出端接地。
8.根据权利要求7所述的基于光催化反应的气相有机物浓度检测装置,其特征在于:所述信号采集系统(5)还包括有分别与导电金属基体(3)和纳米TiO2膜(2)电连接的毫伏表(4)。
9.一种根据权利要求7所述的基于光催化反应的气相有机物浓度检测装置的检测方法,包括电流检测法,其特征在于:
合上开关(7),且紫外光源(1)发出紫外光,在光照条件下,纳米TiO2膜(2)被光激发产生光生电子-空穴对,由于纳米TiO2膜(2)与导电金属基体(3)之间存在能带差异,光生电子会自发向导电金属基体(3)迁移,进而在纳米TiO2膜(2)与导电金属基体(3)的界面上形成空间电荷层;
当空间电荷层达到稳定状态时,电流为0,激发产生的光生电子-空穴对的形成速度与光生电子、光生空穴的复合速度保持平衡;
当纳米TiO2膜(2)表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,多余的光生电子则通过微安表(6)形成电流信号,电流的大小取决于光生空穴的反应速度,即气相有机物的浓度。
10.一种根据权利要求8所述的基于光催化反应的气相有机物浓度检测装置的检测方法,包括电位检测法,其特征在于:
断开开关(7),且紫外光源(1)发出紫外光,在光照条件下,纳米TiO2膜(2)被光激发产生光生电子-空穴对,由于纳米TiO2膜(2)与导电金属基体(3)之间存在能带差异,光生电子会自发向导电金属基体(3)迁移,进而在纳米TiO2膜(2)与导电金属基体(3)的界面上形成空间电荷层,并具有一定的电位差;
当空间电荷层达到稳定状态时,持续光照形成的光生电子-空穴对通过再复合消耗,两层间电位达到一个稳定值;
当纳米TiO2膜(2)表面存在气相有机物时,光生空穴因与气相有机物发生光催化氧化反应而被消耗,相应的光生电子转移到导电金属基体(3)上,使得纳米TiO2膜(2)与导电金属基体(3)之间的电位差发生变化;
当光生电子-空穴对的激发形成、对应于气相有机物浓度的空穴反应消耗以及光生电子-空穴对再复合消耗达到再次平衡时,自毫伏表(4)得出的电位差变化即反映了气相有机物的浓度;
检测完毕后,合上开关(7),多余的光生电子通过接地消除,电位差恢复初始状态。
CN201310359663.8A 2013-08-16 2013-08-16 基于光催化反应的气相有机物浓度检测装置及检测方法 Expired - Fee Related CN103454312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310359663.8A CN103454312B (zh) 2013-08-16 2013-08-16 基于光催化反应的气相有机物浓度检测装置及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310359663.8A CN103454312B (zh) 2013-08-16 2013-08-16 基于光催化反应的气相有机物浓度检测装置及检测方法

Publications (2)

Publication Number Publication Date
CN103454312A CN103454312A (zh) 2013-12-18
CN103454312B true CN103454312B (zh) 2015-09-23

Family

ID=49736917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310359663.8A Expired - Fee Related CN103454312B (zh) 2013-08-16 2013-08-16 基于光催化反应的气相有机物浓度检测装置及检测方法

Country Status (1)

Country Link
CN (1) CN103454312B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106841067B (zh) * 2017-01-17 2019-05-28 大连理工大学 一种基于选择性波段的气体传感器及其检测方法
CN106970131B (zh) * 2017-03-28 2019-01-18 北京北大明德科技发展有限公司 一种光电催化型水溶有机物浓度传感器及制备方法
CN109387009B (zh) * 2017-08-14 2024-01-16 宁波方太厨具有限公司 一种冰箱
CN108155266A (zh) * 2017-12-14 2018-06-12 浙江大学 以暴露{001}晶面的锐钛矿型二氧化钛纳米管阵列为基底的紫外光探测器及方法
CN108318530B (zh) * 2018-03-20 2023-09-26 郑州轻工业大学 一种基于光催化检测甲醛气体浓度的装置
CN108535335B (zh) * 2018-04-13 2021-04-02 安徽建筑大学 一种基于同种材料多重独立信号的有机污染物检测方法
CN108982621B (zh) * 2018-09-21 2021-05-18 京东方科技集团股份有限公司 一种污染物检测装置、穿戴设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239258A (en) * 1992-04-03 1993-08-24 University Of Dayton Freshness and stability test using oxidative degradation
CN2463832Y (zh) * 2000-12-20 2001-12-05 中国工程物理研究院环保工程研究中心 垃圾腐熟度探测仪
CN2540633Y (zh) * 2002-06-04 2003-03-19 复旦大学 便携式智能电子鼻的结构
CN2723999Y (zh) * 2004-08-03 2005-09-07 国家电动汽车试验示范区管理中心 测氢室
CN201867386U (zh) * 2010-09-30 2011-06-15 哈尔滨鸿翼科技发展有限公司 高温环境下检测甲烷气体的传感探头及应用该探头的检测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279250B (zh) * 2008-02-01 2011-04-13 浙江天蓝环保技术有限公司 一种负载型氮掺杂一维结构TiO2及其制备方法
CN102723111A (zh) * 2011-03-30 2012-10-10 苏州方昇光电装备技术有限公司 利用化学手段构筑多位存储器件的方法
CN102621062B (zh) * 2012-02-27 2014-03-26 华中科技大学 基于光电性能高通量筛选光催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239258A (en) * 1992-04-03 1993-08-24 University Of Dayton Freshness and stability test using oxidative degradation
CN2463832Y (zh) * 2000-12-20 2001-12-05 中国工程物理研究院环保工程研究中心 垃圾腐熟度探测仪
CN2540633Y (zh) * 2002-06-04 2003-03-19 复旦大学 便携式智能电子鼻的结构
CN2723999Y (zh) * 2004-08-03 2005-09-07 国家电动汽车试验示范区管理中心 测氢室
CN201867386U (zh) * 2010-09-30 2011-06-15 哈尔滨鸿翼科技发展有限公司 高温环境下检测甲烷气体的传感探头及应用该探头的检测系统

Also Published As

Publication number Publication date
CN103454312A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
CN103454312B (zh) 基于光催化反应的气相有机物浓度检测装置及检测方法
Chen et al. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution
Li et al. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell
Jiang et al. Characterization of photoelectrocatalytic processes at nanoporous TiO2 film electrodes: photocatalytic oxidation of glucose
Wang et al. Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation
Liu et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell
Fernandez-Ibañez et al. Photoelectrochemical reactors for the solar decontamination of water
Brune et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell
Chen et al. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research
Gao et al. Anatase TiO 2 based photoelectrochemical sensor for the sensitive determination of dopamine under visible light irradiation
CN102941077A (zh) 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
CN102866186B (zh) 循环式水体化学需氧量检测光电化学传感器
CN105241937B (zh) 一种检测DNA的ZnO基光电化学生物传感器的制备
CN102329006A (zh) 同时产电、产氢及污水处理的微生物光电化学系统
CN105597820A (zh) 一种类石墨相的氮化碳/四羧基苯基卟啉纳米复合材料及其制备方法
CN104316581B (zh) 一种基于可见光光电催化的cod传感器及其制备方法和应用
Zainal et al. Electrochemical-assisted photodegradation of dye on TiO2 thin films: investigation on the effect of operational parameters
CN104195588B (zh) 一种光电化学分解纯水制备氧气与氢气的方法
CN107138111A (zh) 一种二氧化碳催化还原反应装置
CN107675200A (zh) 一种改性g‑C3N4量子点/TiO2纳米线光阳极及其应用
Petruleviciene et al. BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination
CN102276011B (zh) 一种制备TiO2薄膜电极的简单方法
CN110042409A (zh) 氧化钨/钒酸铋异质结光电阳极的制备方法及自供电光电解水系统
CN101700485A (zh) 一种光电催化装置
Bennani et al. Photoelectrocatalytic oxidation of phenol for water treatment using a BiVO4 thin-film photoanode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150923

Termination date: 20180816