CN103394345A - 稀燃缸内直喷内燃机微粒氧化催化器用催化剂 - Google Patents

稀燃缸内直喷内燃机微粒氧化催化器用催化剂 Download PDF

Info

Publication number
CN103394345A
CN103394345A CN2013103038932A CN201310303893A CN103394345A CN 103394345 A CN103394345 A CN 103394345A CN 2013103038932 A CN2013103038932 A CN 2013103038932A CN 201310303893 A CN201310303893 A CN 201310303893A CN 103394345 A CN103394345 A CN 103394345A
Authority
CN
China
Prior art keywords
catalyst
quality
preparation
perovskite
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103038932A
Other languages
English (en)
Other versions
CN103394345B (zh
Inventor
宋崇林
吕刚
宋金瓯
宾峰
张清茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310303893.2A priority Critical patent/CN103394345B/zh
Publication of CN103394345A publication Critical patent/CN103394345A/zh
Application granted granted Critical
Publication of CN103394345B publication Critical patent/CN103394345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

稀燃缸内直喷内燃机微粒氧化催化器用催化剂,其组成为:将A位铈元素、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物作为催化剂,且钙钛矿结构A位的Ce离子与La离子的摩尔百分比:10~30%/90~70%;B位的Bi离子与Mn离子的摩尔百分比:10~50%/90~50%。以γ-Al2O3为涂层基质,以微粒氧化催化器的金属载体为负载目标载体。制备及负载工艺为:催化剂原料用量的确定、催化剂的制备、涂层浆料的制备以及负载。催化剂通过负载于金属载体微粒氧化催化器净化稀燃缸内直喷内燃机排气中的微粒。以部分取代的LaMnO3钙钛矿复合氧化物替代贵金属,显著降低了催化剂的原料成本并大幅提高了其抗硫性能。

Description

稀燃缸内直喷内燃机微粒氧化催化器用催化剂
技术领域
本发明属于内燃机用微粒净化催化剂,具体涉及一种稀燃缸内直喷内燃机微粒氧化催化器用的催化剂及其制备负载方法。
背景技术
稀燃缸内直喷内燃机由于扩散燃烧,所以不可避免的会产生大量碳烟微粒(ParticulateMatter-PM),并通过尾气排放到大气中。并且这种微粒的空气动力学直径小于2.5微米,属于超细颗粒物,对环境和人体健康危害较大。随着国内外机动车排放法规日益严格,针对稀燃直喷式内燃机微粒排放净化技术的研究成为热点。其中微粒氧化催化器技术由于生产成本低、净化效率高,在国内外得到了广泛的应用。
目前微粒氧化催化器中的催化剂主要采用铂、钯等贵金属催化剂,不仅价格较高,而且抗硫性能较差。尤其国内原油硫含量高、炼油技术相对较差、质量不稳定,因此开发出低成本、高抗硫性的微粒氧化催化剂,对提高微粒氧化催化器的技术意义重大。“取代型钙钛矿复合氧化物”材料具有良好的催化氧化性能和抗硫性能,该种钙钛矿复合氧化物有可能作为贵金属催化剂的替代物,但是其在微粒氧化催化器上的应用性能及组成优化策略存在着诸多难题,本发明的内容就是为解决此问题而提出。
发明内容
本发明的目的是,提供一种稀燃缸内直喷内燃机微粒氧化催化器用催化剂及其制备方法。
理想的钙钛矿金属氧化物是以A位或B位阳离子为结点的立方晶体,常以ABO3表示。其中,离子半径较大的A位金属离子和氧组成12面体,离子半径较小的B位金属离子和氧组成8面体空间结构。A位原子通常为稀土元素、碱金属或碱土金属离子,B位为过渡金属元素。钙钛矿结构一般比较稳定,在A位和B位被其他金属离子部分取代后仍能保持晶体结构基本不变。对于未经取代的钙钛矿催化剂,它的氧化还原特性和催化活性主要由B位金属离子的种类决定;而A位离子主要起着催化剂晶体的骨架和稳定结构的作用,通过和B位金属的协同作用,影响着钙钛矿材料的催化活性。采用其他阳离子A′或B′分别部分取代A位和B位阳离子时,钙钛矿结构中产生阳离子空位或晶格氧空位,得到调变后的AxA′1-xByB′1-yO3结构,这种催化剂的活性和稳定性都在一定程度上得到提高。
依据该原理本发明的化学组成和结构为:采用A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物作为催化剂,其中钙钛矿结构A位的La离子与Ce离子的摩尔百分比为:10~30%/90~70%,摩尔百分比之和为100%;钙钛矿结构B位的Bi离子与Mn离子的摩尔百分比为:10~50%/90~50%,摩尔百分比之和为100%。
在催化剂的负载方法方面:
A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂与作为涂层基质的γ-Al2O3的质量百分比为:10~30%/90~70%,质量百分比之和为100%;
A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂和γ-Al2O3所组成涂层的总质量与微粒氧化催化器的金属载体的质量百分比为:10~20%/90~80%,质量百分比之和为100%;
涂层中的γ-Al2O3分别来自纯质γ-Al2O3和拟薄水铝石煅烧后生成的γ-Al2O3,且来自纯质γ-Al2O3和来自拟薄水铝石煅烧后生成的γ-Al2O3的质量百分比为:50~70%/50~30%,质量百分比之和为100%。
稀燃缸内直喷内燃机微粒氧化催化器用催化剂的制备及负载方法,具体工艺包括以下四个步骤:
(1)制备及负载催化剂原料用量的确定;
(2)催化剂的制备;
(3)涂层浆料的制备;
(4)涂层浆料的负载。
本发明的特点及其产生的有益效果是:利用低成本、高抗硫性的A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物替代贵金属作为微粒氧化催化器用催化剂,不仅显著降低了催化剂的原料成本,而且还大幅提高了催化剂的抗硫性能。此外,在催化剂制备工艺上,采用葡萄糖代替柠檬酸作为络合剂缩短了钙钛矿前驱体溶液形成溶胶凝胶的时间,而且还降低了前驱体溶液制备过程对PH值的要求。
附图说明
图1是微粒氧化催化器微粒净化性能发动机评价系统装置图。
其中:1-测功机;2-柴油机;3-进气流量计;4-进气空调;5-排气温度传感器;6-电子控制单元(ECU);7-柴油机氧化催化器(DOC);8-微粒氧化催化器(POC);9-微粒稀释通道取样系统;10-排气分析仪。
图2是在发动机评价系统装置上,在2510r/min、100%负荷下,实施例1~5对微粒的净化效果。
具体实施方式
以下通过结合附图以及具体的实施例,对本发明的技术方案作进一步的描述。需要说明的是所述实施例是叙述性的,而非限定性的,本发明所涵盖的内容并不限于下述实施例。
本发明的技术方案为:采用A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物作为催化剂,其中钙钛矿结构A位的La离子与Ce离子的摩尔百分比为:10~30%/90~70%,摩尔百分比之和为100%;钙钛矿结构B位的Bi离子与Mn离子的摩尔百分比为:10~50%/90~50%,摩尔百分比之和为100%。
A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂与作为涂层基质的γ-Al2O3的质量百分比为:10~30%/90~70%,质量百分比之和为100%。
A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂和γ-Al2O3所组成涂层的总质量与微粒氧化催化器的金属载体的质量百分比为:10~20%/90~80%,质量百分比之和为100%。
涂层中的γ-Al2O3分别来自纯质γ-Al2O3和拟薄水铝石煅烧后生成的γ-Al2O3,且来自纯质γ-Al2O3和来自拟薄水铝石煅烧后生成的γ-Al2O3的质量百分比为:50~70%/50~30%,质量百分比之和为100%。
通过负载于金属载体微粒氧化催化器净化稀燃缸内直喷内燃机排气中的微粒。
实施例1
(1)制备及负载催化剂原料用量的确定
设计需要钙钛矿结构A位的La原子与Ce原子的摩尔百分比为:80%:20%;钙钛矿结构B位的Mn原子与Bi原子的摩尔百分比为:80%:20%;催化剂与涂层基质γ-Al2O3的质量百分比为:30%:70%;全部涂层基质γ-Al2O3中纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量之比为:50%:50%;涂层总质量与微粒氧化催化器金属载体的质量百分比为:10%:90%;每100g催化剂粉体需要10g平均分子量为4000的聚乙二醇。计划需负载涂层的金属载体质量为9000g,根据换算比例计算出催化剂制备及负载需消耗硝酸镧381g、硝酸铈95.5g、乙酸锰215.6g、硝酸铋106.7g、葡萄糖396.4g、纯质γ-Al2O3粉末和拟薄水铝石生成γ-Al2O3各350g。本实施例所使用的拟薄水铝石中Al2O3的含量为71%,由此计算出催化剂负载需消耗拟薄水铝石493g。本实施例共含有钙钛矿复合氧化物催化剂300g,根据换算比例需要消耗硝酸300g、平均分子量为4000的聚乙二醇30g。
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于5升去离子水的比例,将4种金属盐一起加入去离子水中配置成混合溶液。然后向混合溶液中加入已确定质量的葡萄糖,持续搅拌直至所述葡萄糖完全溶解于金属盐混合溶液。将溶有葡萄糖的混合溶液在旋转蒸发仪上于60℃蒸发,直到形成蜂蜜状湿凝胶,再将湿凝胶在80℃、空气气氛下干燥12h,得到蓬松、易碎、淡黄色干凝胶。将制得的干凝胶在马弗炉中以3℃/min升温到400℃并保持2h,然后再以10℃/min升温到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末。
(3)涂层浆料的制备
将已制得的催化剂粉末和已确定质量的纯质γ-Al2O3粉末研磨1h。将研磨后的混合粉末、已确定质量的拟薄水铝石及已确定质量的聚乙二醇加入稀释10倍已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中。将所得浆料密封、静置,一周后得到稳定的浆料。
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于所述稳定浆料中,在80℃下浸渍2小时。然后将金属载体从浆料中取出,吹掉孔道内残留液体,在80℃下干燥8h,再在550℃下煅烧2h。多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
实施例2
(1)制备及负载催化剂原料用量的确定
设计需要钙钛矿结构A位的La原子与Ce原子的摩尔百分比为:80%:20%;钙钛矿结构B位的Mn原子与Bi原子的摩尔百分比为:70%:30%;催化剂与涂层基质γ-Al2O3的质量百分比为:20%:80%;全部涂层基质γ-Al2O3中纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量之比为:70%:30%;涂层总质量与微粒氧化催化器金属载体的质量百分比为:20%:80%;每100g催化剂粉体需要20g平均分子量为4000的聚乙二醇。计划需负载涂层的金属载体质量为8000g,并根据换算比例计算出催化剂制备及负载需消耗硝酸镧481.5g、硝酸铈120.7g、乙酸锰238.4g、硝酸铋202.3g、葡萄糖501g、纯质γ-Al2O3粉末1120g、拟薄水铝石生成γ-Al2O3480g。本实施例所使用的拟薄水铝石中Al2O3的含量为71%,由此计算出催化剂负载需消耗拟薄水铝石676g。本实施例共含有钙钛矿复合氧化物催化剂400g,根据换算比例需要硝酸400g、平均分子量为4000的聚乙二醇80g。
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于10升去离子水的比例,将4种金属盐一起加入去离子水中配置成混合溶液。然后向混合溶液中加入已确定质量的葡萄糖,持续搅拌直至所述葡萄糖完全溶解于金属盐混合溶液。将溶有葡萄糖的混合溶液在旋转蒸发仪上于80℃蒸发,直到形成蜂蜜状湿凝胶,再将湿凝胶在110℃、空气气氛下干燥6h,得到蓬松、易碎、淡黄色干凝胶。将制得的干凝胶在马弗炉中以3℃/min升温到400℃并保持2h,然后再以10℃/min升温到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末。
(3)涂层浆料的制备
将已制得的催化剂粉末和已确定质量的纯质γ-Al2O3粉末研磨1h。将研磨后的混合粉末、已确定质量的拟薄水铝石及所述已确定质量的聚乙二醇加入稀释20倍已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中。将所得浆料密封、静置,一周后得到稳定的浆料。
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于稳定浆料中,在60℃下浸渍4小时。然后将金属载体从浆料中取出,吹掉孔道内残留液体,在110℃下干燥4h,再在550℃下煅烧2h。多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
实施例3
(1)制备及负载催化剂原料用量的确定
设计需要钙钛矿结构A位的La原子与Ce原子的摩尔百分比为:90%:10%;钙钛矿结构B位的Mn原子与Bi原子的摩尔百分比为:70%:30%;催化剂与涂层基质γ-Al2O3的质量百分比为:20%:80%;全部涂层基质γ-Al2O3中纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量之比为:70%:30%;涂层总质量与微粒氧化催化器金属载体的质量百分比为:20%:80%;每100g催化剂粉体需要15g平均分子量为4000的聚乙二醇。计划需负载涂层的金属载体质量为8000g,并根据换算比例计算出催化剂制备及负载需消耗硝酸镧541.7g、硝酸铈60.3g、乙酸锰238.4g、硝酸铋202.3g、葡萄糖501g、纯质γ-Al2O3粉末1120g、拟薄水铝石生成γ-Al2O3480g。本实施例所使用的拟薄水铝石中Al2O3的含量为71%,由此计算出催化剂负载需消耗拟薄水铝石676g。本实施例共含有钙钛矿复合氧化物催化剂400g,根据换算比例需要硝酸400g、平均分子量为4000的聚乙二醇60g。
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于10升去离子水的比例,将4种金属盐一起加入去离子水中配置成混合溶液。然后向混合溶液中加入已确定质量的葡萄糖,持续搅拌直至所述葡萄糖完全溶解于金属盐混合溶液。将溶有葡萄糖的混合溶液在旋转蒸发仪上于70℃蒸发,直到形成蜂蜜状湿凝胶,再将湿凝胶在100℃、空气气氛下干燥10h,得到蓬松、易碎、淡黄色干凝胶。将制得的干凝胶在马弗炉中以3℃/min升温到400℃并保持2h,然后再以10℃/min升温到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末。
(3)涂层浆料的制备
将已制得的催化剂粉末和所述已确定质量的纯质γ-Al2O3粉末研磨1h。将研磨后的混合粉末、已确定质量的拟薄水铝石及已确定质量的聚乙二醇加入稀释20倍已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中。将所得浆料密封、静置,一周后得到稳定的浆料。
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于稳定浆料中,在80℃下浸渍2小时。然后将金属载体从浆料中取出,吹掉孔道内残留液体,在100℃下干燥6h,再在550℃下煅烧2h。多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
实施例4
(1)制备及负载催化剂原料用量的确定
设计需要钙钛矿结构A位的La原子与Ce原子的摩尔百分比为:70%:30%;钙钛矿结构B位的Mn原子与Bi原子的摩尔百分比为:50%:50%;催化剂与涂层基质γ-Al2O3的质量百分比为:30%:70%;全部涂层基质γ-Al2O3中纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量之比为:50%:50%;涂层总质量与微粒氧化催化器金属载体的质量百分比为:10%:90%;每100g催化剂粉体需要20g平均分子量为4000的聚乙二醇。计划需负载涂层的金属载体质量为9000g,并根据换算比例计算出催化剂制备及负载需消耗硝酸镧284.9g、硝酸铈122.4g、乙酸锰115g、硝酸铋228g、葡萄糖338.7g、纯质γ-Al2O3粉末350g、拟薄水铝石生成γ-Al2O3350g。本实施例所使用的拟薄水铝石中Al2O3的含量为71%,由此计算出催化剂负载需消耗拟薄水铝石493g。本实施例共含有钙钛矿复合氧化物催化剂300g,根据换算比例需要硝酸300g、平均分子量为4000的聚乙二醇60g。
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于7.5升去离子水的比例,将4种金属盐一起加入去离子水中配置成混合溶液。然后向混合溶液中加入已确定质量的葡萄糖,持续搅拌直至葡萄糖完全溶解于金属盐混合溶液。将溶有葡萄糖的混合溶液在旋转蒸发仪上于60℃蒸发,直到形成蜂蜜状湿凝胶,再将湿凝胶在100℃、空气气氛下干燥10h,得到蓬松、易碎、淡黄色干凝胶。将制得的干凝胶在马弗炉中以3℃/min升温到400℃并保持2h,然后再以10℃/min升温到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末。
(3)涂层浆料的制备
将已制得的催化剂粉末和已确定质量的纯质γ-Al2O3粉末研磨1h。将研磨后的混合粉末、已确定质量的拟薄水铝石及已确定质量的聚乙二醇加入稀释15倍已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中。将所得浆料密封、静置,一周后得到稳定的浆料。
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于稳定浆料中,在70℃下浸渍3小时。然后将金属载体从浆料中取出,吹掉孔道内残留液体,在80℃下干燥8h,再在550℃下煅烧2h。多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
实施例5
(1)制备及负载催化剂各种原料用量的确定
设计需要钙钛矿结构A位的La原子与Ce原子的摩尔百分比为:80%:20%;钙钛矿结构B位的Mn原子与Bi原子的摩尔百分比为:90%:10%;催化剂与涂层基质γ-Al2O3的质量百分比为:20%:80%;全部涂层基质γ-Al2O3中纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量之比为:70%:30%;涂层总质量与微粒氧化催化器金属载体的质量百分比为:20%:80%;每100g催化剂粉体需要15g平均分子量为4000的聚乙二醇。计划需负载涂层的金属载体质量为8000g,并根据换算比例计算出催化剂制备及负载需消耗硝酸镧537g、硝酸铈134.6g、乙酸锰342g、硝酸铋75.2g、葡萄糖558g、纯质γ-Al2O3粉末1120g、拟薄水铝石生成γ-Al2O3480g。本实施例所使用的拟薄水铝石中Al2O3的含量为71%,由此计算出催化剂负载需消耗拟薄水铝石676g。本实施例共含有钙钛矿复合氧化物催化剂400g,根据换算比例需要硝酸400g、平均分子量为4000的聚乙二醇60g。
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于10升去离子水的比例,将4种金属盐一起加入去离子水中配置成混合溶液。然后向混合溶液中加入已确定质量的葡萄糖,持续搅拌直至所述葡萄糖完全溶解于金属盐混合溶液。将溶有葡萄糖的混合溶液在旋转蒸发仪上于70℃蒸发,直到形成蜂蜜状湿凝胶,再将湿凝胶在80℃、空气气氛下干燥12h,得到蓬松、易碎、淡黄色干凝胶。将制得的干凝胶在马弗炉中以3℃/min升温到400℃并保持2h,然后再以10℃/min升温到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末。
(3)涂层浆料的制备
将已制得的催化剂粉末和已确定质量的纯质γ-Al2O3粉末研磨1h。将研磨后的混合粉末、已确定质量的拟薄水铝石及所述已确定质量的聚乙二醇加入稀释15倍已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中。将所得浆料密封、静置,一周后得到稳定的浆料。
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于稳定浆料中,在60℃下浸渍4小时。然后将金属载体从浆料中取出,吹掉孔道内残留液体,在110℃下干燥4h,再在550℃下煅烧2h。多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
采用图1所示的微粒氧化催化器微粒净化性能发动机评价系统装置,对上述实施例1-5的微粒净化性能进行评价。结果如图2所示。
实验发动机型号为CY4102-C3B,其试验方法为:使用测功机1控制试验发动机2的转速为2510rpm、负荷为100%。试验发动机的排气先后经过柴油机氧化催化器7和微粒氧化催化器8后进入微粒稀释通道取样系统9。微粒稀释通道取样系统在通入发动机排气以前需安装已称量过初始质量的滤纸,而发动机排气在微粒稀释通道取样系统中经稀释后通过滤纸,排气中的微粒就被拦截在滤纸上。在排气通过滤纸5min后,取出滤纸并对滤纸称重。实验前、后滤纸质量的差值即为微粒的质量。
纯质γ-Al2O3粉末采用分析纯级的γ-Al2O3

Claims (6)

1.稀燃缸内直喷内燃机微粒氧化催化器用催化剂,包含A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物,其特征是:采用A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物作为催化剂,其中钙钛矿结构A位的La离子与Ce离子的摩尔百分比为:10~30%/90~70%,摩尔百分比之和为100%;钙钛矿结构B位的Bi离子与Mn离子的摩尔百分比为:10~50%/90~50%,摩尔百分比之和为100%。
2.按照权利要求1所述的稀燃缸内直喷内燃机微粒氧化催化器用催化剂,其特征是:所述A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂与作为涂层基质的γ-Al2O3的质量百分比为:10~30%/90~70%,质量百分比之和为100%。
3.按照权利要求1或2所述的稀燃缸内直喷内燃机微粒氧化催化器用催化剂,其特征是:所述A位铈元素部分取代、B位铋元素部分取代的LaMnO3钙钛矿复合氧化物催化剂和γ-Al2O3所组成涂层的总质量与微粒氧化催化器的金属载体的质量百分比为:10~20%/90~80%,质量百分比之和为100%。
4.按照权利要求1至3之一所述的稀燃缸内直喷内燃机微粒氧化催化器用催化剂,其特征是:所述涂层中的γ-Al2O3分别来自纯质γ-Al2O3和拟薄水铝石煅烧后生成的γ-Al2O3,且来自纯质γ-Al2O3和来自拟薄水铝石煅烧后生成的γ-Al2O3的质量百分比为:50~70%/50~30%,质量百分比之和为100%。
5.一种按照权利要求1至4之一所述稀燃缸内直喷内燃机微粒氧化催化器用催化剂的制备及负载方法,其特征是:具体工艺包括以下步骤:
(1)制备及负载催化剂原料用量的确定
依据权利要求1至4所述各配比,分别设计出催化剂与涂层基质、纯质γ-Al2O3粉末与拟薄水铝石煅烧后生成的γ-Al2O3、涂层与金属载体各质量比例,确定计划负载涂层的微粒氧化催化器中金属载体的质量,计算出制备催化剂需要的La、Ce、Mn、Bi元素的摩尔数量,以及纯质γ-Al2O3粉末和拟薄水铝石煅烧后生成的γ-Al2O3的质量,再根据拟薄水铝石包装袋上标注的氧化铝含量,计算出负载催化剂所需拟薄水铝石的质量;
按照每433g硝酸镧[La(NO3)3·6H2O]制备1mol钙钛矿结构中的La离子;每434.12g硝酸铈[Ce(NO3)3·6H2O]制备1mol钙钛矿结构中的Ce离子;每485.1g硝酸铋[Bi(NO3)3·5H2O]制备1mol钙钛矿结构中的Bi离子;每245.09g乙酸锰[Mn(CH3COO)2·4H2O]制备1mol钙钛矿结构中的Mn离子,计算制备催化剂所需消耗的硝酸镧、硝酸铈、硝酸铋、乙酸锰的质量;
按照硝酸镧、硝酸铈、硝酸铋、乙酸锰的总摩尔数量与葡萄糖(C6H12O6)的摩尔数量之比为1:1的比例,以及每摩尔葡萄糖重180.16g,计算催化剂制备所需消耗的葡萄糖的质量;再按照每100gA位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物催化剂需要100g硝酸以及10~20g平均分子量为4000的聚乙二醇的比例,计算催化剂负载所需消耗的硝酸和聚乙二醇的质量;
(2)催化剂的制备
称取已确定质量的硝酸镧、硝酸铈、硝酸铋、乙酸锰,并按照每摩尔金属盐溶于5~10升去离子水的比例,将上述4种金属盐一起加入去离子水中,配置成混合溶液;然后向该混合溶液中加入已确定质量的葡萄糖,持续搅拌直至葡萄糖完全溶解于金属盐混合溶液;将溶有葡萄糖的混合溶液在旋转蒸发仪上进行60~80℃蒸发,直到形成蜂蜜状湿凝胶;再将湿凝胶在80~110℃、空气气氛下干燥6~12h,得到蓬松、易碎、淡黄色干凝胶;将制得的干凝胶在马弗炉中以3℃/min的升温速率到400℃并保持2h,然后再以10℃/min的升温速率到800℃煅烧3h,即可制得A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂粉末;
(3)涂层浆料的制备
将已制得的催化剂粉末和已确定质量的纯质γ-Al2O3粉末研磨1h;将研磨后的混合粉末、已确定质量的拟薄水铝石及已确定质量的聚乙二醇加入稀释10~20倍的已确定质量的硝酸中,连续搅拌使粉末均匀地分散在液体中;将所得浆料密封、静置,一周后得到稳定的浆料;
(4)涂层浆料的负载
将已确定质量的微粒氧化催化器的金属载体浸没于稳定浆料中,在60~80℃下浸渍2~4小时;然后将金属载体从浆料中取出,吹掉孔道内残留液体,在80~110℃下干燥4~8h,再在550℃下煅烧2h,多次重复浸渍、干燥和煅烧过程,直到涂层浆料完全负载到微粒氧化催化器的金属载体上,再将负载涂层后的金属载体在600℃下煅烧4h,即得到负载A位铈元素部分取代、B位铋元素部分取代LaMnO3钙钛矿复合氧化物型催化剂的金属载体微粒氧化催化器。
6.按照权利要求1至5之一所述的稀燃缸内直喷内燃机微粒氧化催化器用催化剂,其特征是:通过负载于金属载体微粒氧化催化器净化稀燃缸内直喷内燃机排气中的微粒。
CN201310303893.2A 2013-07-18 2013-07-18 稀燃缸内直喷内燃机微粒氧化催化器用催化剂 Active CN103394345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310303893.2A CN103394345B (zh) 2013-07-18 2013-07-18 稀燃缸内直喷内燃机微粒氧化催化器用催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310303893.2A CN103394345B (zh) 2013-07-18 2013-07-18 稀燃缸内直喷内燃机微粒氧化催化器用催化剂

Publications (2)

Publication Number Publication Date
CN103394345A true CN103394345A (zh) 2013-11-20
CN103394345B CN103394345B (zh) 2015-06-03

Family

ID=49558176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310303893.2A Active CN103394345B (zh) 2013-07-18 2013-07-18 稀燃缸内直喷内燃机微粒氧化催化器用催化剂

Country Status (1)

Country Link
CN (1) CN103394345B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126691A (zh) * 2017-12-28 2018-06-08 沈阳师范大学 一种大孔结构的镧基钙钛矿催化剂材料及其制备方法和应用
CN108906072A (zh) * 2018-07-17 2018-11-30 无锡威孚环保催化剂有限公司 一种柴油车碳烟颗粒催燃烧催化剂及其制备方法
CN109550498A (zh) * 2017-09-27 2019-04-02 天津大学 用于汽油机尾气净化的钙钛矿型催化剂及其制备方法
CN112221495A (zh) * 2020-10-13 2021-01-15 天津大学 贵金属取代钙钛矿柴油机氧化催化器用催化剂及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837244A (zh) * 2009-03-16 2010-09-22 通用汽车环球科技运作公司 用于贫NOx捕集器中的钙钛矿型化合物
CN102133546A (zh) * 2010-12-20 2011-07-27 昆明理工大学 一种贵金属掺杂复合abo3型催化剂的制备方法
CN102600855A (zh) * 2012-01-10 2012-07-25 北京工业大学 一种三维有序大孔结构的La0.6Sr0.4Fe0.8Bi0.2O3、合成方法和用途
CN102909023A (zh) * 2012-09-14 2013-02-06 广州市卫斯理日化实业有限公司 汽车尾气催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837244A (zh) * 2009-03-16 2010-09-22 通用汽车环球科技运作公司 用于贫NOx捕集器中的钙钛矿型化合物
CN102133546A (zh) * 2010-12-20 2011-07-27 昆明理工大学 一种贵金属掺杂复合abo3型催化剂的制备方法
CN102600855A (zh) * 2012-01-10 2012-07-25 北京工业大学 一种三维有序大孔结构的La0.6Sr0.4Fe0.8Bi0.2O3、合成方法和用途
CN102909023A (zh) * 2012-09-14 2013-02-06 广州市卫斯理日化实业有限公司 汽车尾气催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯岩峰等: "La1-xCexCoO3系钙钛矿型催化剂应用于柴油机尾气净化催化性能的研究", 《燃料化学学报》, vol. 34, no. 1, 28 February 2006 (2006-02-28), pages 85 - 90 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550498A (zh) * 2017-09-27 2019-04-02 天津大学 用于汽油机尾气净化的钙钛矿型催化剂及其制备方法
CN108126691A (zh) * 2017-12-28 2018-06-08 沈阳师范大学 一种大孔结构的镧基钙钛矿催化剂材料及其制备方法和应用
CN108906072A (zh) * 2018-07-17 2018-11-30 无锡威孚环保催化剂有限公司 一种柴油车碳烟颗粒催燃烧催化剂及其制备方法
CN112221495A (zh) * 2020-10-13 2021-01-15 天津大学 贵金属取代钙钛矿柴油机氧化催化器用催化剂及制备方法
CN112221495B (zh) * 2020-10-13 2022-08-19 天津大学 贵金属取代钙钛矿柴油机氧化催化器用催化剂及制备方法

Also Published As

Publication number Publication date
CN103394345B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN106582794B (zh) 基于改性分子筛和水滑石衍生氧化物的柴油机用催化剂及制备和应用
CN101939097B (zh) 无铂族金属的催化剂
CN101898136B (zh) 宽温度窗口NH3-SCR去除柴油机NOx的钛基多元金属氧化物催化剂
CN100563821C (zh) 低铈型储氧材料及其制备方法
CN101559363B (zh) Ce2O3和V2O5双活性组分柴油车用选择性催化还原脱除氮氧化物催化剂
CN101612575B (zh) Fe2O3和V2O5双重活性组分的柴油机用催化剂及其制备方法
CN109590017B (zh) 基于复合主催化剂和水滑石衍生氧化物的柴油机用催化剂及其制备方法
CN109589988B (zh) 基于水滑石衍生氧化物的柴油机双涂层催化剂及制备方法
CN102728383B (zh) 一种高温稳定的整体式汽车尾气净化催化剂的制备方法
CN103381362A (zh) 低温锰基脱硝催化剂及其制备方法
CN109589987B (zh) 基于钙钛矿和改性水滑石衍生氧化物的柴油机用催化剂及其制备方法
CN105363494A (zh) 一种scr脱硝催化剂及其制备方法
CN103394345B (zh) 稀燃缸内直喷内燃机微粒氧化催化器用催化剂
CN103801288B (zh) 用于一氧化氮氧化的复合氧化物催化剂及其制备方法
CN106622348B (zh) 亚铁改性分子筛型柴油机选择性催化还原催化剂
CN102580623A (zh) 用于氧化气体物流中的一氧化氮的方法和系统
CN105944749A (zh) 基于改性分子筛主催化剂的柴油机用复合型氧化催化剂
CN103406141A (zh) 三元金属改性分子筛型稀燃发动机选择性催化还原催化剂
CN106315681A (zh) 一种用于汽车尾气净化的稀土钙钛矿型储氧材料
CN108187665A (zh) 脱硝催化剂及其制备方法
CN102247886B (zh) 锰锆双金属改性分子筛型柴油机用选择性催化还原催化剂
CN112221495B (zh) 贵金属取代钙钛矿柴油机氧化催化器用催化剂及制备方法
CN109589976B (zh) 基于氧化物复合主催化剂的柴油机用催化剂及制备方法
CN105797706A (zh) 柴油车尾气颗粒物净化用铈镧固溶体催化剂及其制备方法
CN109590016B (zh) 基于改性水滑石衍生氧化物的柴油机用催化剂及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant