CN103303981B - 一种四氧化三铁纳米粒子及其制备方法和用途 - Google Patents
一种四氧化三铁纳米粒子及其制备方法和用途 Download PDFInfo
- Publication number
- CN103303981B CN103303981B CN201310279131.3A CN201310279131A CN103303981B CN 103303981 B CN103303981 B CN 103303981B CN 201310279131 A CN201310279131 A CN 201310279131A CN 103303981 B CN103303981 B CN 103303981B
- Authority
- CN
- China
- Prior art keywords
- solution
- chitosan
- particle
- preparation
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Soft Magnetic Materials (AREA)
Abstract
一种四氧化三铁纳米粒子及其制备方法和用途,涉及纳米粒子。四氧化三铁纳米粒子的尺寸为3~7nm,具有优良的水溶性、单分散性和超顺磁性。用酸溶液配制壳聚糖溶液得溶液A;将NH4Fe(SO4)2和(NH4)2Fe(SO4)2溶解于水中得溶液B;将B加入A中反应,得均一稳定的橙色絮状胶体,过滤、水洗后放置在氨气中反应,产物经洗涤,干燥后得到壳聚糖/纳米Fe3O4复合材料;将壳聚糖/纳米Fe3O4复合材料在酸性缓冲溶液中浸渍、搅拌、溶解壳聚糖,再加入碱性溶液升高体系pH使壳聚糖沉淀,使Fe3O4纳米粒子释放出来,经离心分离去除沉淀的壳聚糖,即得到水溶性的四氧化三铁纳米粒子。可用于制备造影剂。
Description
技术领域
本发明涉及纳米粒子,尤其是涉及一种四氧化三铁纳米粒子及其制备方法和用途。
背景技术
四氧化三铁(Fe3O4)称磁性氧化铁,是磁铁矿中的主要成分,是一种古老又新颖的磁性材料。它富含于天然磁铁矿中,分布广泛,价格低廉,因此它成为了世界上应用最早的非金属磁性材料。当今,如何制备出具有特殊性能的磁性Fe3O4纳米粒子己引起了科研人员的极大兴趣。由于它的诸多优点和特殊的性质,使得其在磁流体、磁记录、磁制冷、催化剂、医药、颜料等领域有着广阔的应用前景。因此,Fe3O4纳米粒子的制备技术、工业化进程和应用领域的开发就成为未来铁磁体材料的研究热点和发展方向。
磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。磁性纳米粒子在外加局部磁场的作用下能够到使粒子到达特定组织,在组织中聚集并产生作用。在治疗结束以后撤去外加磁场,粒子也能随之被人体清除。良好的生物相容性是磁性纳米粒子能够应于医疗领域的重要特点。现在使用最多的磁性纳米粒子是氧化铁系的纳米粒子,分为顺磁体和超顺磁体两种类型。超顺磁体的粒子直径在20nm左右。一般情况下,超顺磁体Fe2O3和Fe3O4多被应用于体外试验,超顺磁体粒子本身不产生磁性,只有在外加磁场的情况下才带有磁性。顺磁体材料正好相反,该材料因自身所带磁场的作用聚集在一起,不能达到有效扩散的目的。通常使用静脉注射的方法使磁性纳米粒子进入血液,随着血液循环进入炎症部位或肿瘤发生部位,被血浆蛋白包被的磁性纳米粒子还以进入肝脏和一些免疫系统的器官。还可以通过直接注射的方法把磁性纳米粒子悬液注射到病灶区。以上两种方法都要求纳米粒子悬液有良好的稳定性和分散性,不能凝聚在一起影响扩散效果。
近年来,包括γ-Fe2O3、Fe3O4在内的铁磁氧化物研究报道激增,已有多种制备方法。例如,Yang等(Dapeng Yang,Feng Gao,Daxiang Cui,Mo Yang,Microwave Rapid Synthesis ofNanoporous Fe3O4Magnetic Microspheres[J].Curr.Nanosci.,2009,4(5):485-488.)通过微波辅助水热法合成多孔的尺寸为100nm左右磁微球。Lu等(Jian Lu,Shuli Ma,Jiayu Sun,etal.Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liverimaging[J].Biomaterials,2009,30(15)2919–2928.)在有机相中合成锰掺杂的超磁顺性的铁氧纳米粒子,并在嵌段共聚物mPEG-b-PCL的辅助下在水中自组装成尺寸为80nm的胶束,这种胶束作为显影剂显著增强MR图象对比度。Xu等(Shuai Xu,Chuanyu Sun,Jia Guo,Ke Xu,Changchun Wang,Biopolymer-directed synthesis of high-surface-area magnetite colloidalnanocrystal clusters for dual drug delivery in prostate cancer[J].J.Mater.Chem.,2012,22,19067)分别采用大豆蛋白、酪蛋白、聚γ-谷氨酸、壳聚糖、琼脂糖五种天然高分子作为稳定剂,在200℃的乙二醇水溶液中水解还原FeCl3制备磁凝胶胶束。研究发现,大豆蛋白稳定的磁凝胶展现出海绵状、具有高的比表面积207m2g-1、内孔直径为6nm;其它几种磁凝胶具有较低的比表面积为100m2g-1,但具有较高的磁强度60emu g-1。Zhang等(Dunpu Zhang,Chunhua Lu,Yaru Ni,Zhongzi Xu,Wenbin Zhang,Effect of Water on Size-Controllable Synthesis ofMesoporous Fe3O4Microspheres and Their Applications in Waste Water Treatment[J].CrystEngComm,2013,DOI:10.1039/c0xx00000x)等通过水热法合成了微孔的Fe3O4微球,可以调节乙二醇与水混合比使微球尺寸在63~553nm中变化。提出了新颖的准晶反相乳液法机理,微球有效的应用于吸附废水中的刚果红。Luo等(Bin Luo,Shuai Xu,Wanfu Ma,WenruiWang,Shilong Wang,Jia Guo,Wuli Yang,Jianhua Hu,Changchun Wang,Fabricationof magnetite hollow porous nanocrystal shells as a drug carrier for paclitaxel[J].J.Mater.Chem.,2010,20,7107-7113.)通过水热反应合成单分散的磁纳米粒子,通过调节反应时间可以实现粒子到中空微球的转变,不同的反应时间的微球具有不同的磁饱和强度。中空微球可以应用疏水性抗肿瘤药物MTT的目标运输及释放。Dorniani等(Dena Dorniani,Mohd Zobir BinHussein,Aminu Umar Kura,Sharida Fakurazi,Abdul Halim Shaari,Zalinah Ahmad,Preparation ofFe3O4magnetic nanoparticles coated with gallic acid for drug delivery[J].Int J Nanomedicine,2012,7,5745–5756.)利用声化学法合成表面五倍子酸改性的Fe3O4纳米粒子,粒子尺寸为11nm,增强了热稳定性、减少了细胞毒性。总的来说,目前这些Fe3O4纳米粒子的制备方法主要存在采用高温、高压的条件下使用昂贵设备、工艺步骤繁琐、不利于工业化生产等难点,或者尺寸较大、粒子毒性,从而限制了其应用。
发明内容
本发明的目的在于针对现有Fe3O4纳米粒子的制备方法主要存在采用高温、高压的条件下使用昂贵设备、工艺步骤繁琐、不利于工业化生产等难点,或者尺寸较大、粒子毒性等问题,提供一种成本低廉、易于工业化大规模快速生产的一种四氧化三铁纳米粒子及其制备方法和用途。
所述四氧化三铁纳米粒子的尺寸为3~7nm,具有优良的水溶性、单分散性和超顺磁性。
所述四氧化三铁纳米粒子的制备方法,包括以下步骤:
1)用酸溶液配制壳聚糖溶液,得溶液A;
2)将NH4Fe(SO4)2和(NH4)2Fe(SO4)2溶解于水中,得溶液B;
3)将溶液B加入溶液A中反应,得均一稳定的橙色絮状胶体,过滤、水洗后放置在氨气中反应,产物经洗涤,干燥后得到壳聚糖/纳米Fe3O4复合材料;
4)将壳聚糖/纳米Fe3O4复合材料在酸性缓冲溶液中浸渍、搅拌、溶解壳聚糖,再加入碱性溶液升高体系pH使壳聚糖沉淀,使Fe3O4纳米粒子释放出来,经离心分离去除沉淀的壳聚糖,即得到水溶性的四氧化三铁纳米粒子。
在步骤1)中,所述酸可选自醋酸、甲酸、稀盐酸、稀硫酸、稀硝酸、柠檬酸等中的至少一种,所述酸溶液中酸的质量百分比浓度可为0.1%~15%;所述壳聚糖的质量百分比浓度可为0.1%~10%。
在步骤2)中,所述NH4Fe(SO4)2和(NH4)2Fe(SO4)2的浓度均为0.01~5mol/L,NH4Fe(SO4)2和(NH4)2Fe(SO4)2的摩尔比可为(10∶1)~(1∶10)。
在步骤3)中,所述将溶液B加入溶液A中反应的时间可为2~60min;所述在氨气中反应的时间可为0.1~12h;所述洗涤可依次采用水和乙醇洗涤。
在步骤4)中,所述酸性缓冲溶液可选自甘氨酸-盐酸、乙酸-乙酸钠、邻苯二甲酸-盐酸、磷酸氢二钠-柠檬酸、柠檬酸-柠檬酸钠、柠檬酸-氢氧化钠-盐酸等中的至少一种;所述酸性缓冲溶液的pH值可为1~6;所述搅拌的时间可为1~36h;所述碱性溶液可选自氢氧化钠溶液、氢氧化钾溶液等中的至少一种,所述碱性溶液的浓度可为0.1~1mol/L。
本发明所制备的四氧化三铁纳米粒子可用于制备造影剂,应用于医学成像领域,磁性分离、药物目标释放及作为模板制备其它纳米材料。
本发明利用简单的氨气熏蒸法制备磁性壳聚糖/纳米Fe3O4复合材料和利用酸性缓冲溶液溶解掉壳聚糖使Fe3O4纳米粒子释放出来。制备过程无需有机溶剂,不需高温高压和昂贵设备,反应条件温和,节能减排;制备出的Fe3O4粒子尺寸为3~7nm,具有优良的水溶性、单分散性、超顺磁性。
与现有的制备方法相比,本发明所述Fe3O4纳米粒子制备工艺简单,可控性好,低能耗,无需昂贵的设备,也不需要复杂的化学处理过程等。不仅减少了多步复合法制备繁琐步骤,而且制备出的Fe3O4粒子尺寸为3~7nm,具有优良的水溶性、单分散性、超顺磁性。因此,所述四氧化三铁纳米粒子可用于制备造影剂,应用于医学成像领域,药物目标释放及作为模板制备其它纳米材料。
附图说明
图1为本发明实施例1制备的壳聚糖/纳米Fe3O4复合材料磁滞回归线。
图2为本发明实施例2制备的纳米Fe3O4粒子TEM图(放大倍数为200000)。
图3为本发明实施例3制备的纳米Fe3O4粒子表面电荷图。
具体实施方式
下面结合实施例对本发明作进一步的说明。
实施例1
采用2wt%醋酸溶液准确配制0.5wt%壳聚糖溶液。将0.2mol/L NH4Fe(SO4)2·12H2O和0.1mol/L(NH4)2Fe(SO4)2·12H2O按比例溶解于水中,取10ml在搅拌的情况下滴加入上述壳聚糖溶液中。2~60min后得到均一稳定的橙色絮状胶体。在室温下,将装有絮状物的小烧杯放在玻璃皿上,把25wt%浓氨水溶液倒入玻璃皿中,橙色絮状物在氨气气氛中反应0.1~12h后得咖啡色。产物用蒸馏水和无水乙醇进行洗涤,真空干燥24h,从而得到壳聚糖/纳米Fe3O4复合材料。
称取0.046g壳聚糖/纳米Fe3O4复合材料在室温下做磁性能测试。实施例1制备的壳聚糖/纳米Fe3O4复合材料磁滞回归线参见图1。
实施例2
采用2wt%醋酸溶液准确配制0.2wt%壳聚糖溶液。将0.1mol/L NH4Fe(SO4)2·12H2O和0.05mol/L(NH4)2Fe(SO4)2·12H2O按比例溶解于水中,取10ml在搅拌的情况下滴加入上述壳聚糖溶液中。2~60min后得到均一稳定的橙色絮状胶体。在室温下,将装有絮状物的小烧杯放在玻璃皿上,把25wt%浓氨水溶液倒入玻璃皿中,橙色絮状物在氨气气氛中反应0.1~12h后得咖啡色。产物用蒸馏水和无水乙醇进行洗涤,真空干燥24h,从而得到壳聚糖/纳米Fe3O4复合材料。将壳聚糖/Fe3O4纳米复合材料在乙酸-乙酸钠缓冲溶液中反应24h,然后取上层清液滴加到铜网上干燥后在场发射透射电镜下观察。实施例2制备的纳米Fe3O4粒子TEM图(放大倍数为200000)参见图2。
实施例3
采用2wt%醋酸溶液准确配制0.2wt%壳聚糖溶液。将0.1mol/L NH4Fe(SO4)2·12H2O和0.05mol/L(NH4)2Fe(SO4)2·12H2O按比例溶解于水中,取10ml在搅拌的情况下滴加入上述壳聚糖溶液中。2~60min后得到均一稳定的橙色絮状胶体。在室温下,将装有絮状物的小烧杯放在玻璃皿上,把25wt%浓氨水溶液倒入玻璃皿中,橙色絮状物在氨气气氛中反应0.1~12h后得咖啡色。产物用蒸馏水和无水乙醇进行洗涤,真空干燥24h,从而得到壳聚糖/纳米Fe3O4复合材料。将壳聚糖/Fe3O4纳米复合材料在乙酸-乙酸钠缓冲溶液中反应24h,离心,然后取样品溶解在去离子水中测试Zeta电位。实施例3制备的纳米Fe3O4粒子表面电荷图参见图3。
Claims (5)
1.一种四氧化三铁纳米粒子的制备方法,其特征在于所述四氧化三铁纳米粒子的尺寸为3~7nm,具有水溶性、单分散性和超顺磁性;
所述制备方法包括以下步骤:
1)用酸溶液配制壳聚糖溶液,得溶液A;所述酸溶液中酸的质量百分比浓度为0.1%~15%;所述壳聚糖的质量百分比浓度为0.1%~10%;
2)将NH4Fe(SO4)2和(NH4)2Fe(SO4)2溶解于水中,得溶液B;所述NH4Fe(SO4)2和(NH4)2Fe(SO4)2的浓度均为0.01~5mol/L,NH4Fe(SO4)2和(NH4)2Fe(SO4)2的摩尔比为(10∶1)~(1∶10);
3)将溶液B加入溶液A中反应,得均一稳定的橙色絮状胶体,过滤、水洗后放置在氨气中反应,产物经洗涤,干燥后得到壳聚糖/纳米Fe3O4复合材料;
4)将壳聚糖/纳米Fe3O4复合材料在乙酸-乙酸钠缓冲液中浸渍、搅拌、溶解壳聚糖,再加入碱性溶液升高体系pH使壳聚糖沉淀,使Fe3O4纳米粒子释放出来,经离心分离去除沉淀的壳聚糖,即得到水溶性的四氧化三铁纳米粒子。
2.如权利要求1所述一种四氧化三铁纳米粒子的制备方法,其特征在于在步骤1)中,所述酸选自醋酸、甲酸、稀盐酸、稀硫酸、稀硝酸、柠檬酸中的至少一种。
3.如权利要求1所述一种四氧化三铁纳米粒子的制备方法,其特征在于在步骤3)中,所述将溶液B加入溶液A中反应的时间为2~60min。
4.如权利要求1所述一种四氧化三铁纳米粒子的制备方法,其特征在于在步骤3)中,所述在氨气中反应的时间为0.1~12h;所述洗涤依次采用水和乙醇洗涤。
5.如权利要求1所述一种四氧化三铁纳米粒子的制备方法,其特征在于在步骤4)中,所述搅拌的时间为1~36h;所述碱性溶液选自氢氧化钠溶液、氢氧化钾溶液中的至少一种,所述碱性溶液的浓度为0.1~1mol/L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310279131.3A CN103303981B (zh) | 2013-07-04 | 2013-07-04 | 一种四氧化三铁纳米粒子及其制备方法和用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310279131.3A CN103303981B (zh) | 2013-07-04 | 2013-07-04 | 一种四氧化三铁纳米粒子及其制备方法和用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103303981A CN103303981A (zh) | 2013-09-18 |
CN103303981B true CN103303981B (zh) | 2015-04-01 |
Family
ID=49129748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310279131.3A Expired - Fee Related CN103303981B (zh) | 2013-07-04 | 2013-07-04 | 一种四氧化三铁纳米粒子及其制备方法和用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103303981B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761827C1 (ru) * | 2020-08-06 | 2021-12-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) | Средство и способ комбинированной контрастной магнитно-резонансной томографической визуализации изображений биомеханики процессов инфильтрации, инвазии и метастазирования злокачественных клеток |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI689310B (zh) | 2014-07-11 | 2020-04-01 | 巨生生醫股份有限公司 | 治療鐵缺乏症之方法 |
CN107522239A (zh) * | 2017-08-02 | 2017-12-29 | 四川大学 | 一种基于没食子酸‑金属离子配位化学调控纳米四氧化三铁分散度及粒径的方法 |
CN114735756B (zh) * | 2022-04-26 | 2023-10-20 | 陇东学院 | 一种快速制备的四氧化三铁纳米颗粒及其制备方法 |
CN114974912B (zh) * | 2022-06-27 | 2024-04-26 | 盐城工学院 | 一种纳米过渡金属氧化物-多孔碳复合电极材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113022A (zh) * | 2007-07-06 | 2008-01-30 | 哈尔滨工业大学 | 壳聚糖水凝胶诱导原位合成超顺磁性纳米四氧化三铁颗粒 |
CN102134334A (zh) * | 2010-12-29 | 2011-07-27 | 厦门大学 | 磁性壳聚糖微球的制备方法 |
CN102850599A (zh) * | 2012-09-18 | 2013-01-02 | 厦门大学 | 磁性壳聚糖/纳米Fe3O4复合材料及其制备方法和用途 |
-
2013
- 2013-07-04 CN CN201310279131.3A patent/CN103303981B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113022A (zh) * | 2007-07-06 | 2008-01-30 | 哈尔滨工业大学 | 壳聚糖水凝胶诱导原位合成超顺磁性纳米四氧化三铁颗粒 |
CN102134334A (zh) * | 2010-12-29 | 2011-07-27 | 厦门大学 | 磁性壳聚糖微球的制备方法 |
CN102850599A (zh) * | 2012-09-18 | 2013-01-02 | 厦门大学 | 磁性壳聚糖/纳米Fe3O4复合材料及其制备方法和用途 |
Non-Patent Citations (4)
Title |
---|
Facile One-Pot Preparation of Superparamagnetic Chitosan Sphere and Its Derived Hollow Sphere;Weiwei Zou et al.;《Journal of Applied Polymer Science》;20110921;第123卷;3587-3594 * |
One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application;Li-hua Shen et al.;《Nanoscale》;20130104;第5卷;2133-2141 * |
Preparation of Fe3O4-chitosan nanoparticles used for hyperthermia;Jingmiao Qu et al.;《Advanced Powder Technology》;20101231;第21卷;461-467 * |
Surface Characterization and Antibacterial Activity of Chitosan-Grafted Poly(ethylene terephthalate) Prepared by Plasma Glow Discharge;MAN WOO HUH et al.;《Journal of Applied Polymer Science》;20011231;第81卷;2769-2778 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2761827C1 (ru) * | 2020-08-06 | 2021-12-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) | Средство и способ комбинированной контрастной магнитно-резонансной томографической визуализации изображений биомеханики процессов инфильтрации, инвазии и метастазирования злокачественных клеток |
Also Published As
Publication number | Publication date |
---|---|
CN103303981A (zh) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kalaiselvan et al. | Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics | |
US11324841B2 (en) | Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity | |
Lee et al. | Paramagnetic inorganic nanoparticles as T1 MRI contrast agents | |
Sun et al. | Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications | |
EP2673006B1 (en) | Method of preparing iron oxide nanoparticles coated with hydrophilic material, and magnetic resonance imaging contrast agent using the same | |
Qin et al. | Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid | |
Ma et al. | Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T 1-weighted magnetic resonance imaging applications | |
CN103303981B (zh) | 一种四氧化三铁纳米粒子及其制备方法和用途 | |
Yang et al. | One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles | |
Ahmad et al. | Gold-coated iron oxide nanoparticles as a T 2 contrast agent in magnetic resonance imaging | |
CN102850599B (zh) | 磁性壳聚糖/纳米Fe3O4复合材料及其制备方法和用途 | |
Sahu et al. | Multifunctional magnetic fluorescent hybrid nanoparticles as carriers for the hydrophobic anticancer drug 5-fluorouracil | |
Lin et al. | Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives | |
Bano et al. | Paclitaxel loaded magnetic nanocomposites with folate modified chitosan/carboxymethyl surface; a vehicle for imaging and targeted drug delivery | |
Zhu et al. | Formation of iron oxide nanoparticle-loaded γ-polyglutamic acid nanogels for MR imaging of tumors | |
CN111821473A (zh) | 一种协同增强肝特异性的复合铁氧体纳米颗粒及其制备方法及其应用 | |
CN106315684B (zh) | 尺寸可控的球形MnZn铁氧体磁性纳米颗粒的制备方法 | |
Xu et al. | Folic acid-conjugated GdPO 4: Tb 3+@ SiO 2 nanoprobe for folate receptor-targeted optical and magnetic resonance bi-modal imaging | |
CN101607742A (zh) | 一种水溶性纳米四氧化三铁的制备方法 | |
CN107224588B (zh) | 一种具有磁-pH值双响应的药物载体的制备方法 | |
Lu et al. | Protein-passivated FeNi3 particles with low toxicity and high inductive heating efficiency for thermal therapy | |
Liang et al. | Synthesis of NaYF4: Yb, Er upconversion nanoparticle-based optomagnetic multifunctional composite for drug delivery system | |
Zahraei et al. | Synthesis and characterization of chitosan coated manganese zinc ferrite nanoparticles as MRI contrast agents | |
CN104844839A (zh) | 一种磁性荧光复合纳米颗粒的制备方法 | |
Kumar et al. | In vitro and Bioimaging Studies of Mesoporous Silica Nanocomposites Encapsulated Iron-oxide and Loaded Doxorubicin Drug (DOX/IO@ Silica) as Magnetically Guided Drug Delivery System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20210704 |