WO2021190573A1 - 一种磁性纳米复合材料及其制备方法与应用 - Google Patents

一种磁性纳米复合材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021190573A1
WO2021190573A1 PCT/CN2021/082767 CN2021082767W WO2021190573A1 WO 2021190573 A1 WO2021190573 A1 WO 2021190573A1 CN 2021082767 W CN2021082767 W CN 2021082767W WO 2021190573 A1 WO2021190573 A1 WO 2021190573A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocomposite material
magnetic
magnetic nanocomposite
acid
hydrophilic compound
Prior art date
Application number
PCT/CN2021/082767
Other languages
English (en)
French (fr)
Inventor
陈天翔
马雪华
任文智
吴爱国
Original Assignee
中国科学院宁波材料技术与工程研究所
中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所, 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2021190573A1 publication Critical patent/WO2021190573A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1875Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle coated or functionalised with an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/225Microparticles, microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Definitions

  • the application relates to a nano composite material and a preparation method and application thereof, and belongs to the field of medical materials.
  • Ferrite nanomaterials represented by Fe 3 O 4 can be used as MRI T2 contrast agents, such as the marketed drugs Feridex and Resovist.
  • T2 contrast agents are negative contrast agents (the dark signal function is enhanced, the focus area is displayed as black/dark, and the surrounding normal tissues are displayed as white/bright).
  • Tumors, cardiovascular and cerebrovascular diseases (atherosclerotic diseases) marked by such contrast agents Lesions such as plaques) are easily confused with some special areas (such as hemorrhage, calcification, or metal deposition); at the same time, due to the high magnetic moment of this type of contrast agent, it is easy to induce local magnetic field fluctuations and lead to excessively marked areas. Exaggerated and may make the image blurry, it is called the "flowering effect" in clinical diagnosis; therefore, the recognition of the imaging recognition of iron oxide T2 contrast agents in clinical applications is not as high as that of T1 contrast agents containing gadolinium.
  • USPIO nanomaterials have provided some attractive results in biomedicine. For example, by reducing the particle size of magnetic nanomaterials to solve the problem of MRI enhancement mode, it is expected to realize the need for ultra-sensitive high-resolution imaging and the T1 positive contrast agent for early diagnosis of disease.
  • ultra-mini USPIO materials directly reflect various diseases caused by inflammatory cell infiltration, such as tumors, cardiovascular and cerebrovascular diseases, and neurological diseases by tracing inflammatory cells (such as macrophages). Therefore, the qualitative and quantitative assessment of inflammatory cell infiltration in the lesion has potential value and has considerable application prospects.
  • Tumor tissues generally have a large number of inflammatory cells infiltrated, among which TAM tumor-associated macrophages, which are the main component, actively participate in the occurrence, growth, invasion and metastasis of tumors. Therefore, the targeted tracing of tumor-associated macrophages can clearly reflect the development of tumors and provide clinical diagnostic recommendations for tumor stages.
  • Atherosclerotic plaque the process of plaque changing from stable to vulnerable involves multiple links such as inflammation, immunity, metabolism, and coagulation, while the current simple display of arterial lumen or plaque morphology Diagnostic techniques can no longer meet clinical needs, because increased inflammatory cell infiltration is one of the most important features of vulnerable plaques.
  • Inflammatory cells infiltrated in plaques mainly refer to macrophages.
  • the degrading collagenase produced by them makes the fibrous caps of the plaques become thinner, which makes the plaques unstable. Therefore, exploring the activity of macrophages and the inflammation in atherosclerotic plaques has the potential to distinguish the stability and vulnerability of plaques, and it is also the key goal of atherosclerosis imaging.
  • Alzheimer’s disease Although the role of inflammation in Alzheimer’s disease is still unclear, inflammation is increasingly recognized as a neurodegenerative disease (such as Alzheimer’s and Parkinson’s disease). ) Play a positive role. Studies have confirmed that in the brains of Alzheimer's patients, amyloid plaques gather together, causing brain cell damage and memory loss. Therefore, people have always believed that amyloid plaques are the direct cause of this neurological disease. But in fact, beta amyloid may be caused by inflammation. Studies have found that if the microglia in the brain is destroyed, the beta amyloid plaques formed in the brain of Alzheimer's patients will be reduced. Therefore, they turned their subjects from beta amyloid plaques to microglia that cause inflammation.
  • MRI T1 contrast material based on iron-based nanomaterials
  • it can not only maintain the safety of the contrast material, but also use MRI T1-weighted imaging. It is a very effective way to improve the efficiency of diagnosis, and it is very necessary.
  • it can also be matched with fluorescent dyes and corresponding macrophage targeting molecules, so that it can have a wide range of clinical application prospects and economic benefits. It can provide faster, more accurate, higher resolution and resolution imaging efficiency.
  • the patent with publication number CN106913885A discloses a composite magnetic nanoparticle.
  • the composite magnetic nanoparticle includes a ferrite and a hydrophilic polymer layer coated on the outside of the ferrite, and can be used as an MRIT1 contrast agent.
  • the material due to the co-precipitation method used in the preparation process of the material, the material has certain problems in many aspects such as crystallinity, coating, bonding method, etc., which leads to the reduction of MRI T1 contrast enhancement efficiency, r1 value ⁇ 10, and the output will be corresponding To lower.
  • a magnetic nanocomposite material which has low toxicity, excellent MRI T1 enhancement performance, and has a macrophage targeting function.
  • this method can safely and efficiently diagnose various diseases including inflammatory cell infiltration and inflammation-related diseases, and provide clinical diagnosis and postoperative evaluation Theory and technical support.
  • a specific preparation process can be used to produce an MRI T1/T2 molecule that has significant enhancement properties, and can target macrophages and actively track inflammation (inflammatory cell infiltration). Probe.
  • the magnetic nanocomposite material includes magnetic nano particles and a hydrophilic compound layer coated on the magnetic nano particles, the magnetic nano particles are iron oxides, and the particle diameter of the magnetic nano particles is 0.1-20 nm, The particle size of the magnetic nanocomposite material is 0.5-200nm , and the longitudinal relaxation rate r 1 ⁇ 20mM -1 s -1 of the magnetic nanocomposite material;
  • the MRI T1 weighted signal (gray value) ⁇ 1800; when the aqueous solution concentration of the magnetic nanocomposite material is ⁇ 3 mmol/L, there is MRI T2 weighted signal.
  • the MRI T1-weighted signal of the magnetic nanocomposite material is the gray value of the T1-weighted imaging of the sample solution measured by a 1.5T Philips magnetic resonance instrument (Philips ingenia 1.5T); wherein, the sample solution is An aqueous solution of magnetic nanocomposite material with a concentration of 0.3 mM.
  • the MRI T2-weighted signal of the magnetic nanocomposite material is the gray value of MRI T2-weighted imaging of the sample solution measured by a 1.5T Philips magnetic resonance instrument (Philips Ingenia 1.5T).
  • the presence of MRI T2-weighted signal in this application refers to Gray value ⁇ 600.
  • the upper limit of the MRI T1 weighted signal (gray value) of the magnetic nanocomposite material is selected from 1400, 1600, 1800, 2000, or 5000; the lower limit is selected from 1200, 1400, 1600, 1800, 2000, or 5000.
  • the particle size of the magnetic nanoparticles is 0.5-10nm, preferably 1.5-5nm, more preferably 2-4nm; the upper limit of the particle size of the magnetic nanoparticles is selected from 1.0nm, 5.0nm, 8.0nm, 10nm, 12nm, 15nm, 18nm or 20nm; the lower limit is selected from 0.1nm, 0.5nm, 1nm, 1.5nm, 2.0nm, 2.5nm, 3.0nm, 3.5nm, 4.0nm, 4.5nm, 5.0nm, 6.0nm, 8.0nm or 10nm ;
  • the particle size of 70% of the magnetic nanoparticles is within ⁇ 20% of the D50 range of the magnetic nanoparticles
  • the magnetic nanoparticles based on the total number of the magnetic nanoparticles, 80% (preferably 85%, more preferably 90%, and most preferably 93%) of the magnetic nanoparticles The diameter is within ⁇ 15% (preferably ⁇ 10%, more preferably ⁇ 8%) of the D50 range of the magnetic nanoparticles;
  • the particle size of the magnetic nanocomposite material is 0.5 to 200 nm, preferably 1 to 150 nm, more preferably 3 to 120 nm, and most preferably 8 to 100 nm;
  • the D50 of the magnetic nanocomposite material is about 300 nm, preferably about 250 nm, more preferably about 200 nm;
  • 70% of the nanocomposite materials have a particle size within ⁇ 20% of the D50 range of the nanocomposite materials
  • 80% (preferably 85%, more preferably 90%, and most preferably 93%) of the magnetic nanocomposite materials have a particle size of ⁇ 15% (preferably ⁇ 10%, more preferably ⁇ 8%) of the D50 range of the magnetic nanocomposite material;
  • the magnetic nanocomposite material is water-soluble, that is, the content of the oily component in the magnetic nanocomposite material is ⁇ 0.1wt%, preferably ⁇ 0.05wt%.
  • the magnetic nanocomposite material when dispersed in water or physiological saline with a mass concentration of 0.9% for 90 to 270 days, preferably 270 to 540 days, more preferably 360 to 720 days, the nanocomposite Potential change ⁇ 15%, preferably ⁇ 10%, more preferably ⁇ 5%, most preferably ⁇ 3%;
  • the magnetic nanoparticles are doped with metal M, and the metal M is selected from at least one of Gd, Mn, Zn, Co, and Ni;
  • the general chemical formula of the magnetic nanoparticles is M x Fe 3-x O y , where 0 ⁇ x ⁇ 0.5, preferably, 0.1 ⁇ x ⁇ 0.3, and y is preferably 4.
  • the iron oxide is selected from at least one of Fe 3 O 4 , ⁇ -Fe 2 O 3, and FeOOH;
  • the hydrophilic compound layer is selected from hyaluronic acid, modified hyaluronic acid, polyethylene glycol, polyethylene glycol derivatives, mannitol, mannose, cross-linked dextran, dextran, ⁇ -glucan, carboxydextran, liposome, polyacrylic acid, polyoxyethylene-polyoxypropylene-polyoxyethylene, polyoxyethylene (5) nonyl phenyl ether, diethylene triamine pentaacetic acid, Peptides, meglumine, arginine, polyglutamic acid, dimercaptosuccinic acid, silica, ⁇ -aminopropyl triethoxysilane, ethyl orthosilicate, ⁇ -glycidyl ether oxypropyl trimethyl At least one of oxysilanes.
  • the hydrophilic compound layer can be selected according to the target size of the product (magnetic nanocomposite material) and application requirements.
  • the hydrophilic compound layer includes a first hydrophilic compound layer and a second hydrophilic compound layer covering the first hydrophilic compound layer;
  • the first hydrophilic compound layer contains hydroxyl, Amino, carboxyl or sulfhydryl compound, the compound containing a hydroxyl, amino, carboxyl or sulfhydryl group is selected from polyacrylic acid, polyethylene glycol derivatives, dextran derivatives, chitosan derivatives, citric acid derivatives, cross-linked At least one of dextran and hyaluronic acid derivatives;
  • the second hydrophilic compound layer is a macrophage phagocytic compound selected from hyaluronic acid, hyaluronic acid derivatives, polyethylene glycol, polyethylene glycol Glycol derivatives, mannitol, mannose, cross-linked dextran, dextran, dextran derivatives, liposomes, polyacrylic acid, polyoxyethylene-polyoxypropylene-polyoxyethylene, poly
  • a derivative refers to a compound formed by replacing the hydrogen atom in the original compound with an amino group, a carboxyl group, a mercapto group, a sulfonic acid group, and a hydroxyl group.
  • the polyethylene glycol derivative may be selected from carboxy-PEG-amino, carboxypolyethylene glycol; the dextran derivative may be selected from carboxydextran and aminodextran; the shell The polysaccharide derivative may be selected from carboxy chitosan and amino chitosan; the citric acid derivative may be selected from sodium citrate.
  • the magnetic nanocomposite material further includes a targeting molecule layer located on the outer surface of the hydrophilic compound layer.
  • the targeting molecule and the hydrophilic compound layer can be formed by esterification, substitution, or terminal alkyne addition.
  • the covalent bonding of the formation reaction can also be combined by electrostatic adsorption, and the hydrophilic compound can be selected according to the target size of the product, the characteristics of the target molecule, etc.;
  • the targeting molecular layer is selected from N-formylmethionyl-leucyl-phenylalanine (abbreviated as fMLF), N-formyl-L-methionyl-L-leucyl-L -Phenylalanine tripeptide (abbreviated as fMLP), human integrin ⁇ M type (abbreviated as CD11b), rat monoclonal antibody [F4/80] (abbreviated as F4/80), collagen-like macrophage receptor ( Abbreviated as collagenous structure), osteopontin (abbreviated as osteopontin), prefibrin-1 (abbreviated as Profilin-1), selectin-E monoclonal antibody (abbreviated as E-selectin Monoclonal Antibod) y at least one
  • the first hydrophilic compound layer is selected from at least one of polyacrylic acid, polyethylene glycol derivatives, dextran derivatives, chitosan derivatives, and cit
  • a magnetic nanocomposite material in an optional embodiment, includes an inner core (magnetic nanoparticles), a coating layer (polysaccharides), and/or an outer layer (targeting molecules).
  • Composite materials have the following characteristics:
  • the core material is magnetic nanoparticles with a particle size ⁇ 20nm;
  • the magnetic nanoparticles are magnetic nanoparticles doped with metal elements
  • the coating layer of the nanocomposite material is polysaccharides and derivatives thereof that are easily swallowed by macrophages;
  • the outer layer of the nanocomposite material is a macrophage targeting molecule
  • the particle size of the core of the nanocomposite material is 0.1 to 80 nm, and the hydrated particle size of the nanocomposite material is 1 to 300 nm;
  • the relaxation rate r1 of the nanocomposite material is greater than or equal to 20mM -1 s -1 ;
  • the MRI T1 weighted signal (gray value) of the nanocomposite material is greater than or equal to 1200 (1.5T Philips magnetic resonance instrument Philips ingenia 1.5T).
  • the magnetic nanoparticles are Fe 3 O 4 with a particle size of 1 to 6 nm; and the hydrophilic compound layer is a hyaluronic acid derivative.
  • the magnetic nanoparticles are Fe 3 O 4 with a particle size of 2-6 nm;
  • the hydrophilic compound layer is polyacrylic acid or cross-linked dextran
  • the targeting molecule is rat monoclonal antibody [F4/80] or collagen-like macrophage receptor.
  • the magnetic nanoparticles are selected from at least one of Fe 3 O 4 , ⁇ -Fe 2 O 3 , FeOOH, and compounds with the general chemical formula Zn 0.2 Fe 2.8 O 4 , and the particle size is 1 ⁇ 6nm;
  • the hydrophilic compound layer includes a first hydrophilic compound layer and a second hydrophilic compound layer covering the first hydrophilic compound layer;
  • the first hydrophilic compound layer is selected from at least one of carboxy-PEG-amino, carboxy dextran, and carboxy polyethylene glycol, and the second hydrophilic compound layer is a hyaluronic acid derivative.
  • the first hydrophilic compound layer and the second hydrophilic compound layer can be covalently bonded through reactions such as esterification, substitution, and terminal alkyne addition, or they can be combined through electrostatic adsorption, which can be combined according to the product target.
  • Two layers of hydrophilic compounds are selected for size and compound characteristics.
  • the second aspect of the present application provides a method for preparing the magnetic nanocomposite material described in any one of the above, including:
  • the pH value of the mixed liquid I obtained in step 1) is 2-5.
  • the solvent in the acid-containing iron salt solution in step 1) is water, preferably deionized water;
  • the acid in the acid-containing iron salt solution in step 1) is at least one of hydrochloric acid, nitric acid, sulfuric acid, and citric acid;
  • the iron salt in the acid-containing iron salt solution in step 1) is at least one of a divalent water-soluble salt of iron and a trivalent water-soluble salt of iron;
  • the molar concentration of the iron salt in the acid-containing iron salt solution in step 1) is 0.005-0.5M.
  • the acid-containing iron salt solution in step 1) also contains metal M salt
  • the metal M is selected from at least one of Gd, Mn, Zn, Co and Ni;
  • the ratio of the molar amount of iron to the molar amount of metal M in the acid-containing iron salt solution is greater than 3:1.
  • the metal M salt in step 1) is selected from at least one of gadolinium nitrate, manganese sulfate, zinc sulfate heptahydrate, manganese sulfate heptahydrate, cobalt sulfate heptahydrate, and nickel sulfate hexahydrate.
  • reacting the mixed solution I in step 2) to obtain the magnetic nanocomposite material includes:
  • Metal ions such as iron ions in an acidic environment have strong dispersibility. Adding hydrophilic compounds at this time can ensure the uniform reaction degree of iron ions and hydrophilic compounds. After adding alkaline solutions, limit the magnetic nanomaterials. The grain size grows excessively and maintains the stability of its crystal form.
  • separation can be carried out by at least one of centrifugation and/or dialysis, and concentration treatment is preferably carried out before separation.
  • the rotation speed during centrifugation is 10000-13000 rpm, preferably 11000-13000 rpm, more preferably 12500-13000 rpm; the centrifugation time is 5-30 min, preferably 8-20 min, more preferably 10-15 min.
  • the molecular retention of the dialysis bag is ⁇ 8000, preferably ⁇ 5000, more preferably 3500
  • the dialysis time is ⁇ 3 days, preferably ⁇ 5 days, more preferably ⁇ 7 days
  • the number of dialysis water changes is ⁇ 6 times, preferably ⁇ 10 times, more preferably ⁇ 21 times.
  • Step 2) After the reaction is completed, the magnetic nanocomposite material is obtained by separation and purification; optionally, separation and purification can be achieved by centrifugation and/or filtration.
  • the range of the centrifugal speed during separation and purification is 4000-13000 rpm, preferably 5000-11000 rpm, more preferably It is 6000 ⁇ 10000rpm; the centrifugation time range during separation and purification is 5 ⁇ 30min, preferably 8 ⁇ 20min, more preferably 10 ⁇ 15min.
  • the selected filter membrane for filtration is ⁇ 0.45 ⁇ m, more preferably 0.22 ⁇ m.
  • the mass of the hydrophilic compound added in the mixed liquid I is 1%-10% of the mass of the iron salt, wherein the mass of the iron salt is calculated as the mass of the iron element.
  • the content of the modified magnetic nanoparticles in the mixed solution II is 10-20 mg/mL;
  • the mass of the targeting molecule added in the mixed solution II is 0.013% to 15% of the mass of the modified magnetic nanoparticles
  • the mass of another hydrophilic compound added in the mixed solution II is 20-80% of the mass of the modified magnetic nanoparticles, wherein the mass of the modified magnetic nanoparticles is calculated as the mass of iron element, so The masses of the modified magnetic nanoparticles are all based on the mass of iron element.
  • reaction conditions in step 2-1) specifically include:
  • the reaction is carried out under stirring conditions, the stirring rate is 300 ⁇ 600rpm, and the stirring time is 0.2 ⁇ 10h;
  • the inactive atmosphere includes N 2 atmosphere or inert atmosphere.
  • the reaction temperature is 30 ⁇ 85°C
  • the pH of the reaction is 10-12.
  • the reaction atmosphere is an inactive atmosphere, and the inactive atmosphere is nitrogen or an inert gas; when the magnetic nano ions are FeOOH, The reaction atmosphere is an oxygen-containing atmosphere.
  • the pH value is adjusted to 10-12 by adding alkali, and the alkali is at least one of sodium hydroxide, ammonia water or potassium hydroxide.
  • reaction conditions in step 2-2) specifically include:
  • the reaction is carried out under stirring conditions, the stirring speed is 300 ⁇ 600rpm, and the stirring time is 2 ⁇ 48h;
  • the reaction temperature is 0-40°C, preferably 4-25°C.
  • a method for preparing the above-mentioned magnetic nanocomposite material is provided, and the method at least includes the following steps:
  • Solution b is quickly added to solution a and stirred and mixed quickly, and the pH is adjusted to 10-12, which is marked as solution c;
  • Solution c reacts for a period of time and separates, washes, dialysis, centrifugation and concentration, marked as solution d;
  • the iron salt is a mixture of a divalent iron salt and a trivalent iron salt
  • the doping metal element M is selected from at least one of Gd, Mn, Zn, Co and Ni;
  • the acidic pH of the solution a is adjusted to pH 2-5 by at least one of acids such as hydrochloric acid, sulfuric acid, citric acid, and nitric acid;
  • the metal salt precursor solution a the weighed amount of the metal doping precursor salt can be changed within a certain range, and those skilled in the art can select a suitable doping metal according to specific requirements.
  • the molar ratio of the iron ion to the doped metal in step a) is greater than 5:1;
  • the iron salt in step a) is a hydrate
  • the iron salt in step a) is selected from the following group: ferrous sulfate, ferrous sulfate, ferric chloride, ferrous chloride, etc.;
  • the doped metal salt in step a) is a hydrate
  • the doped metal salt in step a) is selected from the group consisting of gadolinium nitrate, manganese sulfate, zinc sulfate heptahydrate, manganese sulfate tetrahydrate, cobalt sulfate heptahydrate, nickel sulfate hexahydrate, etc.;
  • hydrophilic molecules include hydrophilic molecules with easy binding functional groups such as carboxyl groups, amino groups, and sulfhydryl groups, including polyethylene glycol derivatives, dextran derivatives, chitosan derivatives, and citric acid derivatives. Things, etc.;
  • step c) includes a step of stirring, and the stirring time is 1 to 6 minutes, preferably 1 to 3 minutes, more preferably 1 to 2 minutes;
  • the alkaline pH of the solution c is adjusted to pH 10-11 by at least one of alkaline substances such as ammonia water, sodium hydroxide, potassium hydroxide, etc.;
  • step d) is heating in a water bath, and the reaction temperature is 30 to 80°C, a further preferred range is 50 to 70°C, and the most preferred range is 60 to 70°C;
  • the stirring speed set for the reaction in the water bath in step d) ranges from 300 to 600 rpm, preferably 300 to 400 rpm, and more preferably 500 to 600 rpm.
  • the stirring reaction time of step d) is 0.2-10h, preferably 0.2-5h, more preferably 0.5-4h, most preferably 0.5-2h;
  • the centrifugal speed in step d) ranges from 10000 to 13000 rpm, preferably 11000 to 13000 rpm, more preferably 12500 to 13000 rpm;
  • the centrifugation time in step d) ranges from 5 to 30 minutes, preferably from 8 to 20 minutes, and more preferably from 10 to 15 minutes;
  • the yield of the magnetic nanocomposite material obtained in step d) is ⁇ 90%, preferably ⁇ 93%, more preferably ⁇ 95%;
  • step d) may also include washing the metal-doped magnetic nanomaterial composite with ethanol, deionized water or a combination thereof as a detergent;
  • the number of washings in step d) is 3-10 times, and a further preferred range is 5-8 times;
  • the hydrophilic polymer (coating layer) described in step e) comprises hyaluronic acid, dimercaptosuccinic acid, silica, mesoporous silica, polyethylene glycol and derivatives thereof , Mannitol/mannose, chitosan, dextran, ⁇ -glucan, cross-linked dextran, carboxy dextran, liposome, albumin, ethyl orthosilicate, polyacrylic acid, ⁇ - Glycidyloxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, polyoxyethylene-polyoxypropylene-polyoxyethylene, polyoxyethylene (5) nonylphenyl ether, diethylenetri At least one of aminepentaacetic acid, meglumine, arginine, polyglutamic acid, and polypeptide;
  • the targeting molecule (outer layer) described in step e) comprises fMLF, fMLP, CD11b, F4/80, collagenous structure (MARCO), osteopontin, Hyaluronan, Profilin-1, E-selectin monoclonal antibody One or more of the other targeting molecules;
  • reaction time of the hydrophilic polymer (coating layer)/targeting molecule (outer layer) described in step e) is 2 to 48 hours, and a further preferred range is 3 to 36 hours, the most preferred The preferred range is 4-24h;
  • reaction temperature in step e) is room temperature
  • the stirring speed set for the reaction in the water bath in step e) ranges from 300 to 600 rpm, preferably 300 to 400 rpm, and more preferably 500 to 600 rpm;
  • the centrifugal rotation speed in step e) ranges from 4000 to 13000 rpm, preferably from 5000 to 11000 rpm, and more preferably from 6000 to 10000 rpm;
  • the centrifugation time in step e) ranges from 5 to 30 minutes, preferably from 8 to 20 minutes, and more preferably from 10 to 15 minutes.
  • a superparamagnetic metal-doped ferrite MRI contrast material with excellent performance is obtained by adopting a gentle water phase method.
  • a hydrophilic polymer can be coated and coupled to a macrophage-targeting polymer or targeting molecule to prepare a particle size range with concentrated particle size, good stability, good water dispersibility, and low toxicity.
  • the preparation method of the contrast material has the characteristics of environmental protection and safety, simple process, low cost and high yield.
  • the application of the composite MRI contrast material in magnetic resonance imaging can obtain an excellent imaging performance, specificity, and inflammatory response.
  • the high-quality MRI contrast agent with rich sex (macrophages) high signal can improve the detection and detection of atherosclerotic vulnerable plaques/stable plaques, thereby significantly reducing the cost of medical testing and treatment, which is important for protecting people’s lives. And health is of great significance.
  • the inventor completed the present invention.
  • At least one of the magnetic nanocomposite materials described in any one of the above and the magnetic nanocomposite materials prepared by any one of the preparation methods is provided in contrast agents and diseases caused by inflammatory cells.
  • a method for distinguishing and detecting atherosclerotic vulnerable plaque and stable plaque is provided:
  • the pathogenesis of atherosclerosis may be due to the theory of lipid infiltration of atherosclerosis.
  • the theory of lipid infiltration of atherosclerosis is proposed because of lipid deposition in plaques and infiltration of inflammatory cells (macrophages). This is caused by increased levels of lipids in the blood that penetrate into the blood vessel wall.
  • FIG. 1 Mainly including 1. Material targeting macrophages (nanomaterials are easily swallowed by macrophages, and macrophages targeting macrophages/targeting molecules); 2. Material adoption Macrophages actively enter the inside of the plaque (different plaques have different speeds: macrophages enter stable plaques slowly, and macrophages enter vulnerable plaques faster); 3. Magnetic nanocomposites have enhanced MRI T1 performance when dispersed, MRI T2 enhanced performance during reunion. Therefore, according to the different rates of macrophages entering stable/vulnerable plaques and the characteristics of different MRI enhancement performances, the identification and detection of atherosclerotic plaques can be realized.
  • the present invention is based on the fact that macrophages are concentrated on vulnerable plaques (inflammatory cell infiltration), the macrophages are used to easily swallow magnetic nanoparticles, and at the same time, the surface of the magnetic nanoparticles is modified with macrophage-targeting polymers or targeting molecules.
  • macrophage-targeting polymers or targeting molecules e.g., adenosine triphosphate, adenosine triphosphate, phosphate-phosphate-binding polymers or targeting molecules.
  • atherosclerotic plaques can be used in the injection of contrast agents.
  • MRI T1 high signal appears within 1 to 4 hours, and if it is a stable plaque, MRI T1 high signal will continue to appear.
  • the contrast material When carried into the plaque, the contrast material agglomerates inside the plaque, thereby showing MRI T2 high signal within 6 to 24 hours, thereby realizing the diagnosis and identification of stable plaque and unstable (vulnerable) plaque from a clinical perspective.
  • the diagnosis method of the present invention is easier to realize the identification and detection of atherosclerotic vulnerable plaque and stable plaque.
  • the fourth aspect of the present application provides a contrast agent, comprising at least one of the magnetic nanocomposite material described in any one of the above and the magnetic nanocomposite material prepared by the preparation method described in any one of the above.
  • the contrast agent is an MRIT1 contrast agent and/or an MRIT2 contrast agent.
  • a targeting material comprising at least one of the magnetic nanocomposite material described in any one of the above and the magnetic nanocomposite material prepared by the preparation method described in any one of the above.
  • a drug carrier comprising at least one of the magnetic nanocomposite material described in any one of the above and the magnetic nanocomposite material prepared by the preparation method described in any one of the above.
  • the magnetic nanocomposite material has the advantages of uniform particle size distribution, controllable size, good water solubility, and good biocompatibility;
  • the provided magnetic nanocomposite materials can be used for magnetic resonance imaging contrast agents, targeted drugs, and cell separation;
  • the provided magnetic nanocomposite material has the functions of medical MRI, ultrasound and fluorescence contrast. Compared with the clinically used MRI, ultrasound and fluorescence contrast agents in medicine, the contrast performance has been significantly improved, and it can be used for early detection of tumors and diagnosis.
  • the provided magnetic nanocomposite material has active targeting ability, can also be used as a drug carrier to release drugs for treatment, and can improve its vulnerability to cardiovascular and cerebrovascular diseases (such as the vulnerability of atherosclerotic plaque), tumors Diagnosis and treatment of major diseases such as solid tumors, nervous system diseases (Alzheimer's disease), and organ diseases (cysts), thereby significantly improving the efficiency of medical detection and treatment;
  • cardiovascular and cerebrovascular diseases such as the vulnerability of atherosclerotic plaque
  • tumors Diagnosis and treatment of major diseases such as solid tumors, nervous system diseases (Alzheimer's disease), and organ diseases (cysts)
  • the method of preparing magnetic nanocomposites provided, under mild aqueous system, the method is simple, easy to produce expansion, the composite material obtained has excellent performance enhanced MRI T1 / T2, wherein r1 value of up to 25mM - 1 S -1 or more, r2 value can reach 90mM -1 S -1 or more;
  • Metal doping improves the MRI T1 performance of the material.
  • the MRI T1 enhancement performance of the metal doped material is generally improved by 10-20%.
  • FIG. 1 is a schematic diagram of the principle of diagnosing atherosclerotic vulnerable plaque with the magnetic nanocomposite material of the present application.
  • Example 2 is a transmission electron microscope TEM image of the magnetic nanocomposite material obtained in Example 1.
  • Example 3 is an X-ray diffraction XRD pattern of the magnetic nanocomposite material obtained in Example 2.
  • FIG. 4 is a VSM diagram of a vibrating sample magnetometer of the magnetic nanocomposite material obtained in Example 1.
  • FIG. 4 is a VSM diagram of a vibrating sample magnetometer of the magnetic nanocomposite material obtained in Example 1.
  • FIG. 5 is a test diagram of the dynamic particle size distribution of the magnetic nanocomposite material obtained in Example 5.
  • FIG. 5 is a test diagram of the dynamic particle size distribution of the magnetic nanocomposite material obtained in Example 5.
  • FIG. 6 is a test diagram of the zeta potential of the magnetic nanocomposite material obtained in Example 6.
  • FIG. 7 is an MCF-7 cytotoxicity test diagram of the magnetic nanocomposite material obtained in Example 7.
  • FIG. 7 is an MCF-7 cytotoxicity test diagram of the magnetic nanocomposite material obtained in Example 7.
  • FIG. 8 is a nude mouse MRI (atherosclerotic plaque) test image of the magnetic nanocomposite material obtained in Example 10.
  • FIG. 8 is a nude mouse MRI (atherosclerotic plaque) test image of the magnetic nanocomposite material obtained in Example 10.
  • Example 9 is a New Zealand rabbit MRI test image of the magnetic nanocomposite material obtained in Example 11.
  • Fig. 10 is an MRI test image of a tumor-bearing mouse (4T1) of the magnetic nanocomposite material obtained in Example 9.
  • Example 11 is a graph of longitudinal relaxation rate and lateral relaxation rate of the magnetic nanocomposite material obtained in Example 1, where a is the longitudinal relaxation rate and b is the lateral relaxation rate;
  • FIG. 12 is an MRI T1 signal test diagram of the magnetic nanocomposite material obtained in Example 1, where 1 is the imaging of the sample of Comparative Example 3, and 2 is the imaging of the sample of Example 1;
  • FIG. 13 is a MRI T2 signal test diagram of the magnetic nanocomposite material obtained in Example 1, where 1 corresponds to a concentration of 6 mM, 2 corresponds to a concentration of 3 mM, and 3 corresponds to a concentration of 1 mM.
  • the carboxyl-PEG-amino group was purchased from the 040103 model of Meiluo Technology Co., Ltd.;
  • Aminated hyaluronic acid was purchased from Xi’an Ruixi Biotechnology Co., Ltd., a 5K model;
  • Carboxymethyl-dextrans was purchased from TdB Company in Sweden;
  • Polyacrylic acid was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., model 9003-01-4;
  • Carboxy polyethylene glycol was purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd., model 14569;
  • Cross-linked dextran was purchased from Shanghai Yuanye Biotechnology Co., Ltd. 2000-HR model;
  • F4/80 purchased from Abcam (Shanghai) Trading Co., Ltd. ab90247 model;
  • Collagen structure macrophage receptor (MARCO) was purchased from KL-CDB-5096 model of Shanghai Kolei Biotechnology Co., Ltd.
  • Test instrument Malvern Nano-ZS dynamic light scattering particle size analyzer, test condition: scattering angle 173 ° .
  • Test instrument Brueckner D8 Advance X-ray diffractometer; test conditions: Cu K ⁇ target (40kV, 40mA), step length 0.02°(2 ⁇ ), 3s/step.
  • Test instrument JEOL-2100 transmission electron microscope; test conditions: 200Kv, 101 ⁇ A; and the tested nanoparticles are dispersed in water for testing.
  • Test instrument MesoMR23-060H-I nuclear magnetic resonance analysis and imaging system
  • step 4 Suspend evaporation and concentrate the reaction solution in step 4 to obtain a concentrated solution. Use a 3500 dialysis bag to dialyze the concentrated solution for 72 hours to obtain an Fe 3 O 4 composite material mixture with an iron concentration of 15 mg/ml.
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add aminated hyaluronic acid (HA-NH 4+ ) (100 mg), and stir and react for 2 hours at 25° C. and 300 rpm to obtain a reaction mixture.
  • HA-NH 4+ aminated hyaluronic acid
  • step 6 Take 10 mL of the ⁇ -Fe 2 O 3 composite material mixture obtained in step 5, add aminoated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 100mg), stir and react for 2h at 25°C and 300 rpm. , Get the reaction mixture.
  • aminoated hyaluronic acid HA-NH 4+
  • step 6 Take 10 mL of the Zn 0.2 Fe 2.8 O 4 composite material mixture obtained in step 5, add aminated hyaluronic acid (HA-NH 4+ ) (100 mg) and stir for 2 hours at 25°C and 300 rpm to obtain a reaction mixture liquid.
  • HA-NH 4+ aminated hyaluronic acid
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add collagen-like macrophage receptor (20 mg), and stir for 2 hours at 25° C. and 300 rpm to obtain a reaction mixture.
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add F4/80 (20 ⁇ g), and stir and react for 12 hours at 25° C. and 300 rpm to obtain a reaction mixture.
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add aminoated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 150 mg), stir and react for 2 hours at 25°C and 300 rpm to obtain Reaction mixture.
  • aminoated hyaluronic acid HA-NH 4+
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add aminated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 100mg), stir and react for 2 hours at 350 rpm at room temperature to obtain the reaction Mixture.
  • HA-NH 4+ aminated hyaluronic acid
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add aminoated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 120 mg), stir and react for 2 hours at 30°C and 500 rpm to obtain The reaction mixture was filtered through a 220 ⁇ m filter to obtain a composite material. .
  • aminoated hyaluronic acid HA-NH 4+
  • step 6 Take 10 mL of the Fe 3 O 4 composite material mixture obtained in step 5, add aminated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 90 mg), stir and react for 2 hours at 350 rpm at room temperature to obtain the reaction Mixture.
  • HA-NH 4+ aminated hyaluronic acid
  • step 5 Suspend and concentrate the mixture obtained in step 4) to obtain a concentrated solution. Use a 3500 dialysis bag to dialyze the concentrated solution for 72 hours to obtain Fe 3 O 4 @hyaluronic acid
  • step 6 Take 10 mL of the FeOOH composite material mixture obtained in step 5, add aminated hyaluronic acid (HA-NH 4+ ) (hyaluronic acid mass 100 mg), stir and react at room temperature and 300 rpm for 2 hours to obtain a reaction mixture.
  • aminated hyaluronic acid HA-NH 4+
  • Fe 3 O 4 -OA nanoparticles are dissolved in 100 ml of n-hexane. Dissolve Fe 3 O 4 -OA (240 mg) and meso-2,3-dimercaptosuccinic acid (DMSA, 120 mg) in 120 ml of a mixed solution of acetone and n-hexane (volume ratio 1:1), and stir at 60°C 4h;
  • the DMSA-Fe 3 O 4 nanoparticles are collected by magnetic separation, washed several times with deionized water, and then dissolved in 20 ml of deionized water and stored for later use.
  • step (5) Add 20 ml of an aqueous solution containing 40 mg of polyethylene glycol to the product obtained in step (5), ultrasonically disperse for 20 minutes, and mechanically stir for 4 hours to prepare about 0.22 g of composite magnetic nanoparticles 1.
  • sample 1# The samples were analyzed by transmission electron microscope. A typical representative is sample 1#.
  • the TEM image of the transmission electron microscope is shown in Figure 2.
  • the results show that the particle size of the magnetic nanomaterials is between 3 and 6 nm, and the magnetic
  • the particle size of the composite nano material (sample 1#) is between 60 and 90 nm, and 70% of the magnetic composite nano material has a particle size within ⁇ 20% of the D50 range of the magnetic composite nano material.
  • the morphology of other examples is similar to that of sample 1#, and the specific particle size parameters are shown in Table 1.
  • the samples were analyzed separately.
  • the typical representative is sample 1#, and its VSM diagram is shown in Figure 4: Due to the relatively small particle size of the material, the saturation magnetization is not too high (43emu/g), but because the material belongs to MRI T1 enhances the contrast material, so the requirement for saturation magnetization is not too high.
  • sample 5# The samples were analyzed separately.
  • the typical representative is sample 5#.
  • the dynamic particle size of sample 5# is about 140nm, and the dynamic particle size of samples of other examples is about 90-180nm. .
  • the result is larger than the particle size observed by TEM. This is because dynamic light scattering detects the hydrated particle size, so the result will be too large.
  • sample 6# The samples were analyzed separately.
  • the typical representative is sample 6#.
  • the potential test results show that the zeta potential of sample 6# is around -33.4mV, which proves that the material is very stable and can be stored for a long time.
  • the test results of samples of other examples are consistent with sample 6#.
  • sample 7# The samples were analyzed separately.
  • the typical representative is sample 7#.
  • the toxicity test of sample 7# shows that the material has a higher cell survival rate in the concentration range of 0-0.5 mg/ml. , Are kept above 90%. It shows that the cytotoxicity of the material is low. Among them, compared with gadopentetate meglumine (commercial drug), the sample still showed relatively better cytotoxicity results, and the test results of the samples in other examples were consistent with sample 7#.
  • Example VII MRI test results of ApoE mice fed high-fat and high-sugar samples
  • sample 8# A typical representative was sample 8#.
  • the material was configured with an iron concentration of 10 mg/mL aqueous solution, and the tail vein was injected into mice for circulation. Two hours after injection, It can be seen that the plaque is brighter than before the injection, indicating that the material has entered the plaque through macrophages, and the T1-weighted imaging enhancement effect is good; and 6 hours after the injection, the T1 signal decreases, indicating that the material enters the plaque more. Or a reunion effect occurs, and the T2 signal is enhanced.
  • the other samples provided in the examples of this application also have similar results to sample 8#.
  • the sample of Example 3 exhibits T1 enhancement performance at relatively low concentrations, while at relatively high concentrations (when materials are agglomerated), it is more conducive to distinguishing and stable Plaques and vulnerable plaques (the number of macrophages entering stable plaques is small and slow, and Fe 3 O 4 nanoparticles entering stable plaques are relatively small.
  • T1 increases, the signal becomes brighter, and macrophages Cells enter the vulnerable plaque faster, and relatively more Fe 3 O 4 nanoparticles enter the vulnerable plaque.
  • the T2 increases and the signal becomes dark);
  • the sample provided in Comparative Example 1 is a typical MRI T2 Contrast materials can only darken the target lesions, and cannot distinguish stable plaques from vulnerable plaques.
  • the sample of Comparative Example 1 has no targeting ligand that is phagocytosed by macrophages, so the efficiency of entering the plaque is low.
  • the sample provided by Comparative Example 2 is similar to Comparative Example 1. It cannot provide the T1/T2 transition mode, so it is difficult to distinguish between stable plaque and vulnerable plaque, and the efficiency of entering the plaque is also very low; the sample provided by Comparative Example 3 It is a typical MRI T1 contrast agent material.
  • the sample has no macrophage targeting function, and the efficiency of entering the plaque is low.
  • the sample has only MRI T1 effect, but no MRI T2 enhancement after material aggregation (high concentration) As a result, it is also impossible to distinguish between stable plaques and vulnerable plaques.
  • sample 11# A typical representative was sample 11#.
  • the material was configured with an iron concentration of 10 mg/mL aqueous solution, and the tail vein was injected into the mouse body for circulation. The result was within 1 hour. The dark area in the liver of the mouse was detected, and it was concluded that the magnetic nanocomposite material could not enter the area because the cyst did not have inflammation, so it showed a low signal. The mouse was confirmed to be a spontaneous liver cyst after anatomy.
  • the other samples provided in the examples of this application also have similar results to those of sample 11#. Because of the macrophage targeting effect of the material in Example 11, part of the material will also be affected by the kupffer cells of the liver (a kind of macrophages).
  • Phagocytosis so it has the visualization effect of solid organs
  • Comparative Example 1 and Comparative Example 2 are iron oxide nanoparticles modified by DMSA, which have a small molecular weight and can only be used as a blood pool contrast agent, so they will not enter the liver. It is excreted through the kidneys, and its blood retention capacity is weak (only a short time in the blood), so it cannot be used as a liver contrast agent.
  • Comparative Example 3 only the T1 imaging function is available. Therefore, compared with the sample of this application, the application in imaging of complicated liver and other solid organs is not as wide as this sample.
  • Comparative Example 1 and Comparative Example 2 are iron oxide nanoparticles modified by DMSA, which have a small molecular weight and can only be used as a blood pool contrast agent, with more emphasis on the imaging of blood vessels. For the sample in Comparative Example 3, due to the low relaxation rate of T1, the contrast between the tumor site and the normal tissue is not comparable to the various samples of this application.
  • each sample was made into 0.3 mM aqueous solution and used a Philips magnetic resonance instrument (Philips Ingenia 1.5T) to perform MRI T1-weighted signal test.
  • the test results are shown in Table 1.
  • Each sample was prepared into a 3mM aqueous solution and used a Philips magnetic resonance instrument (Philips Ingenia 1.5T) to perform MRI T2-weighted signal test, and the test results are shown in Table 1.
  • the typical representative is sample 1#, as shown in Figure 12: the gray value corresponding to comparative example 3 is 1572, the gray value corresponding to sample 1# is 2035, and the gray value corresponding to commercial gadopentetate meglumine is 1806 .
  • Table 1 for the gray values corresponding to the other embodiments, which can prove that the samples provided in the embodiments of the present application have the highest gray values and the most obvious contrast effect.
  • Comparative Examples 1 and 2 have no MRI T1 effect, so no comparison will be made.
  • sample 1#MRI T2 signal test of different concentrations No. 1 shows a strong MRI T2 dark signal when the concentration is 6 mM, and No. 2 shows a part of MRI T2 dark signal when the concentration is 3 mM.
  • concentration of No. 3 is 1mM, there is no MRI T2 signal (gray value ⁇ 600), indicating that the MRI T2 signal enhancement function is available when the concentration is high or the sample is agglomerated.
  • the MRI T1 weighted signals of the magnetic nanocomposite material samples provided in this application are all >1800, and the highest (Example 3) can reach 2141.
  • the contrast performance is significantly improved. Realize the early detection and diagnosis of tumors, and significantly improve the efficiency of medical detection and treatment; while the sample provided in Comparative Example 3 can only reach 1572 under the same conditions.
  • the resolution is low and the discrimination is not obvious. It is impossible to accurately distinguish common lesions such as plaques and tumors.
  • Comparative Example 1 and Comparative Example 2 can only show the MRI T2 enhancement effect, which is poor for some calcification sites. At the same time, the MRI T2 enhancement mode may also cause false Positive and other effects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Biotechnology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种磁性纳米复合材料及其制备方法与应用,所述磁性纳米复合材料,包括磁性纳米粒子和包覆在所述磁性纳米粒子外的亲水化合物层,所述磁性纳米粒子为铁的氧化物,所述磁性纳米粒子的粒径为0.1~20nm,所述磁性纳米复合材料的粒径为0.5~300nm,所述磁性纳米复合材料的纵向弛豫率r1≥20mM-1s-1。所提供的磁性纳米复合材料造影材料,可用于磁共振成像造影剂、靶向药物以及细胞分离等方面。

Description

一种磁性纳米复合材料及其制备方法与应用 技术领域
本申请涉及一种纳米复合材料及其制备方法与应用,属于医用材料领域。
背景技术
以Fe 3O 4为代表的铁氧体纳米材料(USPIO)可作为MRI T2对比剂使用,例如上市药品菲立磁(Feridex)与铁羧葡胺(Resovist)等。然而T2类对比剂属于负性对比剂(暗信号功能增强,病灶区域显示为黑色/暗,周围正常组织显示为白色/亮),该类对比剂所标记的肿瘤、心脑血管疾病(动脉粥样硬化斑块)等病灶区域容易与某些特殊区域(如出血、钙化、或金属沉积)相混淆;同时由于该类对比剂磁矩较高,易诱导局部磁场的波动而导致部分标记区域过分夸大,并有可能使图像模糊,临床诊断上称之为“开花效应”;因此,氧化铁T2类对比剂的成像辨识度在临床应用中的认可度并没有含钆类的T1对比剂高。
随着新材料技术的发展,USPIO纳米材料在生物医学中提供了一些有吸引力的成果。例如通过降低磁性纳米材料的粒径来解决MRI加强模式这个问题,有望实现对超灵敏高分辨成像需要和用于疾病早期诊断的T1正性对比剂。目前,超微型USPIO材料通过对炎性细胞(例如巨噬细胞)的示踪,从而直接反应由炎性细胞浸润引起的各类疾病,例如肿瘤,心脑血管疾病以及神经系统疾病。因此,针对病变部位炎性细胞浸润定性、定量评估具有潜在价值并具有可观的应用前景。
肿瘤的早期诊断方面:研究发现,炎症细胞是肿瘤间质的重要组成部分,主要包括肿瘤相关巨噬细胞(Tumour-associated macrophages,TAM)、树突状细胞、淋巴细胞和肥大细胞等。肿瘤组织中一般会有大量炎症细胞浸润,其中占主要成分的TAM肿瘤相关巨噬细胞积极参与了肿瘤的发生、生长、侵袭以及转移等各个阶段。因此,针对肿瘤相关巨噬细胞的靶向示踪,能够比较清晰的反应肿瘤的发展进程,并给出临床针对肿瘤阶段的诊断建议。
同理,在动脉粥样硬化斑块诊断方面:斑块从稳定变为易损的过程涉及到炎症、免疫、代谢、凝血等多个环节,而目前的单纯显示动脉管腔或斑块形态的诊断技术已不能满足临床的需要,因为炎性细胞浸润增加才是易损斑块的最主要特征之一。斑块内浸润的炎性细胞主要指巨噬细胞,其所产生的降解胶原酶使斑块纤维帽不断变薄、从而使斑块变得不稳定。因此探查巨噬细胞活性及粥样斑块内的炎症具有区别斑块稳定和易损性的潜力,亦是目前粥样硬化成像的关键目标。
在神经系统疾病例如老年痴呆症等的诊断方面:虽然炎症在老年痴呆症中的作用仍不清楚,但炎症越来越被认为是神经退行性疾病(如阿尔茨海默氏症和帕金森症)起到积极作用的一部分因素。研究证实,在阿尔兹海默症患者脑部,淀粉样斑块聚在一起,导致脑部细胞损伤和记忆减退。因此,人们一直认为淀粉样斑块是直接导致这种神经性疾病的根源。但事实上,β淀粉样蛋白可能是由炎症引起的,通过研究发现如果破坏脑中的小胶质细胞,阿尔兹海默症患者脑部形成的β淀粉样蛋白斑块就会减少。因此,他们将研究对象从β淀粉样蛋白斑块转向引起炎症的小胶质细胞。
综上所述,若构建一种以铁基类纳米材料为主的安全无毒,造影信号强的MRI T1造影材料,既能保持对比剂材料的安全性,又能以MRI T1加权成像的方式提高诊断效率,是一种十分有效的途径,且十分必要。同时也可搭配荧光染料及相应的巨噬细胞靶向分子,使其能够具有真实广泛的临床应用前景和经济效益,它能够提供更快捷,更精准,更高解析度和分辨率的成像效率。公开号为CN106913885A的专利公开了一种复合磁性纳米粒子,该复合磁性纳米粒子包括铁氧体和包覆在所述铁氧体外部的亲水性聚合物层,可作为MRIT1类造影剂使用。但由于该材料在制备过程中使用共沉淀法,因此材料在结晶性、包覆物、键合方式等多方面存在一定问题,导致MRI T1造影增强效能降低,r1值<10,同时产量会相应地降低。
发明内容
根据本申请的第一个方面,提供了一种磁性纳米复合材料,该磁性纳米复合材料低毒、MRI T1增强性能优异,同时具备巨噬细胞靶向功能。
为了提供一种针对炎性细胞(相关巨噬细胞)示踪的检测方法,该方法能够安全、高效地诊断包括炎性细胞浸润及炎症相关引起的各类疾病,为临床诊断及术后评估提供理论与技术支持。本发明人经过大量的实验研究,意外地发现采用特定的制备工艺可制得一种MRI T1/T2增强性能显著,同时能够靶向巨噬细胞,主动示踪炎症(炎性细胞浸润)的分子探针。
所述磁性纳米复合材料包括磁性纳米粒子和包覆在所述磁性纳米粒子外的亲水化合物层,所述磁性纳米粒子为铁的氧化物,所述磁性纳米粒子的粒径为0.1~20nm,所述磁性纳米复合材料的粒径为0.5~200nm,所述磁性纳米复合材料的纵向弛豫率r 1≥20mM -1s -1
优选地,当所述磁性纳米复合材料的水溶液浓度为0.3mmol/L时,MRI T1加权信号(灰度值)≥1800;当所述磁性纳米复合材料的水溶液浓度≥3mmol/L时,存在MRI T2加权信号。
本申请中,所述磁性纳米复合材料的MRI T1加权信号是通过1.5T飞利浦磁共振仪(Philips ingenia 1.5T)测得的样品溶液的T1加权成像的灰度值;其中,所述样品溶液为浓度为0.3mM的磁性纳米复合材料水溶液。所述磁性纳米复合材料的MRI T2加权信号是通过1.5T飞利浦磁共振仪(Philips ingenia 1.5T)测得的样品溶液的MRI T2加权成像的灰度值,本申请中存在MRI T2加权信号是指灰度值≥600。
可选地,所述磁性纳米复合材料的MRI T1加权信号(灰度值)的上限选自1400、1600、1800、2000或5000;下限选自1200、1400、1600、1800、2000或5000。
可选地,所述磁性纳米粒子的粒径为0.5~10nm,优选1.5~5nm,更优选2~4nm;所述磁性纳米粒子的粒径上限选自1.0nm、5.0nm、8.0nm、10nm、12nm、15nm、18nm或20nm;下限选自0.1nm、0.5nm、1nm、1.5nm、2.0nm、2.5nm、3.0nm、3.5nm、4.0nm、4.5nm、5.0nm、6.0nm、8.0nm或10nm;
在优选的实施方式中,按所述磁性纳米粒子的总个数计,70%的所述磁性纳米粒子的粒径位于±20%的所述磁性纳米粒子的D50范围内;
在另一优选的实施方式中,按所述磁性纳米粒子的总个数计,80%(较佳地85%,更佳地90%,最佳地93%)的所述磁性纳米粒子的粒径位于±15%(较佳地±10%,更佳地±8%)的所述磁性纳米粒子的D50范围内;
可选地,所述磁性纳米复合材料的粒径为0.5~200nm,优选1~150nm,更优选3~120nm最优选8~100nm;
可选地,所述磁性纳米复合材料的D50约为300nm,较佳地约为250nm,更佳地约为200nm;
可选地,按所述磁性纳米复合材料的总个数计,70%的所述纳米复合材料的粒径位于±20%的所述纳米复合材料的D50范围内;
可选地,按所述磁性纳米复合材料的总个数计,80%(较佳地85%,更佳地90%,最佳地93%)的所述磁性纳米复合材料的粒径位于±15%(较佳地±10%,更佳地±8%)的所述磁性纳米复合材料的D50范围内;
可选地,所述磁性纳米复合材料是水溶性的,即所述磁性纳米复合材料中油性成分的含量≤0.1wt%,较佳地≤0.05wt%。
可选地,所述磁性纳米复合材料在水或质量浓度为0.9%的生理盐水中分散90~270天时,较佳地270~540天时,更佳地360~720天时,所述纳米复合材料的电位变化≤15%,较佳地≤10%,更佳地≤5%,最佳地≤3%;
可选地,所述磁性纳米粒子中掺杂有金属M,所述金属M选自Gd、Mn、Zn、Co和Ni中的至少一种;
所述磁性纳米粒子的化学通式为M xFe 3-xO y,其中0<x≤0.5,优选,0.1≤x≤0.3,y优选4。
可选地,所述铁的氧化物选自Fe 3O 4、γ-Fe 2O 3、FeOOH中的至少一种;
可选地,所述亲水化合物层选自透明质酸、改性透明质酸、聚乙二醇、聚乙二醇衍生物、甘露醇、甘露糖、交联葡聚糖、葡聚糖、β-葡聚糖、羧基葡聚糖、脂质体、聚丙烯酸、聚氧乙烯-聚氧丙烯-聚氧乙烯、聚氧代乙烯(5)壬基苯基醚、二乙烯三胺五乙酸、多肽、葡甲胺、精氨酸、聚谷氨酸、二巯基丁二酸、氧化硅、γ-氨丙基三乙氧基硅烷、正硅酸乙酯、γ-缩水甘油醚氧丙基三甲氧基硅烷中的至少一种。
具体可以根据产物(磁性纳米复合材料)目标尺寸及应用需求等选择亲水化合物层。
可选地,所述亲水化合物层包括第一亲水化合物层和包覆在所述第一亲水化合物层外的第二亲水化合物层;所述第一亲水化合物层为含有羟基、氨基、羧基或巯基的化合物,所述含有羟基、氨基、羧基或巯基的化合物选自聚丙烯酸、聚乙二醇衍生物、葡聚糖衍生物、壳聚糖衍生物、柠檬酸衍生物、交联葡聚糖、透明质酸衍生物中的至少一种;所述第二亲水化合物层为巨噬细胞吞噬化合物,选自透明质酸、透明质酸衍生物、聚乙二醇、聚乙二醇衍生物、甘露醇、甘露糖、交联葡聚糖、葡聚糖、葡聚糖衍生物、脂质体、聚丙烯酸、聚氧乙烯-聚氧丙烯-聚氧乙烯、 聚氧代乙烯(5)壬基苯基醚、二乙烯三胺五乙酸、多肽、葡甲胺、精氨酸、聚谷氨酸、二巯基丁二酸、γ―氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的至少一种。
本发明中,衍生物是指原化合物中的氢原子被氨基、羧基、巯基、磺酸基、羟基等基团取代而形成的化合物。
可选地,所述聚乙二醇衍生物可选自羧基-PEG-氨基、羧基聚乙二醇;所述葡聚糖衍生物可选自羧基葡聚糖、氨基葡聚糖;所述壳聚糖衍生物可选自羧基壳聚糖、氨基壳聚糖;所述柠檬酸衍生物可选自柠檬酸钠。
可选地,所述的磁性纳米复合材料,还包括位于所述亲水化合物层外表面的靶向分子层,靶向分子与亲水化合物层之间可以通过酯化、取代、末端炔烃加成等反应共价结合也可以通过静电吸附结合,可根据产物目标尺寸、靶向分子特征等选择亲水化合物;
所述靶向分子层选自N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸(简写为fMLF)、N-甲酰-L-甲硫氨酰-L-亮氨酰-L-苯丙氨酸三肽(简写为fMLP)、人整合素αM型(简写为CD11b)、大鼠单克隆抗体[F4/80](简写为F4/80)、胶原样巨噬细胞受体(简写为collagenous structure)、骨桥蛋白(简写为osteopontin)、前纤维蛋白-1(简写为Profilin-1)、选择素-E单克隆抗体(简写为E-selectin monoclonal antibod)y中的至少一种;所述第一亲水化合物层选自聚丙烯酸、聚乙二醇衍生物、葡聚糖衍生物、壳聚糖衍生物、柠檬酸衍生物中的至少一种。
在一可选实施例中,提供一种磁性纳米复合材料,所述复合材料包括内核(磁性纳米粒子)、包覆层(多糖类)及/或外层(靶向分子),所述纳米复合材料具有下组特征:
1)所述内核材料为磁性纳米粒子,粒径≤20nm;
2)所述磁性纳米粒子的为金属元素掺杂的磁性纳米粒子;
3)所述纳米复合材料的包覆层为易被巨噬细胞吞噬的多糖类及其衍生物等;
4)所述纳米复合材料外层为巨噬细胞靶向分子;
5)所述纳米复合材料内核的粒径为0.1~80nm,所述纳米复合材料的水合粒径为1~300nm;
6)所述纳米复合材料的弛豫率r1≥20mM -1s -1
7)所述纳米复合材料的MRI T1加权信号(灰度值)≥1200(1.5T飞利浦磁共振仪Philips ingenia 1.5T)。
在一具体实施例中,所述磁性纳米粒子为Fe 3O 4,粒径为1~6nm;所述亲水化合物层为透明质酸衍生物。
在另一具体实施例中,所述磁性纳米粒子为Fe 3O 4,粒径为2~6nm;
所述亲水化合物层为聚丙烯酸或交联葡聚糖;
所述靶向分子为大鼠单克隆抗体[F4/80]或胶原样巨噬细胞受体。
在又一具体实施例中,所述磁性纳米粒子选自Fe 3O 4、γ-Fe 2O 3、FeOOH、化学通式为Zn 0.2Fe 2.8O 4的化合物中的至少一种,粒径为1~6nm;
所述亲水化合物层包括第一亲水化合物层和包覆在所述第一亲水化合物层外的第二亲水化合物层;
所述第一亲水化合物层选自羧基-PEG-氨基、羧基葡聚糖、羧基聚乙二醇中的至少一种,所述第二亲水化合物层为透明质酸衍生物。
本发明中,所述第一亲水化合物层和第二亲水化合物层之间,可以通过酯化、取代、末端炔烃加成等反应共价结合也可以通过静电吸附结合,可根据产物目标尺寸、化合物特性等分别选择两层亲水化合物。
本申请的第二方面,提供了上述任一项所述磁性纳米复合材料的制备方法,包括:
1)向含有酸的铁盐溶液中加入亲水性化合物,得到混合液I;
2)对所述混合液I进行反应,得到所述磁性纳米复合材料。
可选地,步骤1)中所得混合液I的pH值为2~5。
可选地,步骤1)中所述含有酸的铁盐溶液中的溶剂为水,优选去离子水;
步骤1)中所述含有酸的铁盐溶液中的酸为盐酸、硝酸、硫酸、柠檬酸中的至少一种;
步骤1)中所述含有酸的铁盐溶液中的铁盐为铁的二价水溶性盐、铁的三价水溶性盐中至少一种;
步骤1)中所述含有酸的铁盐溶液中的铁盐的摩尔浓度为0.005~0.5M。
可选地,步骤1)所述含有酸的铁盐溶液中还含有金属M盐;
金属M选自Gd、Mn、Zn、Co和Ni中的至少一种;
以金属原子的摩尔数计,所述含有酸的铁盐溶液中铁的摩尔量与金属M的摩尔量的比值大于3:1。
可选地,步骤1)所述金属M盐选择硝酸钆、硫酸锰、七水合硫酸锌、四水硫酸锰、七水硫酸钴、六水硫酸镍 中的至少一种。
可选地,步骤2)中对所述混合液I进行反应,得到所述磁性纳米复合材料,包括:
2-1)对所述混合液I进行反应,分离,得到含有改性磁性纳米粒子的混合液II;
2-2)向所述混合液II中加入靶向分子或另一亲水性化合物,反应,得到所述磁性纳米复合材料。
在酸性环境下的金属离子如铁离子具有较强的分散性,此时加入亲水性化合物,能够保证铁离子与亲水性化合物的均匀反应程度,在加入碱性溶液之后,限制磁性纳米材料粒径过分生长,并保持其晶型的稳定。
可选地,步骤2-1)中可以通过离心和/或透析中的至少一种方式进行分离,分离前优选先进行浓缩处理。
可选地,离心时转速为10000~13000rpm,优选的11000~13000rpm,更优选为12500~13000rpm;离心时间为5~30min,优选的为8~20min,更优选的为10~15min。
可选地,透析袋的分子截留量≤8000,优选≤5000,更优选3500,透析时间≥3天,优选≥5天,更优选的≥7天,透析换水的次数≥6次,优选≥10次,更优选≥21次。
步骤2)反应结束后经分离纯化得到所述磁性纳米复合材料;可选地通过离心和/或过滤实现分离纯化,分离纯化时离心转速的范围为4000~13000rpm,优选为5000~11000rpm,更优选为6000~10000rpm;分离纯化时离心时间范围为5~30min,优选为8~20min,更优选为10~15min。
可选地,过滤所选滤膜≤0.45μm,更优选为0.22μm。
可选地,所述混合液I中加入的亲水性化合物的质量为所述铁盐质量的1%~10%,其中,所述铁盐质量以铁元素质量计。
可选地,所述混合液II中所述改性磁性纳米粒子的含量为10~20mg/mL;
所述混合液II中加入的靶向分子的质量为所述改性磁性纳米粒子质量的0.013%~15%;
所述混合液II中加入的另一亲水性化合物的质量为所述改性磁性纳米粒子质量的20~80%,其中,所述改性磁性纳米粒子质量均以铁元素质量计其中,所述改性磁性纳米粒子质量均以铁元素质量计。
可选地,步骤2-1)中的反应条件具体包括:
在搅拌条件下进行反应,搅拌速率为300~600rpm、搅拌时间为0.2~10h;
其中,所述非活性气氛包括N 2气氛或惰性气氛。
反应温度为30~85℃;
反应pH值为10~12。
可选地,当所述磁性纳米粒子为Fe 3O 4、γ-Fe 2O3时反应气氛为非活性气氛,所述非活性气氛为氮气或惰性气体;当所述磁性纳米离子为FeOOH时,反应气氛为含氧气氛。
可选地,通过加入碱的方式调节pH值为10~12,所述碱为氢氧化钠、氨水或氢氧化钾中的至少一种。
可选地,步骤2-2)中的反应条件具体包括:
在搅拌条件下进行反应,搅拌速率为300~600rpm、搅拌时间为2~48h;
反应温度为0~40℃,优选4~25℃。
在一具体实施例中,提供了制备上述磁性纳米复合材料的方法,所述方法至少包括以下步骤:
a)制备含有铁盐或者含有铁盐和掺杂金属元素M的酸性溶液a;
b)配制亲水性分子(偶联作用)溶液b;
c)溶液b快速加入溶液a并迅速搅拌混匀,并调节pH为10~12,标记为溶液c;
d)溶液c反应一段时间并分离、洗涤、透析、离心及定浓,标记为溶液d;
e)向溶液d中加入亲水性高分子(包覆层)/靶向分子(外层),混合搅拌一段时间,经分离纯化,得到磁性纳米复合材料。
在优选的实施方式中,所述铁盐为二价铁盐与三价铁盐的混合物;
在优选的实施方式中,所述掺杂金属元素M选自Gd、Mn、Zn、Co和Ni中的至少一种;
在优选的实施方式中,所述溶液a的pH酸性通过盐酸、硫酸、柠檬酸及硝酸等酸类中的至少一种调节至pH 2~5;
本申请中,步骤a)金属盐前驱体溶液a的制备过程中,金属掺杂前驱体盐的称取量可在一定范围内变化,本领域技术人员可以根据具体的要求,选择合适掺杂金属盐溶液的比例;
优选地,步骤a)所述铁离子与掺杂金属的摩尔比大于5:1;
在优选的实施方式中,步骤a)所述铁盐为水合物;
在优选的实施方式中,步骤a)所述铁盐选自下组:硫酸亚铁、硫酸亚铁、氯化铁、氯化亚铁等;
在优选的实施方式中,步骤a)所述掺杂金属盐为水合物;
在优选的实施方式中,步骤a)所述掺杂金属盐选自下组:硝酸钆、硫酸锰、七水合硫酸锌、四水硫酸锰、七水硫酸钴、六水硫酸镍等;
优选地,步骤b)亲水性分子包括具备羧基、氨基、巯基等易结合官能团的亲水性分子,包括聚乙二醇衍生物、葡聚糖衍生物、壳聚糖衍生物、柠檬酸衍生物等;
在优选的实施方式中,步骤c)中包括搅拌的步骤,所述搅拌时间为1~6min,优选地为1~3min,更优选地为1~2min;
在优选的实施方式中,所述溶液c的pH碱性通过氨水、氢氧化钠、氢氧化钾等碱类物质中的至少一种调节至pH 10~11;
在优选的实施方式中,步骤d)中的是水浴加热,反应温度为30~80℃,进一步优选的范围为50~70℃,最佳的优选范围为60~70℃;
在优选的实施方式中,步骤d)所述的水浴锅中反应所设的搅拌速度的速度范围为300~600rpm,优选300~400rpm,更优选500~600rpm。
在优选的实施方式中,步骤d)所述搅拌的反应时间为0.2~10h,优选0.2~5h,更优选为0.5~4h,最优为0.5~2h;
在优选的实施方式中,步骤d)中的离心转速的范围为10000~13000rpm,优选为11000~13000rpm,更优选为12500~13000rpm;
在优选的实施方式中,步骤d)中的离心时间范围为5~30min,优选为8~20min,更优选的为10~15min;
在优选的实施方式中,步骤d)所得磁性纳米复合材料的产率≥90%,优选地≥93%,更优选地≥95%;
在优选的实施方式中,步骤d)还可以包括用乙醇、去离子水或其组合作为洗涤剂洗涤金属掺杂磁性纳米材料复合材料;
在优选的实施方式中,步骤d)中的洗涤次数为3~10次,进一步优选的范围为5~8次;
在优选的实施方式中,步骤e)所述的亲水性高分子(包覆层)包含透明质酸、二巯基丁二酸、氧化硅、介孔氧化硅、聚乙二醇及其衍生物、甘露醇/甘露糖、壳聚糖、葡聚糖、β-葡聚糖、交联葡聚糖、羧基葡聚糖、脂质体、白蛋白、正硅酸乙酯、聚丙烯酸、γ-缩水甘油醚氧丙基三甲氧基硅烷、γ―氨丙基三乙氧基硅烷、聚氧乙烯-聚氧丙烯-聚氧乙烯、聚氧代乙烯(5)壬基苯基醚、二乙烯三胺五乙酸、葡甲胺、精氨酸、聚谷氨酸、多肽中的至少一种;
在优选的实施方式中,步骤e)所述的靶向分子(外层)包含fMLF、fMLP、CD11b、F4/80、collagenous structure(MARCO)、osteopontin、Hyaluronan、Profilin-1、E-selectin monoclonal antibody等靶向分子中的一种或几种;
在优选的实施方式中,步骤e)所述的亲水性高分子(包覆层)/靶向分子(外层)的反应时间为2~48h,进一步优选的范围为3~36h,最佳的优选范围为4~24h;
在优选的实施方式中,步骤e)中反应温度的是室温;
在优选的实施方式中,步骤e)所述的水浴锅中反应所设的搅拌速度的速度范围为300~600rpm,优选的300~400rpm,更优选的500~600rpm;
在优选的实施方式中,步骤e)中的离心转速的范围为4000~13000rpm,优选的为5000~11000rpm,更优选的为6000~10000rpm;
在优选的实施方式中,步骤e)中的离心时间范围为5~30min,优选的为8~20min,更优选的为10~15min。
经过本发明的系统研究,通过采用温和水相法得到一种性能优异的超顺磁性金属掺杂铁氧体的MRI造影材料。具体地,可以通过包覆亲水性高分子,并偶联靶向巨噬细胞的高分子或靶向分子,制备得到一种粒径范围集中、稳定性好、水分散性好、毒性低、靶向巨噬细胞性能强、病灶造影信号(尤其是T1加权信号)高且得率较高的MRI造影材料。所述造影材料的制备方法具有环保安全、工艺简单、成本低且得率高的特点,将所述复合MRI造影材料应用于磁共振成像中可获得一种成像性能特异性优异、炎性反应响应性(巨噬细胞)高信号丰富的优质MRI造影剂,提高对动脉粥样硬化易损斑块/稳定斑块等的发现与检出,进而显著降低医学检测和治疗成本,这对保障人民生命和健康具有重要的意义。在此基础上,发明人完成了本发明。
在本申请得第三个方面,提供了上述任一项所述磁性纳米复合材料、任一项所述制备方法制备的磁性纳米复合 材料中的至少一种在造影剂、炎性细胞引发的疾病的靶向材料或药物载体中的应用。
在一具体实施例中,提供了动脉粥样硬化易损斑块与稳定斑块的鉴别与检出方法:
动脉粥样硬化的发病机制可能是由于动脉粥样硬化脂质浸润学说,动脉粥样硬化脂质浸润学说的提出是因为斑块中的脂质沉积以及炎性细胞浸润(巨噬细胞),认为这是血液中脂质水平增高而渗透到血管壁内所致。
制备过程的发明构思如图1所示:主要包括1.材料靶向巨噬细胞(纳米材料易被巨噬细胞吞噬、有靶向巨噬细胞的高分子/靶向分子);2.材料通过巨噬细胞主动进入斑块内部(不同斑块速度不一:巨噬细胞进入稳定斑块慢、巨噬细胞进入易损斑块快);3.磁性纳米复合材料具有分散时MRI T1增强性能,团聚时具有MRI T2增强性能。因此,根据巨噬细胞进入稳定/易损斑块的速率不同,成像不同MRI增强性能的特点,实现动脉粥样硬化斑块的鉴别与检出。
而本发明基于巨噬细胞集中于易损斑块(炎性细胞浸润),利用巨噬细胞容易吞噬磁性纳米粒子,同时在磁性纳米粒子表面修饰靶向巨噬细胞的高分子或靶向分子,利用巨噬细胞浸润(集中)易损斑块的特性提高纳米材料进入巨噬细胞的效率;且本发明中磁性纳米复合材料的MRI T1增强功能,动脉粥样硬化斑块能够在注射造影剂的1~4小时内呈现MRI T1高信号,而如果是稳定斑块,则持续呈现MRI T1高信号,如果是不稳定(易损)斑块,由于炎性细胞浸润显著,使得磁性纳米材料持续被携带进入斑块内,造影剂材料在斑块内部团聚,从而在6~24小时内呈现MRI T2高信号,从而从临床角度实现稳定斑块与不稳定(易损)斑块的诊断与鉴别。本发明的诊断方法更容易实现动脉粥样硬化易损斑块与稳定斑块的鉴别与检出。
本申请得第四个方面,提供了一种造影剂,包括上述任一项所述磁性纳米复合材料、上述任一项所述制备方法制备的磁性纳米复合材料中的至少一种。可选地,所述造影剂为MRIT1造影剂和/或MRIT2造影剂。
本申请得第五个方面,提供了一种靶向材料,包括上述任一项所述磁性纳米复合材料、上述任一项所述制备方法制备的磁性纳米复合材料中的至少一种。
本申请得第六个方面,提供了一种药物载体,包括上述任一项所述磁性纳米复合材料、上述任一项所述制备方法制备的磁性纳米复合材料中的至少一种。
本申请能产生的有益效果包括:
(1)所提供的磁性纳米复合材料,具有粒径分布均匀、尺寸可控、水溶性好、生物相容性好等优点;
(2)所提供的磁性纳米复合材料,可用于磁共振成像造影剂、靶向药物以及细胞分离等方面;
(3)所提供的磁性纳米复合材料,具有医学MRI、超声及荧光造影功能,与医学上临床应用的MRI、超声及荧光造影剂相比,造影性能得到显著提高,可用于肿瘤的早期发现和诊断。
(4)所提供的磁性纳米复合材料具备主动靶向能力,亦可作为药物载体释放药物进行治疗,并可提高其对心脑血管疾病(例如动脉粥样硬化斑块的易损性)、肿瘤(例如实体肿瘤)、神经系统疾病(老年痴呆症)、以及器官病变(囊肿)等重大疾病的诊断与治疗,从而显著提高医学检测和治疗效率;
(5)所提供的制备磁性纳米复合材料的方法,采用温和水相体系,方法简单,易于扩大化生产,得到的复合材料具有优良的MRI T1/T2的增强性能,其中r1值可达25mM -1S -1以上,r2值可达90mM -1S -1以上;
(6)金属掺杂提升了材料的MRI T1性能,在同等金属元素浓度的弛豫性能对比中,金属掺杂的材料MRI T1增强性能普遍提高10~20%。
附图说明
图1是本申请磁性纳米复合材料诊断动脉粥样硬化易损斑块原理示意图。
图2是实施例1所得磁性纳米复合材料的透射电镜TEM图。
图3是实施例2所得磁性纳米复合材料的X射线衍射XRD图。
图4是实施例1所得磁性纳米复合材料的振动样品磁强计VSM图。
图5是实施例5所得磁性纳米复合材料的动态粒径分布测试图。
图6是实施例6所得磁性纳米复合材料的Zeta电位测试图。
图7是实施例7所得磁性纳米复合材料的MCF-7细胞毒性测试图。
图8是实施例10所得磁性纳米复合材料的裸鼠MRI(动脉粥样硬化斑块)测试图。
图9是实施例11所得磁性纳米复合材料的新西兰兔MRI测试图。
图10是实施例9所得磁性纳米复合材料的荷瘤小鼠(4T1)MRI测试图。
图11是实施例1所得磁性纳米复合材料的纵向弛豫率和横行弛豫率图,其中a为纵向弛豫率,b为横向弛豫率;
图12是实施例1所得磁性纳米复合材料的MRI T1信号测试图,其中,1为对比例3样品成像,2为实施例1样品成像;
图13为是实施例1所得磁性纳米复合材料的MRI T2信号测试图,其中,1对应浓度为6mM、2对应浓度为3mM、3对应浓度为1mM。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
其中,羧基-PEG-氨基购自魅罗科技有限公司公司的040103型号;
氨基化透明质酸购自西安瑞禧生物科技有限公司公司的5K型号;
羧基葡聚糖购自瑞典TdB公司公司的Carboxymethyl-dextrans型号;
聚丙烯酸购自上海阿拉丁生化科技股份有限公司公司的9003-01-4型号;
羧基聚乙二醇购自西格玛奥德里奇(上海)贸易有限公司公司的14569型号;
交联葡聚糖购买自上海源叶生物科技有限公司公司的2000-HR型号;
F4/80购自艾博抗(上海)贸易有限公司公司的ab90247型号;
胶原结构巨噬细胞受体(MARCO)购自上海柯雷生物科技有限公司公司的KL-CDB-5096型号。
通用测试方法:
水分散性测试
测试仪器:Malvern Nano-ZS型动态光散射粒度仪,测试条件:散射角173 °
XRD
测试仪器:Brueckner D8 Advance X射线衍射仪;测试条件:Cu Kα靶(40kV,40mA),步长0.02°(2θ),3s/步。
TEM
测试仪器:JEOL-2100型透射电子显微镜;测试条件:200Kv,101μA;且待测纳米粒子分散于水中进行测试。
MRI的T1信号及成像测试
飞利浦Philips ingenia 1.5T磁共振成像仪;
测试条件为T 1:TR=200ms,TE=18.125ms,T 2:TR=4000ms,TE=50ms。
MRI的T2加权信号及成像测试
飞利浦Philips ingenia 1.5T磁共振成像仪;
测试条件为T 1:TR=200ms,TE=18.125ms,T 2:TR=4000ms,TE=50ms。
MRI弛豫率测量
测试仪器:MesoMR23-060H-I核磁共振分析与成像系统;
测试条件为T 1:TR=200ms,TE=18.125ms,T 2:TR=4000ms,TE=50ms。
MRI动物活体成像检测
测试仪器:飞利浦Philips ingenia 1.5T磁共振成像仪;
测试条件为T 1:TR=200ms,TE=18.125ms,T 2:TR=4000ms,TE=50ms。
实施例1 样品1 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在65℃、500rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的Fe 3O 4复合纳米颗粒。
5、将步骤4中的反应溶液悬蒸浓缩得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(100mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例2 样品2 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至85℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在85℃、500rpm转速搅拌条件下继续反应2h,获得羧基-PEG-氨基改性的γ-Fe 2O 3复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的γ-Fe 2O 3复合材料混合液。
6、取10mL步骤5得到的γ-Fe 2O 3复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用乙醇洗涤3次,最后溶于等量水溶液中,得到γ-Fe 2O 3@羧基-PEG-氨基@透明质酸。
实施例3 样品3 #的制备
1、将4.325g FeCl 3.6H 2O、2.386g FeCl 2.4H 2O和0.58g ZnSO 4.7H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在65℃、500rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的Zn 0.2Fe 2.8O 4掺杂型复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁加锌元素浓度为15mg/ml的Zn 0.2Fe 2.8O 4复合材料混合液。
6、取10mL步骤5得到的Zn 0.2Fe 2.8O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(100mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Zn 0.2Fe 2.8O 4@羧基-PEG-氨基@透明质酸。
实施例4 样品4 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓盐酸溶液(12ml,12M),标记为混合液A;
2、往混合液A中快速加入50mg交联葡聚糖粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至50℃,并通入Ar保护,逐滴加入氢氧化钠(500ml,体积百分含量=8%),调整pH值至11,溶液迅速变黑;
4、在50℃、500rpm转速搅拌条件下继续反应1h,获得交联葡聚糖改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入胶原样巨噬细胞受体(20mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Fe 3O 4@交联葡聚糖@MARCO。
实施例5 样品5 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加柠檬酸溶液(20ml,4M),标记 为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入N 2气保护,逐滴加入氢氧化钠(500ml,体积百分含量=8%),调整pH值至11,溶液迅速变黑;
4、在65℃、500rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在37℃下,500rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例6 样品6 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓盐酸溶液(12ml,12M),标记为混合液A;
2、往混合液A中快速加入40mg羧基葡聚糖粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入N 2气保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在65℃、500rpm转速搅拌条件下继续反应1h,获得羧基葡聚糖改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用5000的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Fe 3O 4@羧基葡聚糖@透明质酸。
实施例7 样品7 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入10ml(2mM)聚丙烯酸溶液,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至50℃,并通入Ar保护,逐滴加入氢氧化钠(500ml,体积百分含量=8%),调整pH值至11,溶液迅速变黑;
4、在50℃、350rpm转速搅拌条件下继续反应2h,获得聚丙烯酸改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3000的透析袋对浓缩液透析48h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入F4/80(20μg)在25℃下,300rpm转速下搅拌反应12h,得到反应混合液。
7、12000rpm离心30min,重悬沉淀得到Fe 3O 4@PAA@F4/80纳米复合材料。
实施例8 样品8 #的制备
1、将4.325g FeCl 3.6H 2O和3.337g FeSO 4.7H 2O混合溶于300mL水中;滴加浓硫酸溶液(8ml,18M),标记为混合液A;
2、往混合液A中快速加入80mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氢氧化钠(500ml,体积百分含量=15%)溶液,调整pH值至11,溶液迅速变黑;
4、在65℃、600rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用5000的透析袋对浓缩液透析24h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量150mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、10000rpm离心30min,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例9 样品9 #的制备
1、将4.325g FeCl 3.6H 2O和3.337g FeSO 4.7H 2O混合溶于300mL水中;滴加浓盐酸溶液(12ml,12M),标记为混合液A;
2、往混合液A中快速加入55mg羧基-PEG-氨基粉末,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至10,溶液迅速变黑;
4、在室温、500rpm转速搅拌条件下继续反应3h,获得改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用5000的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在室温下,350rpm转速下搅拌反应2h,得到反应混合液。
7、用磁力分离,用水洗涤3次,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例10 样品10 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓盐酸溶液(10ml,12M),标记为混合液A;
2、往混合液A中快速加入70mg羧基聚乙二醇粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至12,溶液迅速变黑;
4、在65℃、400rpm转速搅拌条件下继续反应2h,获得羧基聚乙二醇改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量120mg)在30℃下,500rpm转速下搅拌反应2h,得到反应混合液,并经220μm的过滤器过滤得到复合材料。。
7、10000rpm离心30min,得到Fe 3O 4@羧基聚乙二醇@透明质酸。
实施例11 样品11 #的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓盐酸溶液(18ml,12M),标记为混合液A;
2、往混合液A中快速加入50mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至55℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在55℃、300rpm转速搅拌条件下继续反应2h,获得羧基-PEG-氨基改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量90mg)在室温下,350rpm转速下搅拌反应2h,得到反应混合液。
7、8000rpm离心20min,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例12 样品12#的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在65℃、500rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的Fe 3O 4复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁浓度为15mg/ml的Fe 3O 4复合材料混合液。
6、取10mL步骤5得到的Fe 3O 4复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在25℃下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用磁力分离,用水洗涤3次,得到Fe 3O 4@羧基-PEG-氨基@透明质酸。
实施例13 样品13#的制备
1、将4.325g FeCl 3.6H 2O和2.386g FeCl 2.4H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、向混合液A中加入氨基化透明质酸(HA-NH 4+)(160mg),得到混合液B,迅速将混合液B的温度升至65℃,并通入Ar保护,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变黑;
4、在65℃、600rpm转速搅拌条件下继续反应1h,得到含有Fe 3O 4@透明质酸的混合液。
5、将步骤4)得到的混合液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得Fe 3O 4@透明质酸
实施例14 样品14#的制备
1、4.772g FeCl 2.4H 2O混合溶于300mL水中;滴加浓硝酸溶液(9ml,16M),标记为混合液A;
2、往混合液A中快速加入60mg羧基-PEG-氨基粉末,并迅速混匀,标记为混合液B;
3、迅速将混合液B的温度升至30℃,并通入空气流以提供氧气,逐滴加入氨水溶液(500ml,体积百分含量=20%),调整pH值至11,溶液迅速变橙黄色;
4、在30℃、200rpm转速搅拌条件下继续反应1h,获得羧基-PEG-氨基改性的FeOOH复合纳米颗粒。
5、将反应溶液悬蒸浓缩,得到浓缩液,使用3500的透析袋对浓缩液透析72h,得到铁元素浓度为15mg/ml的FeOOH复合材料混合液。
6、取10mL步骤5得到的FeOOH复合材料混合液,加入氨基化透明质酸(HA-NH 4+)(透明质酸质量100mg)在室温下,300rpm转速下搅拌反应2h,得到反应混合液。
7、使用离心分离(10000rpm,30min),得到FeOOH@羧基-PEG-氨基@透明质酸。
对比例1 样品15#的制备
1、将1g FeCl 3.6H 2O和0.6g FeCl 2.4H 2O混合溶于100mL水中;逐滴加入氨水溶液(50ml),调整pH值至12,溶液迅速变黑,标记为混合液A;
2、往混合液A中加入500mg meso-2,3-二巯基丁二酸(DMSA),均匀搅拌24小时,标记为混合液B;
3、将2mg(10mg/mL)EDC和3mg(10mg/mL)sulfo-NHS混合溶于10ml(1mg/mL)混合液B中,混合搅拌45min,标记为混合液C;
4、往混合液C中滴入预先标记Cy5.5的0.4ml OPN抗体水溶液(25mg/mL),反应混合物在4℃下持续搅拌12h,标记为混合液D;
5、强磁铁磁分离混合液D取沉淀,用去离子水洗涤5-8次;
对比例2 样品16#的制备
1、将27.03g FeCl 3·6H 2O和13.9g FeSO 4·7H 2O溶于100mL去离子水中,通入N 2气保护并加入浓氨水溶液,调节pH值至11;
2、保持反应温度为70℃,反应持续5min,得到Fe 3O 4纳米粒子;
3、将油酸(OA,6ml)缓慢添加到Fe 3O 4溶液中,反应30min后升温至85℃继续反应1h,冷却至室温。
4、磁分离收集黑色沉淀物,用去离子水和乙醇仔细清洗几次;
5、Fe 3O 4-OA纳米粒子溶于100ml正己烷中。将Fe 3O 4-OA(240mg)和meso-2,3-二巯基丁二酸(DMSA,120mg)溶于120ml丙酮和正己烷(体积比为1:1)的混合溶液中,60℃搅拌4h;
6、磁分离收集DMSA-Fe 3O 4纳米粒子,用去离子水洗涤数次,然后溶解在20毫升去离子水中,保存备用。
对比例3 样品17#的制备
1、称取0.5406g六水氯化铁和0.2982g四水氯化亚铁,在室温磁力搅拌下,将其溶解到40mL去离子水溶液中,得到溶液A待用;
2、将20mL 0.2M的NaOH溶液加入溶液A中,在70℃下,磁力搅拌1h;
3、用去离子水将上述反应液磁分离洗涤4次,得到约0.22g第一铁氧体;
4、将步骤(3)所得第一铁氧体1溶于90mL去离子水溶液中;
5、量取10mL冰乙酸(浓度≥99.5%)加入步骤(4)所得反应液中,在60℃下震荡5h,接着静置24h后在90℃下磁力搅拌2h,得到约0.20g磁性纳米粒子1;
6、在步骤(5)所得产物中加入20ml的含40mg聚乙二醇的水溶液,超声分散20min,并机械搅拌反应4h,制得约0.22g复合磁性纳米粒子1。
实施例I 样品的透射电镜分析结果
分别采用透射电子显微镜对各样品进行了分析,其中典型代表为样品1#,其透射电镜TEM图如图2所示,结果显示:磁性纳米材料的粒径均在3至6nm之间,而磁性复合纳米材料(样品1#)粒径在60~90nm之间,且70%的所述磁性复合纳米材料的粒径位于±20%的所述磁性复合纳米材料的D50范围内,该粒径范围符合巨噬细胞吞噬的基本条件。其他实施例形貌图与样品1#相似,具体粒径参数见表1。
实施例II 样品的物相分析结果
分别X射线衍射仪对各样品进行了分析,结果显示:样品均具有晶相结构。典型代表如样品2#(γ-Fe 2O 3纳米粒子),其XRD图如图3所示,由图可以看出,XRD的数据显示,γ-Fe 2O 3纳米粒子属于反尖晶石结构。
实施例III 样品的振动样品磁强计分析结果
分别对各样品进行了分析,其中典型代表为样品1#,其VSM图如图4所示:由于材料粒径相对较小,饱和磁化强度不太高(43emu/g),但由于该材料属于MRI T1增强对比材料,因此对饱和磁化强度的要求不太高。
实施例IV 样品的动态粒径分析结果
分别对各样品进行了分析,其中典型代表为样品5#,如图5所示,经分析,样品5#的动态粒径均在140nm左右,其他实施例样品的动态粒径在90~180nm左右。但该结果比TEM所观察到的粒径大,这是因为动态光散射检测的是水合粒径,因此结果会偏大。
实施例V 样品的Zeta电位测试结果
分别对各样品进行了分析,其中典型代表为样品6#,如图6所示,电位测试的结果显示,样品6#的Zeta电位都在-33.4mV左右,证明材料非常稳定,能够长期保存。其他实施例样品测试结果与样品6#一致。
实施例VI 样品的MCF-7细胞毒性测试结果
分别对各样品进行了分析,其中典型代表为样品7#,如图7所示,样品7#的毒性测试可以看出,材料在0~0.5毫克/毫升的浓度范围内,细胞存活率较高,都保持在90%以上。说明材料细胞毒性低。其中,与钆喷酸葡胺(市售药品)相比,样品仍然显示相对更优的细胞毒性结果,其他实施例样品测试结果与样品7#一致。
实施例VII 样品的高脂高糖饲养的ApoE小鼠MRI测试结果
分别对各样品进行了分析,其中典型代表为样品8#,如图8所示,材料配置成铁元素浓度为10mg/mL水溶液,尾静脉注射入小鼠体内进行循环,在注射2小时后,可以看到斑块较注射前变亮,说明了材料已经通过巨噬细胞进入斑块,T1加权成像增强的效果好;而在注射6小时后,T1信号降低,说明材料进入斑块较多,或产生团聚效应, T2信号增强。本申请实施例提供的其他样品也具有与样品8#相似结果,其中实施例3的样品在相对低浓度的时候呈现T1增强性能,而在相对高浓度(材料团聚的时候),更利于区别稳定斑块与易损斑块(其中巨噬细胞进入稳定斑块少,速度慢,相对的进入稳定斑块的Fe 3O 4纳米颗粒就少,此时呈现T1增强,信号变亮,而巨噬细胞进入易损斑块的速度快,相对的进入易损斑块的Fe 3O 4纳米颗粒就多,此时呈现T2增强,信号变暗);而对比例1提供的样品是典型的MRI T2造影剂材料,只能够使目标病灶部位变暗,无法鉴别稳定斑块与易损斑块;而且对比例1样品没有被巨噬细胞吞噬的靶向配体,因此进入斑块的效率较低,对比例2提供的样品类似于对比例1,它无法提供T1/T2转变模式,因此很难区分稳定斑块与易损斑块,且进入斑块的效率同样很低;对比例3提供的样品是典型的MRI T1造影剂材料,首先该样品没有巨噬细胞靶向功能,进入斑块的效率较低,其次,该样品只有MRI T1效果,而没有材料聚集(高浓度)之后的MRI T2增强效果,同样无法区分稳定斑块与易损斑块。
实施例VIII 样品的新西兰兔MRI测试结果
分别对各样品进行了分析,其中典型代表为样品11#,如图9所示,材料配置成铁元素浓度为10mg/mL水溶液,尾静脉注射入小鼠体内进行循环,结果在1h之内,检测到小鼠肝脏部位的暗性区域,推断由于囊肿没有炎症发生,磁性纳米复合材料无法进入该区域,因此显示低信号,小鼠经解剖后确认为自发性肝脏囊肿。本申请实施例提供的其他样品也具有与样品11#相似结果,其中实施例11中的材料由于有巨噬细胞靶向作用,有一部分材料也会被肝脏的kupffer细胞(巨噬细胞的一种)吞噬,因此有实体器官的显影效果,而对比例1及对比例2是由DMSA改性的氧化铁纳米颗粒,分子量较小,一般只能作为血池造影剂使用,因此不会进入肝脏,而是通过肾脏排泄,它的血液滞留能力较弱(只能在血液中停留短暂的时间),所以无法作为肝脏的造影剂使用。对比例3中,只有T1显影功能,因此相对于本申请的样品,在复杂的肝脏以及其他实体器官的显影中,应用度没有本样品的广。
实施例IX 样品的荷瘤小鼠(4T1)MRI测试结果
分别对各样品进行了分析,其中典型代表为样品9#,如图10所示,材料配置成铁元素浓度为10mg/mL水溶液,尾静脉注射入小鼠体内进行循环,结果在15分钟之内,检测到小鼠4T1肿瘤部位呈现MRI T1高信号。本申请实施例提供的其他样品也具有与样品11#相似结果,其中实施例9中的材料由于EPR效应,能够很快渗透进入肿瘤组织,从而进行显影。而对比例1及对比例2是由DMSA改性的氧化铁纳米颗粒,分子量较小,一般只能作为血池造影剂使用,更侧重在血管方面的成像。对比例3中的样品,由于T1的弛豫率较低,肿瘤部位与正常组织的对比度,无法与本申请的各类样品媲美。
MRI弛豫率测量
分别对各样品进行了分析,具体结果参见表1。其中典型代表为样品1#,如图11所示:纵向弛豫率r1=27.79mM -1s -1,横向弛豫率r2=93.97mM -1s -1,纵向弛豫率远超对比例3的2.45。而对比例1和对比例2则属于明显的MRI T2造影剂。
MRI T1加权信号
分别对各样品进行了分析,分析时,将各样品分别制成0.3mM的水溶液采用飞利浦磁共振仪(Philips ingenia1.5T)分别进行MRI T1加权信号测试,测试结果参见表1。将各样品分别制成3mM的水溶液采用飞利浦磁共振仪(Philips ingenia 1.5T)分别进行MRI T2加权信号测试,测试结果参见表1。
其中典型代表为样品1#,如图12所示:对比例3对应的灰度值为1572,样品1#对应的灰度值为2035,市售钆喷酸葡胺对应的灰度值为1806。其他各实施例对应的灰度值参照表1,可以证明本申请实施例提供的样品的灰度值最高,对比效果最为明显。而对比例1和2没有MRI T1效果,不作比较。
如图13所示,不同浓度的样品1#MRI T2信号测试:1号为在浓度为6mM时,呈现较强的MRI T2暗信号,2号为浓度为3mM时,具有一部分MRI T2暗信号,而在3号浓度为1mM时,没有MRI T2信号(灰度值<600),说明高浓度或样品团聚的时候,具备MRI T2信号增强功能。
表1各样品性能参数表
Figure PCTCN2021082767-appb-000001
Figure PCTCN2021082767-appb-000002
由表1可见,本申请提供的磁性纳米复合材料样品的MRI T1加权信号均>1800,最高(实施例3)可达2141,本申请提供的材料作为MRIT1造影剂使用时造影性能显著提高,可以实现肿瘤的早期发现和诊断,显著提高医学检测和治疗效率;而对比例3提供的样品在相同条件下仅能达到1572,当作为MRIT1造影剂使用时,存在在分辨率低,区分度不明显等问题,无法精准区别斑块、肿瘤等普通病灶部位;而对比例1及对比例2只能呈现MRI T2增强效果,对于某些钙化部位区分度差,同时MRI T2增强模式也可能会造成假阳性等效果。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (22)

  1. 一种磁性纳米复合材料,其特征在于,包括磁性纳米粒子和包覆在所述磁性纳米粒子外的亲水化合物层;
    所述磁性纳米粒子为铁的氧化物;
    所述磁性纳米粒子的粒径为0.1~20nm,所述磁性纳米复合材料的粒径为0.5~300nm;
    所述磁性纳米复合材料的纵向弛豫率r 1≥20mM -1s -1
  2. 根据权利要求1所述的磁性纳米复合材料,其特征在于,以铁元素的摩尔浓度计,当所述磁性纳米复合材料的水溶液浓度为0.3mmol/L时,MRI T1加权信号≥1800;
    当所述磁性纳米复合材料的水溶液浓度≥3mmol/L时,存在MRI T2加权信号。
  3. 根据权利要求1所述的磁性纳米复合材料,其特征在于,所述磁性纳米粒子中掺杂有金属M,所述金属M选自Gd、Mn、Zn、Co和Ni中的至少一种;
    所述磁性纳米粒子的化学通式为M xFe 3-xO y,其中0<x≤0.5,y的取值根据金属化合价及原子数量确定。
  4. 根据权利要求1所述的磁性纳米复合材料,其特征在于,所述亲水化合物层包括第一亲水化合物层和包覆在所述第一亲水化合物层外的第二亲水化合物层;
    所述第一亲水化合物层为含有羟基、磺酸基、氨基、羧基或巯基的化合物,所述含有羟基、磺酸基、氨基、羧基或巯基的化合物选自聚丙烯酸、聚乙二醇衍生物、葡聚糖衍生物、壳聚糖衍生物、柠檬酸衍生物、交联葡聚糖、透明质酸衍生物中的至少一种;
    所述第二亲水化合物层为巨噬细胞吞噬化合物,所述巨噬细胞吞噬化合物选自透明质酸、透明质酸衍生物、聚乙二醇、聚乙二醇衍生物、甘露醇、甘露糖、交联葡聚糖、葡聚糖、葡聚糖衍生物、脂质体、聚丙烯酸、聚氧乙烯-聚氧丙烯-聚氧乙烯、聚氧代乙烯(5)壬基苯基醚、二乙烯三胺五乙酸、多肽、葡甲胺、精氨酸、聚谷氨酸、二巯基丁二酸、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的至少一种。
  5. 根据权利要求1所述的磁性纳米复合材料,其特征在于,所述的磁性纳米复合材料还包括位于所述亲水化合物层外表面的靶向分子层;
    所述靶向分子层包含N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸、N-甲酰-L-甲硫氨酰-L-亮氨酰-L-苯丙氨酸三肽、人整合素αM型、大鼠单克隆抗体[F4/80]、胶原样巨噬细胞受体、骨桥蛋白、前纤维蛋白-1、选择素-E单克隆抗体中的至少一种;
    所述亲水化合物层为含有氨基、羧基或巯基的化合物;
    所述含有氨基、羧基或巯基的化合物选自聚丙烯酸、聚乙二醇衍生物、葡聚糖衍生物、壳聚糖衍生物、柠檬酸衍生物中的至少一种。
  6. 根据权利要求4所述的磁性纳米复合材料,其特征在于,所述磁性纳米粒子选自Fe 3O 4、γ-Fe 2O 3、FeOOH、化学通式为Zn 0.2Fe 2.8O 4的化合物中的至少一种,粒径为1~6nm;
    所述亲水化合物层包括第一亲水化合物层和包覆在所述第一亲水化合物层外的第二亲水化合物层;
    所述第一亲水化合物层选自羧基-PEG-氨基、羧基葡聚糖、羧基聚乙二醇中的至少一种,所述第二亲水化合物层为透明质酸衍生物。
  7. 根据权利要求1所述的磁性纳米复合材料,其特征在于:
    所述磁性纳米粒子为Fe 3O 4,粒径为1~6nm;所述亲水化合物层为透明质酸衍生物。
  8. 根据权利要求5所述的磁性纳米复合材料,其特征在于:
    所述磁性纳米粒子为Fe 3O 4,粒径为2~6nm;
    所述亲水化合物层为聚丙烯酸或交联葡聚糖;
    所述靶向分子为大鼠单克隆抗体[F4/80]或胶原样巨噬细胞受体。
  9. 权利要求1~8任一项所述磁性纳米复合材料的制备方法,其特征在于,包括:
    1)向含有酸的铁盐溶液中加入亲水性化合物,得到混合液I;
    2)对所述混合液I进行反应,得到所述磁性纳米复合材料。
  10. 根据权利要求9所述的磁性纳米复合材料的制备方法,其特征在于,步骤1)中所得混合液I的pH值为2~5。
  11. 根据权利要求9所述的磁性纳米复合材料,其特征在于,步骤1)中所述含有酸的铁盐溶液中的溶剂为水;
    步骤1)中所述含有酸的铁盐溶液中的酸为盐酸、硝酸、硫酸、柠檬酸中的至少一种;
    步骤1)中所述含有酸的铁盐溶液中的铁盐为铁的二价水溶性盐、铁的三价水溶性盐中至少一种;
    步骤1)中所述含有酸的铁盐溶液中的铁盐的摩尔浓度为0.005~0.5M。
  12. 根据权利要求9所述的磁性纳米复合材料,其特征在于,步骤1)所述含有酸的铁盐溶液中还含有金属M盐;
    金属M选自Gd、Mn、Zn、Co和Ni中的至少一种;
    以金属原子的摩尔量计,所述含有酸的铁盐溶液中铁的摩尔量与金属M的摩尔量的比值大于5:1。
  13. 根据权利要求12所述的磁性纳米复合材料,其特征在于,步骤1)所述金属M盐选择硝酸钆、硫酸锰、七水合硫酸锌、四水硫酸锰、七水硫酸钴、六水硫酸镍中的至少一种。
  14. 根据权利要求9所述的磁性纳米复合材料,其特征在于,步骤2)中对所述混合液I进行反应,得到所述磁性纳米复合材料,包括:
    2-1)对所述混合液I进行反应,分离,得到含有改性磁性纳米粒子的混合液II;
    2-2)向所述混合液II中加入靶向分子或另一亲水性化合物,反应,得到所述磁性纳米复合材料。
  15. 根据权利要求14所述的磁性纳米复合材料,其特征在于,所述混合液I中加入的亲水性化合物的质量为所述铁盐质量的1%~10%,其中,所述铁盐质量以铁元素质量计。
  16. 根据权利要求14所述的磁性纳米复合材料,其特征在于,所述混合液II中所述改性磁性纳米粒子的含量为10~20mg/mL;
    所述混合液II中加入的靶向分子的质量为所述改性磁性纳米粒子质量的0.013%~15%;
    所述混合液II中加入的另一亲水性化合物的质量为所述改性磁性纳米粒子质量的20~80%;
    其中,所述改性磁性纳米粒子质量均以铁元素质量计。
  17. 根据权利要求14所述的磁性纳米复合材料,其特征在于,步骤2-1)中的反应条件具体包括:
    在搅拌条件下进行反应,搅拌速率为300~600rpm、搅拌时间为0.2~10h;
    反应温度为30~85℃;
    反应pH值为10~12。
  18. 根据权利要求14所述的磁性纳米复合材料,其特征在于,步骤2-2)中的反应条件具体包括:
    在搅拌条件下进行反应,搅拌速率为300~600rpm、搅拌时间为2~48h;
    反应温度为0~40℃。
  19. 权利要求1~8任一项所述磁性纳米复合材料、权利要求9至18任一项所述制备方法制备的磁性纳米复合材料中的至少一种在造影剂、炎性细胞引发的疾病的靶向材料或药物载体中的应用。
  20. 一种造影剂,其特征在于,包括权利要求1~8任一项所述磁性纳米复合材料、权利要求9至18任一项所述制备方法制备的磁性纳米复合材料中的至少一种。
  21. 一种靶向材料,其特征在于,包括权利要求1~8任一项所述磁性纳米复合材料、权利要求9至18任一项所述制备方法制备的磁性纳米复合材料中的至少一种。
  22. 一种药物载体,其特征在于,包括权利要求1~8任一项所述磁性纳米复合材料、权利要求9至18任一项所述制备方法制备的磁性纳米复合材料中的至少一种。
PCT/CN2021/082767 2020-03-23 2021-03-24 一种磁性纳米复合材料及其制备方法与应用 WO2021190573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010208781.9 2020-03-23
CN202010208781.9A CN111330023B (zh) 2020-03-23 2020-03-23 一种磁性纳米复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021190573A1 true WO2021190573A1 (zh) 2021-09-30

Family

ID=71174713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082767 WO2021190573A1 (zh) 2020-03-23 2021-03-24 一种磁性纳米复合材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN111330023B (zh)
WO (1) WO2021190573A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114010618A (zh) * 2021-11-16 2022-02-08 吉林大学 一种在水溶液中制备的铁/寡肽复合物包覆的羟基氧化铁纳米梭及其制备方法
CN114848840A (zh) * 2022-03-24 2022-08-05 北京福纳康生物技术有限公司 修饰的铁基纳米材料、铁基纳米脂质体及其抗肿瘤的应用
CN117517650A (zh) * 2023-12-08 2024-02-06 中国检验检疫科学研究院 一种功能化介孔磁性微球及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330023B (zh) * 2020-03-23 2023-01-31 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 一种磁性纳米复合材料及其制备方法与应用
CN112274657B (zh) * 2020-09-17 2022-04-01 浙江大学 一种t1-t2双模态超高场磁共振造影剂及其制备方法和应用
CN112603997A (zh) * 2020-11-19 2021-04-06 中国科学院大学宁波华美医院 一种亲水性的掺锌磁性纳米材料及其制备方法和在生物医学方面的应用
CN112569364A (zh) * 2020-12-17 2021-03-30 南京大学 一种β-葡聚糖偶联超顺磁纳米氧化铁颗粒及其制备方法和应用
CN114053966A (zh) * 2021-03-04 2022-02-18 中国科学院宁波材料技术与工程研究所 一种亲水性磁性纳米材料及其制备方法与应用
CN114306650B (zh) * 2022-01-21 2022-12-06 南方医科大学 一种磁性四氧化三铁纳米粒及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155844A (zh) * 1994-08-04 1997-07-30 柏林弗赖恩大学诊断研究学院有限公司 具有双涂层的含铁纳米级颗粒及其在诊断和治疗中的应用,
US8236284B1 (en) * 2008-04-02 2012-08-07 University Of Central Florida Research Foundation, Inc. Multimodal, multifunctional polymer coated nanoparticles
CN106913885A (zh) * 2015-12-28 2017-07-04 中国科学院宁波材料技术与工程研究所 一种磁性纳米粒子及其制备方法和应用
CN109675065A (zh) * 2018-12-20 2019-04-26 上海交通大学 用于t1和t2磁共振双模态造影的纳米磁珠及其制备方法
CN110496970A (zh) * 2018-05-16 2019-11-26 中国科学院宁波材料技术与工程研究所 一种复合纳米材料、其制备方法及其应用
CN111330023A (zh) * 2020-03-23 2020-06-26 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种磁性纳米复合材料及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286347B1 (ko) * 2011-12-23 2013-07-15 성균관대학교산학협력단 덱스트란 설페이트를 포함하는 블록공중합체로 도포된 산화철 복합 나노입자, 이의 제조방법 및 이를 포함하는 동맥경화 진단용 조영제
CN104758956B (zh) * 2015-04-03 2017-12-12 国家纳米科学中心 一种肿瘤靶向的t1‑t2双核磁共振成像造影剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155844A (zh) * 1994-08-04 1997-07-30 柏林弗赖恩大学诊断研究学院有限公司 具有双涂层的含铁纳米级颗粒及其在诊断和治疗中的应用,
US8236284B1 (en) * 2008-04-02 2012-08-07 University Of Central Florida Research Foundation, Inc. Multimodal, multifunctional polymer coated nanoparticles
CN106913885A (zh) * 2015-12-28 2017-07-04 中国科学院宁波材料技术与工程研究所 一种磁性纳米粒子及其制备方法和应用
CN110496970A (zh) * 2018-05-16 2019-11-26 中国科学院宁波材料技术与工程研究所 一种复合纳米材料、其制备方法及其应用
CN109675065A (zh) * 2018-12-20 2019-04-26 上海交通大学 用于t1和t2磁共振双模态造影的纳米磁珠及其制备方法
CN111330023A (zh) * 2020-03-23 2020-06-26 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种磁性纳米复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN BO , GU NING: "Current Status and Development of Pharmaceutical Iron Based Nanomaterials", MATERIALS CHINA, vol. 36, no. 3, 7 April 2017 (2017-04-07), pages 211 - 218, XP055853607, ISSN: 1674-3962, DOI: 10.7502/j.issn.1674-3962.2017.03.08 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114010618A (zh) * 2021-11-16 2022-02-08 吉林大学 一种在水溶液中制备的铁/寡肽复合物包覆的羟基氧化铁纳米梭及其制备方法
CN114010618B (zh) * 2021-11-16 2023-10-27 吉林大学 一种在水溶液中制备的铁/寡肽复合物包覆的羟基氧化铁纳米梭及其制备方法
CN114848840A (zh) * 2022-03-24 2022-08-05 北京福纳康生物技术有限公司 修饰的铁基纳米材料、铁基纳米脂质体及其抗肿瘤的应用
CN114848840B (zh) * 2022-03-24 2023-08-29 北京福纳康生物技术有限公司 修饰的铁基纳米材料、铁基纳米脂质体及其抗肿瘤的应用
CN117517650A (zh) * 2023-12-08 2024-02-06 中国检验检疫科学研究院 一种功能化介孔磁性微球及其制备方法和应用
CN117517650B (zh) * 2023-12-08 2024-05-28 中国检验检疫科学研究院 一种功能化介孔磁性微球及其制备方法和应用

Also Published As

Publication number Publication date
CN111330023B (zh) 2023-01-31
CN111330023A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021190573A1 (zh) 一种磁性纳米复合材料及其制备方法与应用
Salehipour et al. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents
Shokrollahi Contrast agents for MRI
JP5765520B2 (ja) 磁性粒子含有水分散体の製造方法
Li et al. Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications
Xie et al. Doxorubicin-loaded Fe 3 O 4@ MoS 2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer
Huang et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging
EP0525199B1 (en) Composition containing ultrafine particles of magnetic metal oxide
US7396589B2 (en) Core-shell magnetic nanoparticles comprising an inner-transition element
Zhang et al. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors
CN110496970B (zh) 一种复合纳米材料、其制备方法及其应用
JP2014511324A (ja) 親水性物質でコーティングされた酸化鉄ナノ粒子の調製方法、及び酸化鉄ナノ粒子を含む磁気共鳴画像造影剤
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
Liang et al. Ultrasmall gadolinium hydrated carbonate nanoparticle: an advanced T 1 MRI contrast agent with large longitudinal relaxivity
US20230087639A1 (en) Biogenic hemin-based mri contrast agents, and compositions and methods thereof
CN108392642B (zh) 一种含氧化钆的纳米粒子磁共振成像造影剂及其制备方法和应用
Yang et al. Improving the sensitivity of T1 contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons
JP2015519302A (ja) 磁性ナノ粒子分散剤、その調製及び診断及び治療用途
Yang et al. Synthesis of water well-dispersed PEGylated iron oxide nanoparticles for MR/optical lymph node imaging
Li et al. Designing smart iron oxide nanoparticles for MR imaging of tumors
WO2018033165A1 (zh) 一种高分子-金属氧化物复合物及其制备方法与应用
JP2014156411A (ja) 複合磁性微粒子粉末、分散体
JP2014156368A (ja) 複合磁性微粒子粉末、分散体
US20060120964A1 (en) Magnetic nanoparticles and method of fabrication
EP2942064B1 (en) Mri contrast agent including t1 contrast material coated on surface of nanoparticle support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776577

Country of ref document: EP

Kind code of ref document: A1