CN103280460A - 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法 - Google Patents

注入形成具有叠加漂移区的高压pmos晶体管及其制造方法 Download PDF

Info

Publication number
CN103280460A
CN103280460A CN2013101942655A CN201310194265A CN103280460A CN 103280460 A CN103280460 A CN 103280460A CN 2013101942655 A CN2013101942655 A CN 2013101942655A CN 201310194265 A CN201310194265 A CN 201310194265A CN 103280460 A CN103280460 A CN 103280460A
Authority
CN
China
Prior art keywords
drift region
stack
oxide layer
trap
dark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101942655A
Other languages
English (en)
Other versions
CN103280460B (zh
Inventor
韩成功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Silergy Semiconductor Technology Ltd
Original Assignee
Hangzhou Silergy Semiconductor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silergy Semiconductor Technology Ltd filed Critical Hangzhou Silergy Semiconductor Technology Ltd
Priority to CN201310194265.5A priority Critical patent/CN103280460B/zh
Publication of CN103280460A publication Critical patent/CN103280460A/zh
Priority to TW103113213A priority patent/TWI607568B/zh
Priority to US14/277,245 priority patent/US20140346598A1/en
Application granted granted Critical
Publication of CN103280460B publication Critical patent/CN103280460B/zh
Priority to US16/010,002 priority patent/US11133413B2/en
Priority to US17/458,867 priority patent/US20210391463A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,包括P型硅衬底;位于P型硅衬底中的深N阱;位于深N阱中的水平方向且掺杂浓度和结深按序同时依次递增的叠加漂移区。本发明还提供一种注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,包括提供P型硅衬底;向P型硅衬底中注入N型杂质,以扩散形成深N阱;沿深N阱中的水平方向分别注入不同掺杂浓度的P型杂质,在深N阱的水平方向中依次扩散形成掺杂浓度和结深按序同时依次递增的叠加漂移区。本发明通过用多重漂移区的组合作为高压PMOS的漂移区,使不同的漂移区中的P型杂质注入叠加在高压PMOS的漂移区中可以形成更好的浓度梯度,以使高压PMOS获得更好的击穿电压与导通电阻的特性。

Description

注入形成具有叠加漂移区的高压PMOS晶体管及其制造方法
技术领域
本发明属于半导体装置领域,尤其涉及一种注入形成具有叠加漂移区的高压PMOS晶体管及其制造方法。
背景技术
目前,在集成电路中,可通过普通BCD(Bipolar-CMOS-DMOS)工艺形成可作为功率器件的高压PMOS(HVPMOS)。HVPMOS有四个端口:栅极(Gate),体区(Body),源极(Source)和漏极(Drain)。HVPMOS有一个阈值电压(Vth),当V(sg)(源极电压与栅极电压之差)<Vth时,HVPMOS处于关断状态,起阻挡高压的作用;当V(sg)>Vth时,HVPMOS处于开通状态,可以导通电流。在大多数应用中,HVPMOS起到开关的作用,HVPMOS最重要的参数是击穿电压(BV)和导通电阻(Ron),击穿电压表征这类功率器件在反向电压条件下的耐击穿能力,因此击穿电压越高越好,而这类功率器件通过减少导通电阻来减少功率损耗,因此导通电阻越低越好。
参见图1,结合图2,现有的普通BCD工艺制造高压PMOS的方法为:
S1:提供P型硅衬底(PSUB);
S2:注入N型杂质,扩散形成深N阱(DNWELL):在PSUB上注入N型杂质,扩散形成作为HVPMOS的沟道的DNWELL;
S3:注入P型杂质,扩散形成P阱(PWELL):在DNWELL上注入P型杂质,扩散形成作为HVPMOS的漂移区的PWELL;
S4:氧化层(Oxide)生长:在PSUB表面上生长一覆盖于紧邻的部分DNWELL和部分PWELL上的Oxide;
S5:多晶硅(Poly)垫积:在Oxide上垫积Poly,形成作为HVPMOS的栅极(Gate);
S6:注入P+杂质和N+杂质,分别形成体区(Body)、源极(Source)和漏极(Drain):在未覆盖Oxide的DNWELL中分别注入P+杂质和N+杂质形成Body和Source,在未覆盖Oxide的PWELL中注入P+杂质形成Drain。
然而,由于普通BCD工艺制造HVPMOS采用单一的P型杂质注入扩散形成的PWELL作为漂移区,使得PWELL的注入剂量难以控制,即当PWELL的注入剂量偏高,则击穿电压会下降,当PWELL的注入剂量偏低,则导通电阻会上升。因此,需要在BCD工艺中提出一种新的制造方法获得高性能的HVPOMS。
发明内容
本发明的目的在于提供一种注入形成具有叠加漂移区的高压PMOS晶体管及其制造方法,通过用多重漂移区的组合作为高压PMOS的漂移区,使不同的漂移区中的P型杂质注入叠加在高压PMOS的漂移区中可以形成更好的浓度梯度,以使高压PMOS获得更好的击穿电压与导通电阻的特性。
为了解决上述问题,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,包括:
P型硅衬底;
位于所述P型硅衬底中的深N阱;
位于所述深N阱中的水平方向且掺杂浓度和结深按序同时依次递增的叠加漂移区。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管还包括位于所述叠加漂移区之上的单一氧化层。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管还包括:
位于掺杂浓度和结深同时最小的叠加漂移区表面的单一氧化层上的栅极;
分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及
位于掺杂浓度和结深同时最大的叠加漂移区中且与所述单一氧化层邻接的漏极。
优选的,所述注入形成具有叠加漂移区的高压PMOS晶体管还包括位于所述叠加漂移区之上的叠加氧化层,所述叠加氧化层包括:至少两个单一氧化层,各所述单一氧化层沿所述水平方向依次叠加。
进一步的,各所述单一氧化层的厚度相同,或各所述单一氧化层的厚度沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增而递增。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管还包括:
位于掺杂浓度和结深同时最小的叠加漂移区表面的叠加氧化层上的栅极;
分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及
位于掺杂浓度和结深同时最大的叠加漂移区中且与所述叠加氧化层邻接的漏极。
为了达到本发明的另一方面,还提供一种注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,包括如下步骤:
提供P型硅衬底;
向所述P型硅衬底中注入N型杂质,在所述P型硅衬底中扩散形成深N阱;
沿所述深N阱中的水平方向分别注入不同掺杂浓度的P型杂质,在所述深N阱的水平方向中依次扩散形成掺杂浓度和结深按序同时依次递增的叠加漂移区。
进一步的,所述叠加漂移区形成的过程如下:
第一次向所述深N阱中注入掺杂的P型杂质,在所述深N阱中扩散形成掺杂浓度和结深同时最小的第一漂移区;
第二次至第n次分别向所述深N阱中注入不同掺杂浓度的P型杂质,在所述深N阱中邻接所述第一漂移区一侧的水平方向,依次扩散形成掺杂浓度和结深按序同时依次递增的第二漂移区至第n漂移区;
其中,n为至少大于等于2的整数。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,还包括如下步骤:在所述叠加漂移区上淀积氧化材料,以形成单一氧化层,其中,所述单一氧化层形成的步骤在所述第一漂移区形成的步骤之后,所述单一氧化层形成的步骤与所述第二漂移区至第n漂移区形成的步骤不分先后。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,还包括如下步骤:
在所述掺杂浓度和结深同时最小的第一漂移区表面的单一氧化层上垫积多晶硅,以形成栅极;
在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以分别形成源极和体区;以及
在所述掺杂浓度和结深同时最大的第n漂移区中且与所述单一氧化层邻接区域注入P+杂质,以形成漏极。
优选的,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,还包括如下步骤:
向所述叠加漂移区的表面至少淀积两次氧化材料,以分别形成一单一氧化层,各所述单一氧化层沿所述水平方向依次叠加形成叠加氧化层,其中,各所述单一氧化层形成的步骤在所述第一漂移区形成的步骤之后,各所述单一氧化层形成的步骤分别与所述第二漂移区至第n漂移区形成的步骤不分先后。
进一步的,各所述单一氧化层的厚度相同,或各所述单一氧化层的厚度沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增而递增。
进一步的,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,还包括如下步骤:
在所述掺杂浓度和结深同时最小的第一漂移区表面的叠加氧化层上垫积多晶硅,以形成栅极;
在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以形成源极和体区;以及
在所述掺杂浓度和结深同时最大的第n漂移区中且与所述叠加氧化层邻接区域注入P+杂质形成漏极。
与现有技术相比,本发明公开的一种注入形成具有叠加漂移区的高压PMOS晶体管,通过用多重漂移区的组合作为高压PMOS的漂移区,使不同的漂移区中的P型杂质注入叠加而在高压PMOS的漂移区中可以形成更好的浓度梯度,以使高压PMOS获得更好的击穿电压与导通电阻的特性。
此外,在深N阱中第一漂移区的形成步骤应在氧化层形成的步骤之前,保证器件可以良好导通。
另外,氧化层可以是一单一的氧化层,也可以是不同的单一氧化层沿同一水平方向连接构成的叠加氧化层,因此,在第一漂移区形成之后,叠加漂移区中的其他漂移区的形成步骤与氧化层形成的先后顺序可以进行调整,以获得具有更好的击穿电压与导通电阻的高压PMOS晶体管。
附图说明
图1为普通BCD工艺制造高压PMOS的方法流程图;
图2为普通BCD工艺制造获得的高压PMOS的截面示意图;
图3为本发明实施例一中的注入形成具有叠加漂移区的高压PMOS晶体管的制造方法流程图;
图4为本发明实施例二中的注入形成具有叠加漂移区的高压PMOS晶体管中的叠加漂移区的制造方法流程图;
图5为本发明实施例三中的注入形成具有叠加漂移区的高压PMOS晶体管具有一单一氧化层的制造方法流程示意图的情况之一;
图6为图5对应的注入形成具有叠加漂移区的高压PMOS晶体管具有一单一氧化层的截面示意图;
图7为本发明实施例三中的注入形成具有叠加漂移区的高压PMOS晶体管具有一单一氧化层的制造方法流程图的情况之二;
图8为图7对应的注入形成具有叠加漂移区的高压PMOS晶体管具有一单一氧化层的截面示意图;
图9为本发明实施例四中的注入形成具有叠加漂移区的高压PMOS晶体管具有叠加氧化层的制造方法流程图的情况之一;
图10为本发明实施例四中的注入形成具有叠加漂移区的高压PMOS晶体管具有叠加氧化层的制造方法流程图的情况之二;
图11为图9和图10对应的注入形成具有叠加漂移区的高压PMOS晶体管具有叠加氧化层的截面示意图;
图12为本发明实施例四中的注入形成具有叠加漂移区的高压PMOS晶体管具有叠加氧化层的制造方法流程图的情况之三;
图13为图12对应的注入形成具有叠加漂移区的高压PMOS晶体管具有叠加氧化层的截面示意图;
图14为本发明的注入形成具有叠加漂移区的高压PMOS晶体管中的各漂移区与氧化层允许进行调制的制造方法流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
实施例一
以图3所示的流程图为例,结合图6、8、11和12,对本发明提供的一种注入形成具有叠加漂移区的高压PMOS晶体管的制造方法进行详细分析。所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,步骤包括如下:
在步骤S11中,提供一P型硅衬底(PSUB)。
在步骤S12中,向所述P型硅衬底中注入N型杂质,以便在速搜P型硅衬底中扩散形成深N阱(DNWELL),所述深N阱作为HVPMOS的沟道使用。
在步骤S13中,沿所述深N阱中的水平方向分别不同掺杂浓度的P型杂质,以便在所述深N阱的水平方向中依次扩散形成对应的各漂移区,且使在所述深N阱的水平方向中的各所述漂移区的掺杂浓度和结深同时依次递增,由于各所述漂移区在所述深N阱的水平方向叠加,从而在所述深N阱的水平方向形成掺杂浓度和结深同时依次递增的叠加漂移区。
在完成步骤S11至S13后,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,包括:P型硅衬底;位于所述P型硅衬底中的深N阱;位于所述深N阱中的水平方向且掺杂浓度和结深按序同时依次递增的叠加漂移区。
因此,本发明制造的高压POMS晶体管具有的叠加漂移区不在是采用单一的P型杂质注入扩散形成漂移区,与普通BCD工艺制造HVPMOS所采用的单一的P型杂质注入扩散形成漂移区相比,本发明采用多步P型杂质注入,以分别扩散形成对应的漂移区,通过调节每步形成的漂移区的掺杂浓度和结深,来调节叠加漂移区的整体效果,因此叠加漂移区的整体注入剂量更容易控制,即不会偏高,也不会偏低。
此外,所述叠加漂移区设置在深N阱中,所述叠加漂移区靠近所述硅衬底一侧的表面区域不易受外来因素干扰、表面均匀性更好,因此所形成的击穿为本征击穿,本征击穿与设置在器件表面上所形成的击穿电压相比,器件更稳定。
另外,在所述深N阱的水平方向中,所述叠加漂移区中排在最先位置的漂移区的掺杂浓度小,但是多个漂移区的掺杂浓度却依次递增,因此多个漂移区构成的叠加漂移区的掺杂浓度,其整体效果仍然较高,因此具有这种叠加漂移区的高压POMS晶体管的导通电阻也小。
实施例二
在步骤13中,以图4所示的流程图为例,所述叠加漂移区有如下步骤:
在步骤S131中,第一次向所述深N阱中注入掺杂的P型杂质,在所述深N阱中扩散形成掺杂浓度和结深同时最小的第一漂移区(Pwell1)。所述第一漂移区(Pwell1)在单一氧化层之前形成可以保证器件具有良好的导通性;后续的栅极是在所述第一漂移区(Pwell1)之上制造的,由于所述第一漂移区(Pwell1)的掺杂浓度最小,则其击穿电压最大,当向栅极施加电压时,可以防止器件表面击穿。
在步骤S132中,第二次至第n次分别向所述深N阱中邻接所述第一漂移区(Pwell1)一侧的水平方向注入不同掺杂浓度的P型杂质,在所述深N阱中邻接所述第一漂移区(Pwell1)一侧的水平方向,依次扩散形成掺杂浓度和结深按序同时依次递增的第二漂移区(Pwell2)至第n漂移区。其中,n为至少大于等于2的整数。
虽然所述第一漂移区(Pwell1)的掺杂浓度小,但是第二漂移区(Pwell2)至第n漂移区的掺杂浓度依次递增,因此多个漂移区构成的叠加漂移区的掺杂浓度,其整体效果仍然较高,因此具有这种叠加漂移区的高压POMS晶体管的导通电阻也小。
后续以n为2或3为例,仅为方便说明本发明的优点和效果,并不限定构成叠加漂移区的各漂移区的数目,在实际叠加漂移区的制造过程中,根据实际工艺要求,可以改变漂移区的数目,以形成符合实际需要的叠加漂移区结构。
实施例三
在步骤S14中,对形成于所述叠加漂移区上的单一氧化层进行详细说明:
先以图5所示的流程图为例进行说明,在形成由所述第一漂移区和第二漂移区构成的叠加漂移区之后,在所述叠加漂移区上淀积氧化材料,以形成单一氧化层(Oxide),如图6所示。
或者,以图7所示的流程图为例进行说明,在所述第一漂移区形成的步骤S131之后,在预定形成所述叠加漂移区上淀积氧化材料,以形成单一氧化层(Oxide),然后,按照步骤S132中的注入方法,形成第二漂移区和第三漂移区,从而形成所述第一漂移区至第三漂移区构成的叠加漂移区,如图8所示。
步骤S14的描述限定所述单一氧化层形成的步骤在所述第一漂移区形成的步骤之后,但并不限定所述单一氧化层形成的步骤与所示第二漂移区至第n漂移区形成的步骤的先后关系。
在完成步骤S11至S14后,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,还包括位于所述叠加漂移区之上的单一氧化层(Oxide)。
进一步的,在完成步骤S14之后,结合图6和8,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法还包括步骤15,所述步骤15包括:
在步骤S151中,在所述掺杂浓度和结深同时最小的第一漂移区(Pwell1)表面的单一氧化层(Oxide)上垫积多晶硅(Poly),以形成作为高压PMOS晶体管的栅极(Gate)。
在步骤S152中,在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以分别形成作为高压PMOS晶体管的源极(Source)和体区(Body)。
在步骤S153中,在所述掺杂浓度和结深同时最大的第n漂移区中且与所述单一氧化层邻接区域注入P+杂质,以形成作为高压PMOS晶体管的漏极(Drain)。
因此,在完成步骤S11至S15后,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,还包括位于掺杂浓度和结深同时最小的叠加漂移区表面的单一氧化层上的栅极;分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及位于掺杂浓度和结深同时最大的叠加漂移区中且与所述单一氧化层邻接的漏极。
实施例四
在步骤S16中,对形成于所述叠加漂移区上的叠加氧化层进行详细说明:
先以图9所示的流程图为例进行说明,在形成由所述第一漂移区和第二漂移区构成的叠加漂移区之后,向所述叠加漂移区的表面淀积两次氧化材料,以分别形成单一氧化层(Oxide1)、(Oxide2),所述单一氧化层(Oxide1)位于所述第一漂移区之上,所述单一氧化层(Oxide2)位于所述第二漂移区之上,由所述单一氧化层(Oxide1)、(Oxide2)沿所述水平方向依次叠加,以形成叠加氧化层,如图11所示。
或者,以图10所示的流程图为例进行说明,在所述第一漂移区形成的步骤之后,向所述第一漂移区的表面淀积一次氧化材料,以形成单一氧化层(Oxide1)。然后,按照步骤S132中的注入方法,形成所述第二漂移区。接着,向所述第二漂移区淀积一次氧化材料,以形成单一氧化层(Oxide2),由所述单一氧化层(Oxide1)、(Oxide2)沿所述水平方向依次叠加,以形成叠加氧化层,如图11所示。
或者,以图12所示的流程图为例进行说明,在所述第一漂移区形成的步骤之后,向预定形成所述叠加漂移区的表面淀积三次氧化材料,以分别形成单一氧化层(Oxide1)、(Oxide2)、(Oxide3),所述单一氧化层(Oxide1)位于所述第一漂移区之上,所述单一氧化层(Oxide2)位于预定的所述第二漂移区之上,所述单一氧化层(Oxide3)位于预定的所述第三漂移区之上,由所述单一氧化层(Oxide1)、(Oxide2)、(Oxide3)沿所述水平方向依次叠加,以形成叠加氧化层。然后,按照步骤S132中的注入方法,形成所述第二漂移区和第三漂移区,从而形成由所述第一漂移区至第三漂移区构成的叠加漂移区,如图13所示。
因此,在完成步骤S11至S13、S16后,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,还包括位于所述叠加漂移区之上的叠加氧化层,所述叠加氧化层包括至少两个单一氧化层,各所述单一氧化层沿所述水平方向依次叠加。
进一步的,各所述单一氧化层的厚度相同,或各所述单一氧化层的厚度沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增而递增。
在本实施例中,所述叠加氧化层由不同的单一氧化层构成,仅为方便说明本发明的优点和效果,并不限定于所述叠加氧化层具有的单一氧化层的数目,在实际高压PMOS晶体管的制造过程中,根据实际工艺要求,可以改变单一氧化层的数目,继而变更所述高压PMOS晶体管的结构。
由于所述叠加氧化层至少由两个单一氧化层(Oxide1)、(Oxide2)构成,所述叠加漂移区至少由两个漂移区构成,假设所述单一氧化层(Oxide1)、(Oxide2)形成的步骤分别由A、B表示,假设除所述第一漂移区(Pwell1)形成的步骤之外,其余所述漂移区形成的步骤由C表示,则如图14所示的A-C步骤,A-C步骤的顺序可以调整,以获得具有更好的击穿电压与导通电阻的高压PMOS晶体管。因此步骤S16的描述限定所述叠加氧化层形成的步骤在所述第一漂移区形成的步骤之后,但并不限定所述叠加氧化层形成的步骤与所述第二漂移区至第n漂移区形成的步骤的先后关系。
进一步的,在完成步骤S16之后,结合图11和13,所述注入形成具有叠加漂移区的高压PMOS晶体管的制造方法还包括步骤17,所述步骤17包括:
在步骤S171中,在所述掺杂浓度和结深同时最小的第一漂移区(Pwell1)表面的叠加氧化层(Oxide)上垫积多晶硅(Poly),以形成作为高压PMOS晶体管的栅极(Gate)。
在步骤S172中,在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以分别形成作为高压PMOS晶体管的源极(Source)和体区(Body)。
在步骤S173中,在所述掺杂浓度和结深同时最大的第n漂移区中且与所述叠加氧化层邻接区域注入P+杂质,以形成作为高压PMOS晶体管的漏极(Drain)。
进一步的,所述单一氧化层(Oxide1)、(Oxide2)、(Oxide3)的厚度相同,因此形成在栅极与漏极之间的所述叠加氧化层的厚度均匀,承受着栅极和漏极之间的压差。然而,所述叠加氧化层越靠近栅极,其承受的压差越小,越靠近漏极,其承受的压差越大,在本发明最佳实施例中,所述单一氧化层(Oxide1)、(Oxide2)、(Oxide3)的厚度不相同,为了解决栅极与漏极之间压差逐渐变大的问题,沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增的规律,而使所述单一氧化层(Oxide1)、(Oxide2)、(Oxide3)的厚度依次递增,因此形成在栅极与漏极之间的所述叠加氧化层的厚度也依次递增。
在完成步骤S17后,本发明提供一种注入形成具有叠加漂移区的高压PMOS晶体管,还包括位于掺杂浓度和结深同时最小的叠加漂移区表面的叠加氧化层上的栅极;分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及位于掺杂浓度和结深同时最大的叠加漂移区中且与所述叠加氧化层邻接的漏极。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (13)

1.一种注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,包括:
P型硅衬底;
位于所述P型硅衬底中的深N阱;
位于所述深N阱中的水平方向且掺杂浓度和结深按序同时依次递增的叠加漂移区。
2.如权利要求1所述的注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,还包括位于所述叠加漂移区之上的单一氧化层。
3.如权利要求2所述的注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,还包括:
位于掺杂浓度和结深同时最小的叠加漂移区表面的单一氧化层上的栅极;
分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及
位于掺杂浓度和结深同时最大的叠加漂移区中且与所述单一氧化层邻接的漏极。
4.如权利要求1所述的注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,还包括位于所述叠加漂移区之上的叠加氧化层,所述叠加氧化层包括:
至少两个单一氧化层,各所述单一氧化层沿所述水平方向依次叠加。
5.如权利要求4所述的注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,各所述单一氧化层的厚度相同,或各所述单一氧化层的厚度沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增而递增。
6.如权利要求5所述的注入形成具有叠加漂移区的高压PMOS晶体管,其特征在于,还包括:
位于掺杂浓度和结深同时最小的叠加漂移区表面的叠加氧化层上的栅极;
分别位于除具有所述叠加漂移区之外的深N阱中的源极和体区;以及
位于掺杂浓度和结深同时最大的叠加漂移区中且与所述叠加氧化层邻接的漏极。
7.一种注入形成具有叠加漂移区的高压PMOS晶体管的制造方法,其特征在于,包括如下步骤:
提供P型硅衬底;
向所述P型硅衬底中注入N型杂质,在所述P型硅衬底中扩散形成深N阱;
沿所述深N阱中的水平方向分别注入不同掺杂浓度的P型杂质,在所述深N阱的水平方向中依次扩散形成掺杂浓度和结深按序同时依次递增的叠加漂移区。
8.如权利要求7所述的制造方法,其特征在于,所述叠加漂移区形成的过程如下:
第一次向所述深N阱中注入掺杂的P型杂质,在所述深N阱中扩散形成掺杂浓度和结深同时最小的第一漂移区;
第二次至第n次分别向所述深N阱中注入不同掺杂浓度的P型杂质,在所述深N阱中邻接所述第一漂移区一侧的水平方向,依次扩散形成掺杂浓度和结深按序同时依次递增的第二漂移区至第n漂移区;
其中,n为至少大于等于2的整数。
9.如权利要求8所述的制造方法,其特征在于,还包括如下步骤:
在所述叠加漂移区上淀积氧化材料,以形成单一氧化层,其中,所述单一氧化层形成的步骤在所述第一漂移区形成的步骤之后,所述单一氧化层形成的步骤与所述第二漂移区至第n漂移区形成的步骤不分先后。
10.如权利要求9所述的制造方法,其特征在于,还包括如下步骤:
在所述掺杂浓度和结深同时最小的第一漂移区表面的单一氧化层上垫积多晶硅,以形成栅极;
在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以分别形成源极和体区;以及
在所述掺杂浓度和结深同时最大的第n漂移区中且与所述单一氧化层邻接区域注入P+杂质,以形成漏极。
11.如权利要求8所述的制造方法,其特征在于,还包括如下步骤:
向所述叠加漂移区的表面至少淀积两次氧化材料,以分别形成一单一氧化层,各所述单一氧化层沿所述水平方向依次叠加形成叠加氧化层,其中,各所述单一氧化层形成的步骤在所述第一漂移区形成的步骤之后,各所述单一氧化层形成的步骤分别与所述第二漂移区至第n漂移区形成的步骤不分先后。
12.如权利要求11所述的制造方法,其特征在于,各所述单一氧化层的厚度相同,或各所述单一氧化层的厚度沿所述深N阱中的水平方向且随所述叠加漂移区的掺杂浓度和结深按序同时依次递增而递增。
13.如权利要求12所述的制造方法,其特征在于,还包括如下步骤:
在所述掺杂浓度和结深同时最小的第一漂移区表面的叠加氧化层上垫积多晶硅,以形成栅极;
在除具有所述叠加漂移区之外的深N阱中分别注入P+杂质和N+杂质,以形成源极和体区;以及
在所述掺杂浓度和结深同时最大的第n漂移区中且与所述叠加氧化层邻接区域注入P+杂质形成漏极。
CN201310194265.5A 2013-05-22 2013-05-22 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法 Active CN103280460B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310194265.5A CN103280460B (zh) 2013-05-22 2013-05-22 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法
TW103113213A TWI607568B (zh) 2013-05-22 2014-04-10 Injection forming a high voltage PMOS transistor with superimposed drift region and method for making the same
US14/277,245 US20140346598A1 (en) 2013-05-22 2014-05-14 High voltage pmos (hvpmos) transistor with a composite drift region and manufacture method thereof
US16/010,002 US11133413B2 (en) 2013-05-22 2018-06-15 High voltage PMOS (HVPMOS) transistor with a composite drift region and manufacture method thereof
US17/458,867 US20210391463A1 (en) 2013-05-22 2021-08-27 High voltage pmos (hvpmos) transistor with a composite drift region and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310194265.5A CN103280460B (zh) 2013-05-22 2013-05-22 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法

Publications (2)

Publication Number Publication Date
CN103280460A true CN103280460A (zh) 2013-09-04
CN103280460B CN103280460B (zh) 2016-09-07

Family

ID=49062944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310194265.5A Active CN103280460B (zh) 2013-05-22 2013-05-22 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法

Country Status (3)

Country Link
US (3) US20140346598A1 (zh)
CN (1) CN103280460B (zh)
TW (1) TWI607568B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638003A (zh) * 2013-11-14 2015-05-20 上海华虹宏力半导体制造有限公司 射频ldmos器件及工艺方法
CN104979345A (zh) * 2014-04-10 2015-10-14 北大方正集团有限公司 高压cmos集成结构及其制造方法
CN108598156A (zh) * 2018-05-29 2018-09-28 矽力杰半导体技术(杭州)有限公司 Ldmos晶体管及其制造方法
CN112133758A (zh) * 2020-11-25 2020-12-25 晶芯成(北京)科技有限公司 功率半导体器件及制造方法
CN113690233A (zh) * 2021-09-22 2021-11-23 成都吉莱芯科技有限公司 一种可增强通流能力的单向esd保护器件及其制作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343538B2 (en) * 2011-05-13 2016-05-17 Richtek Technology Corporation High voltage device with additional isolation region under gate and manufacturing method thereof
US9570437B2 (en) * 2014-01-09 2017-02-14 Nxp B.V. Semiconductor die, integrated circuits and driver circuits, and methods of maufacturing the same
US9997605B2 (en) * 2014-01-21 2018-06-12 Shanghai Huahong Grace Semiconductor Manufacturing Corporation LDMOS device and its manufacturing method
US10629726B2 (en) * 2014-12-16 2020-04-21 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method for manufacturing the same
US11152505B2 (en) * 2018-06-28 2021-10-19 Texas Instruments Incorporated Drain extended transistor
CN111244178B (zh) * 2020-01-15 2020-10-16 合肥晶合集成电路有限公司 扩散型场效应晶体管的形成方法
CN114864667B (zh) * 2022-07-11 2022-09-13 北京芯可鉴科技有限公司 Nldmos器件、nldmos器件的制备方法及芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023090A (en) * 1998-12-07 2000-02-08 Philips Electronics North America, Corporation Lateral thin-film Silicon-On-Insulator (SOI) device having multiple zones in the drift region
US20070120187A1 (en) * 2003-05-13 2007-05-31 Cambridge Semiconductor Limited Lateral soi semiconductor device
US20110233670A1 (en) * 2009-10-23 2011-09-29 National Semiconductor Corporation Method of forming a region of graded doping concentration in a semiconductor device and related apparatus
CN102437192A (zh) * 2011-12-08 2012-05-02 东南大学 一种n型绝缘体上硅横向双扩散场效应晶体管
CN102543738A (zh) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 高压ldmos器件及其制造方法
CN103456784A (zh) * 2012-05-30 2013-12-18 上海华虹Nec电子有限公司 高压p型ldmos器件及制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185656B2 (ja) * 1996-03-22 2001-07-11 富士電機株式会社 横型電界効果トランジスタおよびその製造方法
US6310378B1 (en) * 1997-12-24 2001-10-30 Philips Electronics North American Corporation High voltage thin film transistor with improved on-state characteristics and method for making same
US6897525B1 (en) * 1998-11-26 2005-05-24 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US6441431B1 (en) * 1998-12-04 2002-08-27 Texas Instruments Incorporated Lateral double diffused metal oxide semiconductor device
US6468878B1 (en) * 2001-02-27 2002-10-22 Koninklijke Philips Electronics N.V. SOI LDMOS structure with improved switching characteristics
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
US7220633B2 (en) * 2003-11-13 2007-05-22 Volterra Semiconductor Corporation Method of fabricating a lateral double-diffused MOSFET
DE102004009521B4 (de) 2004-02-27 2020-06-10 Austriamicrosystems Ag Hochvolt-PMOS-Transistor, Maske zur Herstellung einer Wanne und Verfahren zur Herstellung eines Hochvolt-PMOS-Transistors
US7602037B2 (en) * 2007-03-28 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage semiconductor devices and methods for fabricating the same
US8614484B2 (en) * 2009-12-24 2013-12-24 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage device with partial silicon germanium epi source/drain
US8217452B2 (en) 2010-08-05 2012-07-10 Atmel Rousset S.A.S. Enhanced HVPMOS
US9209098B2 (en) 2011-05-19 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. HVMOS reliability evaluation using bulk resistances as indices
US9478456B2 (en) * 2012-03-06 2016-10-25 Freescale Semiconductor, Inc. Semiconductor device with composite drift region

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023090A (en) * 1998-12-07 2000-02-08 Philips Electronics North America, Corporation Lateral thin-film Silicon-On-Insulator (SOI) device having multiple zones in the drift region
US20070120187A1 (en) * 2003-05-13 2007-05-31 Cambridge Semiconductor Limited Lateral soi semiconductor device
US20110233670A1 (en) * 2009-10-23 2011-09-29 National Semiconductor Corporation Method of forming a region of graded doping concentration in a semiconductor device and related apparatus
CN102543738A (zh) * 2010-12-20 2012-07-04 上海华虹Nec电子有限公司 高压ldmos器件及其制造方法
CN102437192A (zh) * 2011-12-08 2012-05-02 东南大学 一种n型绝缘体上硅横向双扩散场效应晶体管
CN103456784A (zh) * 2012-05-30 2013-12-18 上海华虹Nec电子有限公司 高压p型ldmos器件及制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.K. PAUL, ET AL.: "High Voltage LDMOS Transistor in Sub-Micron SOI Films", 《PROC. ISPSD"96(1996)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638003A (zh) * 2013-11-14 2015-05-20 上海华虹宏力半导体制造有限公司 射频ldmos器件及工艺方法
CN104638003B (zh) * 2013-11-14 2019-04-09 上海华虹宏力半导体制造有限公司 射频ldmos器件及工艺方法
CN104979345A (zh) * 2014-04-10 2015-10-14 北大方正集团有限公司 高压cmos集成结构及其制造方法
CN104979345B (zh) * 2014-04-10 2017-12-19 北大方正集团有限公司 高压cmos集成结构及其制造方法
CN108598156A (zh) * 2018-05-29 2018-09-28 矽力杰半导体技术(杭州)有限公司 Ldmos晶体管及其制造方法
CN112133758A (zh) * 2020-11-25 2020-12-25 晶芯成(北京)科技有限公司 功率半导体器件及制造方法
CN112133758B (zh) * 2020-11-25 2021-02-05 晶芯成(北京)科技有限公司 功率半导体器件及制造方法
CN113690233A (zh) * 2021-09-22 2021-11-23 成都吉莱芯科技有限公司 一种可增强通流能力的单向esd保护器件及其制作方法
CN113690233B (zh) * 2021-09-22 2024-03-08 江苏吉莱微电子股份有限公司 一种可增强通流能力的单向esd保护器件及其制作方法

Also Published As

Publication number Publication date
US11133413B2 (en) 2021-09-28
US20210391463A1 (en) 2021-12-16
US20140346598A1 (en) 2014-11-27
TWI607568B (zh) 2017-12-01
TW201511276A (zh) 2015-03-16
US20180294355A1 (en) 2018-10-11
CN103280460B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN103280460A (zh) 注入形成具有叠加漂移区的高压pmos晶体管及其制造方法
WO2016022975A1 (en) Methods and apparatus for ldmos devices with cascaded resurf implants and double buffers
CN104517852A (zh) 横向漏极金属氧化物半导体元件及其制造方法
CN104900591A (zh) 低成本半导体器件制造方法
US10418483B2 (en) Laterally diffused metal oxide semiconducting devices with lightly-doped isolation layers
CN102074579A (zh) 半导体装置
CN103178093B (zh) 高压结型场效应晶体管的结构及制备方法
CN106206320B (zh) Ldmos的制造方法
US20140197467A1 (en) High voltage junction field effect transistor structure
CN101258608B (zh) 半导体装置以及半导体装置的制造方法
CN102751332A (zh) 耗尽型功率半导体器件及其制造方法
CN102208445B (zh) 具有耗尽型mos晶体管的半导体装置
CN107978629A (zh) P型沟槽栅mosfet及其制造方法
CN103579005B (zh) 采用高电压反注入的功率晶体管
CN103531629B (zh) 用于mos晶体管的设备和方法
CN105977308B (zh) 超级势垒整流器器件及其制备方法
US20110303990A1 (en) Semiconductor Device and Method Making Same
CN103022125A (zh) Bcd工艺中的nldmos器件及制造方法
CN102694020B (zh) 一种半导体装置
CN102130163B (zh) Esd高压dmos器件及其制造方法
US9543149B2 (en) High voltage lateral extended drain MOS transistor with improved drift layer contact
CN104183494A (zh) 沟渠式功率金属氧化物半导体结构与其形成方法
CN104037206A (zh) 超级结器件及制造方法
CN103579296A (zh) 半导体装置及其制造方法
US20150270372A1 (en) Method Of Forming Extended Source-Drain MOS Transistors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant