CN103245946B - 车载雷达装置 - Google Patents

车载雷达装置 Download PDF

Info

Publication number
CN103245946B
CN103245946B CN201310051390.0A CN201310051390A CN103245946B CN 103245946 B CN103245946 B CN 103245946B CN 201310051390 A CN201310051390 A CN 201310051390A CN 103245946 B CN103245946 B CN 103245946B
Authority
CN
China
Prior art keywords
target
vehicle
lateral attitude
peak value
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310051390.0A
Other languages
English (en)
Other versions
CN103245946A (zh
Inventor
水谷玲义
松冈圭司
清水耕司
冈崎晴树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Denso Corp
Original Assignee
Mazda Motor Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Denso Corp filed Critical Mazda Motor Corp
Publication of CN103245946A publication Critical patent/CN103245946A/zh
Application granted granted Critical
Publication of CN103245946B publication Critical patent/CN103245946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种车载雷达装置用于在安装有该装置的车辆的前进方向上传送雷达波并接收对象反射的雷达波以获取对象信息。其中,目标检测单元传送和接收雷达波以检测目标的位置。代表目标选择单元选择最接近车辆的目标作为代表目标。相同对象目标选择单元选择属于与代表目标相同的对象的目标。对象位置确定单元计算所有目标中的两个或更多个目标的横向位置的预先定义的函数的值,作为特定反射对象的、沿着车辆宽度方向的横向位置;转弯确定单元,确定车辆是否正在转弯,其中,当确定正在转弯时,对象位置确定单元从相同对象目标组的目标中提取沿着与转弯方向相对的横向方向的最末端目标,并且计算代表目标和最末端目标的横向位置的中心,作为前车的横向位置。

Description

车载雷达装置
技术领域
本发明涉及一种用于传送和接收雷达波以检测反射雷达波的对象的雷达装置。
背景技术
已知的车载雷达装置每预定的时间间隔以预定的扫描角度传送诸如激光波或毫米波之类的雷达波,并接收从安装有雷达装置的车辆(在下文中称为本车)周围的对象反射的雷达波,从而检测本车周围的对象。
这样的车载雷达装置用在自动巡航控制(ACC)系统等,该自动巡航控制系统等适于检测与本车相同的车道中的、行进在本车前方的车辆(被称为前车),并且控制本车的车辆速度,从而本车和前车之间的距离被维持或保持恒定。
为了防止在本车转弯期间将在与本车道(本车行进的车道)不同的车道中行进的车辆不正确地检测为前车,如在日本专利申请公布第H08-27909号中公开的,在本车上安装的ACC系统基于本车道的曲率半径以及在本车前方行进的车辆相对于本车的位置,计算本车前方的车辆行进在本车道中的可能性,并且基于所计算出的可能性,确定在本车前方行进的车辆是否是在本车道中行进的前车。在ACC系统中,当确定本车前方的车辆是前车时,前车和本车之间的距离被控制为维持或保持恒定。
前车不仅可以包括位于前车的后部的反射点,而且可以包括位于前车的内部的反射点,如图6A中所示(其中出于简化的目的,仅示出了位于后部的一个反射点,并且其他的反射点中的每个位于前车的内部或侧部)。术语“反射点”是指反射了雷达波的点或斑点。通常,通过使用位于前车的后部的反射点来确定前车相对于本车的的位置。
然而如图6B中所示,即使当前车直线行进时,位于前车的后部的反射点的横向位置(沿着本车的宽度的位置)仍可能偏离中心。这是因为,由于前车无法完全直线行进,所以前车和本车之间的视线角度随时间改变,或由于本车的颠簸造成了前后摇摆运动,所以位于前车的后部处的反射点的位置由于毫米波的本质而波动。
此外,在前车如图6C中所示的转弯期间,位于前车的后部的反射点的横向位置可以从在转弯之前的横向位置移位到转弯方向。也就是说,位于前车的后部的反射点的横向位置可以移位到左旋曲线的左侧或右旋曲线的右侧。这是因为,当前车直线行进时,本车将检测到从前车的后部的附近或中心反射的雷达波,而当前车向左/右转弯时,本车将检测到从前车的后部的左/右边缘反射的雷达波。
这样,无论在前车的直线行进期间还是在前车的转弯期间,前车的被检测到的位置将随时间改变。因此,与本车行进在同一车道的前车可能被不正确地检测为在不同车道行进的车辆。
考虑到以上内容,因此期望具有一种能够减少前车的检测位置的变化的车载雷达装置。
发明内容
根据本发明的示例性实施例,提供了一种车载雷达装置,该车载雷达装置用于在安装有该装置的车辆的前进方向上传送雷达波,该车辆在以下被称为安装有雷达的车辆,并且该车载雷达装置接收从对象反射的雷达波以获取关于对象的信息。在该装置中,目标检测单元传送和接收雷达波以检测反射雷达波的目标的位置。
术语“目标”在这里指对象上或对象中的反射雷达波的反射点。可以从一个对象检测到多个反射雷达波的目标。
此外,在该实施例的装置中,代表目标选择单元从目标检测单元检测到的目标中选择满足预定的代表目标指定条件的一个目标,该预定的代表目标指定条件用于指定由目标检测单元检测到的目标的代表。相同对象目标选择单元从目标检测单元检测到的目标中,选择满足预定的相同对象目标选择条件的目标,该预定的相同对象目标选择条件用于确定目标检测单元检测到的目标中的哪个(些)目标属于与代表目标相同的对象。代表目标和由相同对象目标选择单元选择的与代表目标不同的目标一起形成相同对象目标组。相同对象目标组中的每个目标所属的对象在以下被称为特定反射对象。
代表目标指定条件可以规定代表目标是最接近本车(安装有雷达的车辆)的目标。相同对象目标选择条件可以规定属于与代表目标相同的对象的目标是距代表目标的距离小于阈值距离值的目标。预定的相同对象目标选择条件包括以下至少之一:第一条件,目标和代表目标之间的距安装有雷达的车辆的距离差等于或小于距离差的预定阈值;第二条件,目标和代表目标之间的相对安装有雷达的车辆的峰值方向差等于或小于峰值方向差的预定阈值;以及第三条件,目标和代表目标之间的相对安装有雷达的车辆的相对速度差等于或小于相对速度差的预定阈值。
在该实施例的装置中,对象位置确定单元计算相同对象目标组的两个或更多个目标的横向位置的预先定义的函数的值,作为特定反射对象的、沿着安装有雷达的车辆的车辆宽度方向的横向位置。
优选地,对象位置确定单元从相同对象目标组的目标中选择从安装有雷达的车辆看到的最右侧目标和从安装有雷达的车辆看到的最左侧目标,并且计算最右侧目标的横向位置和最左侧目标的横向位置的中心作为特定反射对象的横向位置。
如上配置的雷达装置使用相同对象目标组的两个目标,即最左侧和最右侧的目标,来计算特定反射对象的横向位置。
特定反射对象的内部中的目标的横向位置很可能位于特定反射对象的横向中心(即特定反射对象的宽度的中心)处或其周围。因此,即使最右侧峰值目标和最左侧峰值目标中的一个是特定反射对象上的目标并且另一个是特定反射对象的内部中的目标(该情形很可能在特定反射对象转弯期间出现),仍允许特定反射对象的横向位置较之由代表目标的横向位置简单定义的特定反射对象的横向位置,保持更接近特定反射对象的横向中心。因此校正了前车的横向位置。
因此,尽管位于特定反射对象的后部的目标的横向位置有大的变化,但是仍可以减少如上计算的特定反射对象的横向位置的变化,这导致特定反射对象的检测位置的变化的减少。
当特定反射对象是大型车辆时,车辆宽度大于中间尺寸汽车或常规尺寸汽车的宽度,这导致位于特定反射对象的后部的目标的横向位置的较大变化。
当前车是大型车辆时,前车(特定反射对象)的横向位置的变化可能是成问题的,尽管当前车是诸如中间尺寸汽车或常规尺寸汽车的非大型车辆时,前车的横向位置的变化常常是可忽略的。
因此,优选地在该装置中,大型车辆确定单元确定特定反射对象是否是大型车辆,并且当大型车辆确定单元确定特定反射对象不是大型车辆时(就是说,特定反射对象是非大型车辆),第一位置确定禁止单元禁止对象位置确定单元计算相同对象目标组的两个或更多个目标的横向位置的预先定义的函数作为特定反射对象的横向位置。
在一些实施例中,对象位置确定单元在被第一禁止单元禁止时可以将代表对象的横向位置确定为特定反射对象的横向位置。
在前车(特定反射对象)的横向位置变化由于前车是诸如中间尺寸汽车或常规尺寸汽车的非大型车辆而可被忽略的情况下,这可以禁止前车的横向位置的不必要的计算。
在替选实施例中,对象位置确定单元将相同对象目标组的所有目标的横向位置的平均值确定为特定反射对象的横向位置。
在该替选实施例的装置中,通过不仅使用位于特定反射对象的后部的目标,而且使用特定反射对象的内部中的目标,可以计算特定反射对象的横向位置。
此外,特定反射对象的内部中的目标的横向位置很可能位于特定反射对象的横向中心(即特定反射对象的宽度的中心)处或其周围。因此,即使最右侧峰值目标和最左侧峰值目标中的一个是特定反射对象上的目标并且另一个是特定反射对象的内部中的目标(该情形很可能在特定反射对象转弯期间出现),仍允许特定反射对象的横向位置较之由代表目标的横向位置简单定义的特定反射对象的横向位置,保持更接近特定反射对象的横向中心。因此校正了前车的横向位置。
因此,尽管位于特定反射对象的后部的目标的横向位置有大的变化,但是仍可以减少如上计算的特定反射对象的横向位置的变化,这导致特定反射对象的检测位置的变化的减少。
优选地,对象位置确定单元将相同对象目标组的所有目标的横向位置的加权平均值确定为特定反射对象的横向位置。通过将相同对象目标组的各个目标的反射波接收功率的幅值用作权重来确定加权平均值。
通过该配置,检测到的前车的横向位置可以反映各个相同对象目标的反射波接收功率的幅值。
优选地,大型车辆确定单元确定特定反射对象是否是大型车辆,并且当大型车辆确定单元确定特定反射对象不是大型车辆时,第一位置确定禁止单元禁止对象位置确定单元计算相同对象目标组的所有目标的横向位置的平均值或加权平均值作为特定反射对象的横向位置。
在一些实施例中,对象位置确定单元在被第一禁止单元禁止时将代表对象的横向位置确定为特定反射对象的横向位置。
在前车(特定反射对象)的横向位置变化由于前车是诸如中间尺寸汽车或常规尺寸汽车的非大型车辆而可被忽略的情况下,这可以禁止前车的横向位置的不必要的计算。
替选地,在该装置中,转弯确定单元确定安装有雷达的车辆是否正在转弯。当转弯确定单元确定安装有雷达的车辆正在转弯时,对象位置确定单元计算预先定义的函数的值作为特定反射对象的横向位置,该函数被定义为使得特定反射对象的横向位置在与转弯方向相对的方向上相对代表目标的横向位置移位。
通过该配置,即使当位于特定反射对象的后部的目标的横向位置在转向期间在转向方向上变化时,仍将特定反射对象的横向位置校正到在与转向方向相对的方向上移位的横向位置,这导致在转弯期间的特定反射对象的检测位置的变化的减少。
优选地,当转弯确定单元确定安装有雷达的车辆正在转弯时,对象位置确定单元从相同对象目标组的目标中提取沿着与安装有雷达的车辆的转弯方向相对的横向方向的最末端目标,并且进一步计算代表目标的横向位置和最末端目标的横向位置的中心,作为前车的横向位置。
在该替选实施例中,从相同对象目标组的所有目标中提取沿着与从本车看到的特定反射对象的转弯方向相对的横向方向的最末端的目标。因此特定反射对象的横向位置(例如,由代表目标的横向位置给出)被简单地校正到代表目标的横向位置和最末端目标的横向位置的中心。
优选地,在该装置中,大型车辆确定单元确定特定反射对象是否是大型车辆,并且当大型车辆确定单元确定特定反射对象不是大型车辆时,转弯确定禁止单元禁止转弯确定单元确定安装有雷达的车辆(本车)是否正在转弯。
在前车的横向位置变化由于前车是诸如中间尺寸汽车或常规尺寸汽车的非大型车辆而可被忽略的情况下,这可以禁止前车的横向位置的不必要的计算。
优选地,大型车辆确定单元确定相同对象目标组的目标数目是否等于或大于用于大型车辆确定的预定的阈值目标数目,并且当确定相同对象目标组的目标数目等于或大于用于大型车辆确定的预定的阈值目标数目时,确定特定反射对象是大型车辆。
替选地或额外地,大型车辆确定单元确定满足预定的目标选择条件的相同对象目标组中的一个目标的反射波接收功率是否等于或大于用于大型车辆确定的预定的阈值接收功率,其中预定的目标选择条件用于选择由大型车辆确定单元用于确定特定反射对象是否是大型车辆的目标,并且当确定满足预定的目标选择条件的目标的反射波接收功率等于或大于用于大型车辆确定的预定的阈值接收功率时,确定特定反射对象是大型车辆。预定的目标选择条件可以规定由大型车辆确定单元用于确定特定反射对象是否是大型车辆的目标是相同对象目标组中的、具有反射波的功率谱中的最大频率峰值强度的目标。
根据本申请的一个方面,提供了一种车载雷达装置,车载雷达装置用于在安装有该装置的车辆的前进方向上传送雷达波,车辆在以下被称为安装有雷达的车辆,并且车载雷达装置用于接收从对象反射的雷达波以获取关于对象的信息,装置包括:目标检测单元,其传送和接收雷达波以检测反射雷达波的目标的位置;代表目标选择单元,其选择满足预定的代表目标指定条件的、由目标检测单元检测到的目标中的一个,预定的代表目标指定条件用于指定由目标检测单元检测到的目标的代表,预定的代表目标指定条件规定代表目标是目标检测单元检测到的目标中的最接近所述安装有雷达的车辆的目标;相同对象目标选择单元,其从目标检测单元检测到的目标中,选择满足预定的相同对象目标选择条件的目标,预定的相同对象目标选择条件用于确定目标检测单元检测到的目标中的哪个目标属于与代表目标相同的对象,代表目标和由相同对象目标选择单元选择的与代表目标不同的目标一起形成相同对象目标组,并且相同对象目标组中的每个目标所属的对象称为特定反射对象;对象位置确定单元,其计算相同对象目标组的两个或更多个目标的横向位置的预先定义的函数的值,作为特定反射对象的、沿着安装有雷达的车辆的车辆宽度方向的横向位置;以及转弯确定单元,其确定安装有雷达的车辆是否正在转弯,其中,当转弯确定单元确定安装有雷达的车辆正在转弯时,对象位置确定单元从相同对象目标组的目标中提取沿着与安装有雷达的车辆的转弯方向相对的横向方向的最末端目标,并且进一步计算代表目标的横向位置和最末端目标的横向位置的中心,作为前车的横向位置。
附图说明
在附图中:
图1示出了根据本发明的各个实施例的包括雷达装置的自动巡航控制系统的示意性框图;
图2A示出了根据本发明的第一至第三实施例中的每个的雷达装置的信号处理器的示意性框图;
图2B示出了根据本发明的第一至第三实施例中的每个的在信号处理器中执行的目标信息生成处理的流程图;
图3A示出了根据本发明的第四实施例的雷达装置的信号处理器的示意性框图;
图3B示出了根据本发明的第四实施例的在信号处理器中执行的目标信息生成处理的流程图;
图4A示出了根据本发明的第四实施例的校正前车的横向位置的方法;
图4B示出了根据本发明的第四实施例的在校正前车的横向位置之前和之后的前车的横向位置相对时间的曲线图;
图5A示出了根据本发明的第五至第七实施例中的每个的雷达装置的信号处理器的示意性框图;
图5B示出了根据本发明的第五至第七实施例中的每个的在信号处理器中执行的目标信息生成处理的流程图;
图5C示出了根据本发明的第八实施例的雷达装置的信号处理器的示意性框图;
图5D示出了根据本发明的第八实施例的在信号处理器中执行的目标信息生成处理的流程图;
图6A示出了在完全直线行进期间的前车的反射点的示例;
图6B示出了在基本上直线行进期间的前车的反射点的示例;以及
图6C示出了在转弯期间的前车的反射点的示例。
具体实施方式
下面将参照附图更全面地描述本发明。在附图通篇中相同的附图标记表示相同的元件。
(第一实施例)
图1示出了根据本发明的第一实施例的自动巡航控制系统1的示意性框图。
自动巡航控制系统1被安装在车辆上,并且如图1中所示,包括雷达装置2、距离电子控制单元(距离ECU)3、引擎电子控制单元(引擎ECU)4、制动电子控制单元(制动ECU)5。ECU3、4、5经由车内局域网6彼此连接,并且从而允许输出和接收数据。
雷达装置2通过传送和接收毫米雷达波以FMCW类型的所谓的毫米波雷达的形式检测诸如前车或路边对象的对象,基于检测结果生成关于行进在本车前方的前车的目标信息,并且将目标信息发送到距离ECU3。目标信息至少包括相对于本车的前车的速度和位置。
制动ECU5不仅基于从转向传感器(未示出)和/或偏航速率传感器(未示出)接收到的检测信息(转向角度和/或偏航速率),而且基于从主气缸(MC)压力传感器接收到的检测信息,来确定制动踏板状态,并且将所确定的制动踏板状态发送到距离ECU3。此外,制动ECU5从距离ECU3接收包括目标加速度和制动请求的信息,并且响应于所接收到的信息和所确定的制动踏板状态,驱动制动致动器,该制动致动器打开和关闭在制动液压回路中涉及的增压控制阀和减压控制阀,从而控制制动力。
引擎ECU4将包括分别从车辆速度传感器(未示出)、节气门位置传感器(未示出)、油门踏板位置传感器(未示出)接收到的车辆速度、引擎的受控状态和油门的操作状态的检测信息发送到距离ECU3。引擎ECU4从距离ECU3接收包括目标加速度和断油请求的信息,并且将启用命令输出到节气门致动器,该节气门致动器响应于由接收到的信息指定的操作条件来调整内燃机的节气门位置。
距离ECU3从引擎ECU4接收车辆速度和引擎的受控状态等,并且从制动ECU5接收转向角度、偏航速率和制动器的受控状态等。此外,基于经由巡航控制开关(未示出)和目标距离设定开关(未示出)等设定的设定值以及从雷达装置2接收到的目标信息,距离ECU3将目标加速度和断油请求等发送到引擎ECU4,并且将目标加速度和制动请求等发送到制动ECU5,作为用于维持本车和前车之间的适当距离的控制命令。
现在将详细解释雷达装置2。
雷达装置2包括:振荡器21,其生成在通过调制信号进行频率调制的毫米波段中的射频(RF)信号,每个周期具有调制信号的频率随时间线性增加的上升区间以及调制信号的频率随时间线性降低的下降区间;放大器22,其放大在振荡器21中生成的射频信号;配电器23,其将放大器22的输出分成传送信号Ss和本地信号L;传送天线24,其响应于传送信号Ss发射雷达波;以及多个接收天线31,其包括(例如,具有阵列天线形式的)用于接收雷达波的n(其中n是正整数)个接收天线。
雷达装置2还包括:接收开关32,其依次选择多个接收天线31,并且将接收信号Sr从所选择的一个接收天线进行转发以用于进一步的处理;放大器33,其对来自接收开关32的接收信号Sr进行放大;混频器34,其将经放大器33放大的接收信号Sr与本地信号L进行混频以生成拍频信号BT;滤波器35,其从在混频器34中生成的拍频信号BT中去除不必要的信号分量;模数转换器(ADC)36,其对滤波器35的输出进行采样以将拍频信号BT转换为数字数据;以及信号处理器37,其经由ADC36控制振荡器21的操作(例如启用和停用)和拍频信号BT的采样,通过使用采样数据执行信号分析,并且与距离ECU3进行通信以接收信号分析所需的信息(包括车辆速度和转向角度等)并且传送通过信号分析得到的信息(包括目标信息等)。
多个接收天线31被配置为使得每个天线的波束宽度大于传送天线24的波束宽度。多个接收天线31分别与信道CH1到CHn相关联。
根据公知的微处理器构建信号处理器37。信号处理器37还包括对经由ADC36获取的数据执行快速傅里叶变换(FFT)的处理器,例如数字信号处理器(DSP)。
在如上配置的雷达装置2中,一旦响应于来自信号处理器37的指令将振荡器21启用,振荡器21就生成射频信号,该射频信号继而由放大器22放大。随后,射频信号被分成传送信号Ss和本地信号L。经由传送天线24传送作为雷达波的传送信号Ss。
多个接收天线31中的每个接收来自对象的反射波。仅接收开关32选择的一个接收信道Chi(i=1到n)的接收信号Sr被放大器33放大,并且被随后馈送到混频器34。混频器34将接收信号Sr与本地信号L混频以生成拍频信号BT。在滤波器35从拍频信号BT中移除不必要的信号分量之后,由ADC36对拍频信号BT进行采样。采样数据随后被馈送到信号处理器。
接收开关32以预定的切换频率依次地并周期性地选择所有的接收信道CH1到CHn。例如,针对雷达波的每个调制周期选择接收信道CH1到CHn中的每个512次。ADC36与接收开关32的切换定时同步地对接收信号Sr进行采样。也就是说,针对接收信道CH1到CHn中的每个,将针对雷达波的每个调制周期的上升和下降区间中的每个累积采样数据。
雷达装置2的信号处理器37在经过雷达波的每个调制周期之后执行信号分析,其中对于接收信道CH1到CHn中的每个,信号处理器37使上升和下降区间中的每个的累积的数据经历FFT处理,并且随后执行目标信息生成处理,其中信号处理器37检测前方对象并且通过使用从信号分析得到的信息生成关于前车的目标信息。由于信号分析是公知的技术,因此在这里将不对其进行详细地解释。
如图2A中所示,雷达装置2的信号处理器37包括目标检测单元371、代表目标选择单元372、相同对象目标选择单元373和对象位置确定单元374。下面将解释这些组件的操作。
现在将参照图2B解释在信号处理器37中执行的目标信息生成处理。图2B示出了目标信息生成处理的流程图。每当完成一个调制周期的采样数据的快速傅里叶变换(FFT)处理时,重复地执行目标信息生成处理。
首先,在步骤S10中,信号处理器37使振荡器21启用以开始雷达波的传送。随后,在步骤S20中,信号处理器37在一个调制周期期间对从ADC36输出的拍频信号BT进行采样,该调制周期具有调制信号频率随时间逐渐增加的上升区间和调制信号频率随时间逐渐降低的下降区间。在步骤S30中,信号处理器37停用振荡器32以停止雷达波的传送。
随后,在步骤S40中,信号处理器37使在步骤S20中获取的采样的数据经历频率分析(例如在当前实施例中的FFT处理),以针对接收信道CH1到CHn中的每个确定上升和下降区间中的每个的拍频信号BT的功率谱。功率谱标示拍频信号BT的每个频率成分的强度(功率谱强度)。
在步骤S50中,针对接收信道CH1到CHn中的每个,信号处理器37检测在上升区间的功率谱中呈现的频率峰值fbu-1到fbu-m(m:正整数)和在下降区间的功率谱中呈现的频率峰值fbd-1到fbd-m。每个检测到的频率峰值fbu、fbd对应于目标的候选(在下文中,称为目标候选)。这里的术语“目标”是指对象的反射雷达波的反射点。如图6A至6C中所示,可以从一个对象检测到多个目标候选。
更具体而言,在步骤S50中,信号处理器37计算各个接收信道CH1到CHn的功率谱的算术平均值以确定平均谱。信号处理器37检测平均谱呈现高于预定阈值的峰值强度的所有频率(被称为频率峰值),从而检测上升区间的频率峰值fbu-1到fbu-m以及下降区间的频率峰值fbd-1到fbd-m。
此外,在步骤S60中,信号处理器37通过使用数字波束形成技术等,基于经由各个接收信道CH1到CHn获取的相同峰值频率的拍频信号分量中的相位差,针对每个检测到的频率峰值fbu、fbd,检测与相对于本车的频率峰值相对应的目标候选的方向(在下文中被称为峰值方向)。
随后,在步骤S70中,信号处理器37对所有检测到的频率峰值fbu、fbd执行成对匹配以检测频率峰值fbu、fbd的所有对,使得每对中的频率峰值fbu、fbd对应于相同目标候选。更具体而言,在成对匹配中,确定每对检测到的频率峰值fbu和fbd的峰值强度差和峰值角度差两者是否在各自的预定的可接受范围内。峰值强度差和峰值角度差两者在各自的预定的可接受范围内的每对检测到的频率峰值fbu、fbd被登记为峰值对。
在步骤S80中,针对每个登记的峰值对,信号处理器37通过使用在基于FMCW的雷达装置2中可用的公知技术,计算本车的雷达装置2和对应于登记的峰值对的目标候选之间的距离以及对应于登记的峰值对的目标候选相对于本车的速度(也被称为相对速度)。
在步骤S90中,对于每个登记的峰值对,信号处理器37基于在步骤S60中计算出的目标候选相对于本车的峰值方向和在步骤S80中计算出的目标候选相对于本车的距离,计算与登记的峰值对对应的目标候选的纵向和横向位置。目标候选的纵向位置是沿着本车的行进方向的目标候选相对于本车的位置。目标候选的横向位置是沿着本车的车辆宽度方向的目标候选相对于本车的的位置。按照这个方式为每个登记的峰值对确定目标候选的纵向和横向位置以及相对速度。
随后,在步骤S100中,针对当前测量周期中登记的每个峰值对(在下文中被称为当前周期对),信号处理器37追踪峰值对以检查可追溯性,其中确定是否将与当前周期对相对应的目标候选识别为与在先前的测量周期中登记的各个峰值对对应的目标候选之一(在下文中被称为先前周期对)。
更具体而言,对于每个先前周期对,信号处理器37基于包括在先前的测量周期中计算出的横向和纵向位置、相对速度和先前周期对的峰值方向的、关于先前周期对的信息,预测当前测量周期中的先前周期对的横向和纵向位置以及相对速度。信号处理器37随后确定是否存在这样的当前周期对:使得预测的先前周期对的纵向位置和检测到的当前周期对的纵向位置之差小于预定上限纵向位置差,预测的先前周期对的横向位置和检测到的当前周期对的横向位置之差小于预定上限横向位置差,并且预测的先前周期对的相对速度和检测到的当前周期对的相对速度之差小于预定上限相对速度差。如果确定纵向位置差、横向位置差和相对速度差分别小于上限纵向位置差、上限横向位置差和上限相对速度差,则确定当前周期对可回溯到先前周期对。当已经以相似方式确定先前周期对可回溯到在一个在前周期中登记的周期对时,当前周期对通过先前周期对可回溯到在两个在前周期中登记的周期对。总体而言,可以确定当前周期对通过N-1个中间周期对是否可回溯到N(其中N是正整数)个在前周期中的登记的峰值对。在本实施例中,当一个测量周期中的登记的峰值对可通过四个或更多的中间登记的对回溯到在五个或更多的在前周期中的登记的对时,其被识别为目标。
随后,在步骤S110中,基于在步骤S60中计算出的峰值方向和在步骤S70中登记的每个峰值对的在步骤S80中计算的距离和相对速度,信号处理器37从在步骤S100中识别作为目标的峰值对中选择满足预定的相同对象目标选择条件的、属于(或者出自)特定反射对象(即反射雷达波的特定对象)的峰值对。满足相同对象目标选择条件的峰值对被称为相同对象峰值对。所有相同对象峰值对形成相同对象峰值对组。
在本实施例中,相同对象目标选择条件可以规定,给定作为与最接近本车的目标对应的峰值对的代表峰值对,属于与代表目标相同的对象的峰值对是如下峰值对:该峰值对和代表峰值对之间的相对于(或相对)本车的距离差等于或小于距离差的预定阈值,该峰值对和代表峰值对之间的相对于(或相对)本车的峰值方向差等于或小于峰值方向差的预定阈值,并且该峰值对和代表峰值对之间的相对于(或相对)本车的速度(相对速度)差等于或小于相对速度差的预定阈值。代表峰值对自身也满足相同对象目标选择条件。
在步骤S120中,信号处理器37基于在步骤S90中计算的峰值对的横向位置,从在步骤S110中选择的相同对象峰值对中提取从本车看到的最右侧峰值对和从本车看到的最左侧峰值对,并且将最右侧峰值对的横向位置和最左侧峰值对的横向位置的中心确定为前车的横向位置(前车位置)。此外,在步骤S120中,信号处理器37将最右侧峰值对和最左侧峰值对之间的横向位置差确定为前车的宽度。此外,在步骤S120中,信号处理器37基于在步骤S90中计算的峰值对的纵向位置,从在步骤S110中选择的相同对象峰值对中提取最前侧峰值对和最后侧峰值对,并且将最前侧峰值对和最后侧峰值对之间的纵向位置差确定为前车的长度。
随后,在步骤S130中,信号处理器37生成至少包括指示前车相对于本车的速度(相对速度)的速度信息、指示前车的横向位置的横向位置信息、指示前车的宽度的宽度信息、指示前车的长度的长度信息、指示从本车到代表峰值对的距离的距离信息的目标信息,并且将目标信息发送到距离ECU3。该周期的处理随后结束。
再次参照图2A,将根据图2B中所示的流程图的流程解释目标检测单元371、代表目标选择单元372、相同对象目标选择单元373、对象位置确定单元374的操作。
在如上配置的雷达装置2中,目标检测单元(作为目标检测部件)371负责步骤S90中的操作,其中根据从目标反射的雷达波检测反射从装置2发射的雷达波的目标的位置(对应于各个峰值对)。
代表目标选择单元(作为代表目标选择部件)372负责从在步骤S100中识别为目标的峰值对中选择代表峰值对,即与最接近本车的目标对应的峰值对。
相同对象目标选择单元(作为相同对象目标选择部件)373负责步骤S110中的操作,其中从在步骤S100中识别为目标的峰值对中选择满足利用代表目标选择单元372选择的代表峰值对如上定义的预定的相同对象目标选择条件的峰值对。
对象位置确定单元(作为对象位置确定部件)374负责步骤S120中的操作,其中从相同对象目标选择单元373提取的峰值对中(即从相同对象峰值对中)提取从本车看到的最右侧峰值对和从本车看到的最左侧峰值对,并且将最右侧峰值对的横向位置和最左侧峰值对的横向位置的中心确定为前车的横向位置。
前车的内部中的(对应于峰值对的)目标的横向位置很可能位于前车的横向中心(即前车的宽度的中心)处或其周围。因此,即使最右侧峰值对和最左侧峰值对中的一个是位于前车后部的目标并且另一个是前车的内部中的目标(该情形很可能在前车转弯期间出现),仍允许在步骤S120中计算的前车的横向位置较之由代表峰值对的横向位置简单定义的前车的横向位置,保持更接近前车的横向中心。因此校正了前车的横向位置。
因此,尽管位于前车后部的目标的横向位置有大的变化,但是仍可以减少在步骤S120中计算的前车的横向位置的变化,这导致前车的检测位置的变化的减少。
(第二实施例)
现将参照图2A、2B解释本发明的第二实施例。将仅解释第二实施例与第一实施例的不同之处。
第二实施例的自动巡航控制系统1与第一实施例的自动巡航控制系统1相似,不同之处在于修改了对象位置确定单元374和目标信息生成处理的步骤S120中的操作。
在本实施例中,信号处理器37在目标信息生成处理的步骤S120中将在步骤S110中选择的所有相同对象峰值对的横向位置的平均值确定为前车的横向位置。如在第一实施例的目标信息生成处理的步骤S120中的那样,在步骤S120中信号处理器37进一步将最右侧峰值对和最左侧峰值对之间的横向位置差确定为前车的宽度。此外,在步骤S120中,信号处理器37基于在步骤S90中计算的峰值对的纵向位置,从在步骤S110中选择的相同对象峰值对中提取最前侧峰值对和最后侧峰值对,并且将最前侧峰值对和最后侧峰值对之间的纵向位置差确定为前车的长度。随后,该处理前往步骤S130。
在本实施例中对象位置确定单元374也负责目标信息生成处理的步骤S120中的操作。
在如上配置的雷达装置2中,不仅位于前车后部的目标,而且在前车的内部中的目标,都用于计算前车的横向位置。
如上文所述,前车的内部中的(对应于峰值对的)目标的横向位置很可能位于前车的横向中心(即前车的宽度的中心)处或其周围。因此,即使最右侧峰值对和最左侧峰值对中的一个是位于前车后部的目标并且另一个是前车的内部中的目标(该情形很可能在前车转弯期间出现),仍允许在步骤S120中计算的前车的横向位置较之由代表峰值对的横向位置简单定义的前车的横向位置,保持更接近前车的横向中心。因此校正了前车的横向位置。
因此,尽管位于前车后部的目标的横向位置有大的变化,但是仍可以减少在步骤S120中计算的前车的横向位置的变化,这导致前车的检测位置的变化的减少。
(第三实施例)
现将参照图2A、2B解释本发明的第三实施例。将仅解释第三实施例与第一实施例的不同之处。
第三实施例的自动巡航控制系统1与第一实施例的自动巡航控制系统1相似,不同之处在于修改了目标信息生成处理的步骤S120中的操作和对象位置确定单元374的操作。
在本实施例中,信号处理器37在目标信息生成处理的步骤S120中将在步骤S110中选择的所有相同对象峰值对的横向位置的加权平均值确定为前车的横向位置。通过将各个相同对象峰值对的反射波接收功率的幅值用作权重来计算加权平均值。此外在步骤S120中,如在第一实施例的目标信息生成处理的步骤S120中的那样,信号处理器37将最右侧峰值对和最左侧峰值对之间的横向位置差确定为前车的宽度。此外,在步骤S120中,信号处理器37基于在步骤S90中计算的峰值对的纵向位置,从在步骤S110中选择的相同对象峰值对中提取最前侧峰值对和最后侧峰值对,并且将最前侧峰值对和最后侧峰值对之间的纵向位置差确定为前车的长度。随后,该处理前往步骤S130。
在本实施例中对象位置确定单元374也负责目标信息生成处理的步骤S120中的操作。
在如上配置的雷达装置2中,不仅位于前车后部的目标,而且在前车的内部中的目标,都用于计算前车的横向位置。
如上文所述,前车的内部中的(对应于峰值对的)目标的横向位置很可能位于前车的横向中心(即前车的宽度的中心)处或其周围。因此,即使最右侧峰值对和最左侧峰值对中的一个是位于前车后部的目标并且另一个是前车的内部中的目标(该情形很可能在前车转弯期间出现),仍允许在步骤S120中计算的前车的横向位置较之由代表峰值对的横向位置简单定义的前车的横向位置,保持更接近前车的横向中心。因此校正了前车的横向位置。
因此,尽管位于前车后部的目标的横向位置有大的变化,但是仍可以减少在步骤S120中计算的前车的横向位置的变化,这导致前车的检测位置的变化的减少。
此外,由于前车的横向位置由通过将各个相同对象峰值对的反射波接收功率的幅值用作权重而计算的所有相同对象峰值对的横向位置的加权平均值来定义,因此前车的横向位置可以反映各个相同对象峰值对的反射波接收功率的幅值。
(第四实施例)
现将参照图3A、3B、图4A和图4B解释本发明的第四实施例。将仅解释第四实施例与第一实施例的不同之处。
第四实施例的自动巡航控制系统1与第一实施例的自动巡航控制系统1相似,不同之处在于修改了目标信息生成处理和信号处理器37的操作。图3A是第四实施例的信号处理器37的示意性框图。图3B是第四实施例的目标信息生成处理的流程图。图4A示出了校正前车的横向位置的示例方法。图4B示出了在校正前车的横向位置之前和之后的前车的横向位置相对时间的示例性曲线图。
如图3A中所示,第四实施例的信号处理器37与第一实施例的信号处理器37相似,不同之处在于对象位置确定单元374被修改并且添加了转弯确定单元375和第二位置确定禁止单元376。如图3B中所示,第四实施例的目标信息生成处理与第一实施例的目标信息生成处理相似,不同之处在于去除了步骤S120至S130并且添加了步骤S210至S250。
参照图3B,在接续步骤S110的步骤S210中,信号处理器37将从在步骤S110中选择的相同对象峰值对中选择的代表峰值对的横向位置确定为前车的横向位置。如第一实施例中的那样,信号处理器37进一步将从本车看到的最右侧峰值对和从本车看到的最左侧峰值对之间的横向位置差确定为前车的宽度。
随后,在步骤S220中,信号处理器37基于从距离ECU3接收到的转向角度来确定本车是否正在转弯。如果在步骤S220中确定本车未在转弯,则处理前往步骤S250。
如果在步骤S220中确定本车正在转弯,则在步骤S230中,信号处理器37响应于转弯方向从在步骤S110中选择的相同对象峰值对中提取校正峰值对(校正前车的横向位置时使用的峰值对)。更具体而言,如图4A的左图和中图中所示,当本车向左转弯时,信号处理器37基于在步骤S90中计算的横向位置提取最右侧峰值对作为校正峰值对。另一方面,当本车向右转弯时,信号处理器37基于在步骤S90中计算的横向位置提取最左侧峰值对作为校正峰值对。
随后,在步骤S240中,如图4A的中图和右图中所示,信号处理器37将在步骤S210中确定的前车的横向位置校正到代表峰值对的横向位置和校正峰值对的横向位置的中心。信号处理器37进一步将各个峰值对和校正峰值对之间的横向位置差确定为前车的宽度。处理前往步骤S250。
在步骤S250中,信号处理器37生成至少包括指示前车相对于本车的速度(相对速度)的速度信息、指示前车的横向位置的横向位置信息、指示前车的宽度的宽度信息、指示本车和代表峰值对之间的距离的距离信息的目标信息,并且将目标信息发送到距离ECU3。该周期的处理随后结束。
再次参照图3A,将根据图3B中所示的流程图的流程解释目标检测单元371、代表目标选择单元372、相同对象目标选择单元373、对象位置确定单元374、转弯确定单元375和第二位置确定禁止单元376的操作。
在如上配置的雷达装置2中,目标检测单元(作为目标检测部件)371负责步骤S90中的操作,其中根据从目标反射的雷达波检测反射从装置2发射的雷达波的目标的位置(对应于各个峰值对)。
代表目标选择单元(作为代表目标选择部件)372负责从在步骤S100中识别为目标的峰值对中选择代表峰值对,即与最接近本车的目标对应的峰值对。
相同对象目标选择单元(作为相同对象目标选择部件)373负责步骤S110中的操作,其中从在步骤S100中识别为目标的峰值对中选择满足利用代表目标选择单元372选择的代表峰值对如上定义的预定的相同对象目标选择条件的峰值对。
转弯确定单元(作为转弯确定部件)375负责步骤S220中的操作,其中基于从距离ECU3接收到的转向角度确定本车是否正在转弯。
对象位置确定单元(作为对象位置确定部件)374负责步骤S230中的操作,其中如果确定本车正在转弯,则沿着与转弯方向相对的横向方向的最末端峰值对被确定为校正峰值对。对象位置确定单元374进一步负责步骤S240中的操作,其中位于前车后部的代表峰值对的横向位置和最末端峰值对(校正峰值对)的横向位置的中心被确定为前车的横向位置。
第二位置确定禁止单元(作为第二位置确定禁止部件)376负责如下操作:如果在步骤S220中确定本车未在转弯,则禁止对象位置确定单元374计算代表峰值对的横向位置和最末端峰值对的横向位置的中心作为前车的横向位置。对象位置确定单元374随后将代表峰值对的横向位置确定为前车的横向位置。
因此,如图4B中所示,即使当位于前车后部的目标的横向位置在前车的转弯期间在转弯方向上变化,前车的横向位置仍被校正到在与转弯方向相对的方向上移位的横向位置,这导致转弯期间的前车的检测位置的变化的减少。
(第五实施例)
现将参照图5A、5B解释本发明的第五实施例。将仅解释第五实施例与第四实施例的不同之处。
第五实施例的自动巡航控制系统1与第四实施例的自动巡航控制系统1相似,不同之处在于修改了目标信息生成处理和信号处理器37的操作。图5A是第五实施例的信号处理器37的示意性框图。图5B是第五实施例的目标信息生成处理的流程图。
如图5A中所示,第五实施例的信号处理器37与第四实施例的信号处理器37相似,不同之处在于添加了大型车辆确定单元377和第一位置确定禁止单元378并且修改了对象位置确定单元374。如图5B中所示,第五实施例的目标信息生成处理与第四实施例的目标信息生成处理相似,不同之处在于移除了步骤S210至S250并且添加了步骤S310至S370。
参照图5B,在接续步骤S110的步骤S310中,信号处理器37确定在步骤S110中选择的相同对象峰值对(包括代表峰值对并且以下均被称为相同对象峰值对)的数目是否等于或大于用于大型车辆确定的预定的阈值对数目。如果在步骤S310中确定相同对象峰值对的数目等于或大于用于大型车辆确定的预定的阈值对数目,则处理前往步骤S320,其中信号处理器37从在步骤S110中选择的相同对象峰值对中选择具有最大频率峰值强度的相同对象峰值对并且确定所选择的相同对象峰值对的反射波接收功率(以下称为最大峰值接收功率)是否等于或大于用于大型车辆确定的预定的阈值接收功率。
如果在步骤S320中确定所选择的相同对象峰值对的最大峰值接收功率等于或大于用于大型车辆确定的预定的阈值接收功率,则信号处理器37在步骤S330中确定前车是大型车辆。随后,在步骤S340中,信号处理器37基于在步骤S90中计算的峰值对的横向位置,从在步骤S110中选择的相同对象峰值对中提取从本车看到的最右侧峰值对和从本车看到的最左侧峰值对。信号处理器37在步骤S340中进一步将最右侧峰值对的横向位置和最左侧峰值对的横向位置的中心确定为前车的横向位置,并且将最右侧峰值对和最左侧峰值对之间的横向位置差确定为前车的宽度。
如果在步骤S310中确定相同对象峰值对的数目小于用于大型车辆确定的预定的阈值对数目,或者如果在步骤S320中确定所选择的相同对象峰值对的最大峰值接收功率小于用于大型车辆确定的预定的阈值接收功率,则信号处理器37在步骤S350中确定前车不是大型车辆。信号处理器37在步骤S360中进一步将从在步骤S110中选择的相同对象峰值对中选择的代表峰值对的横向位置确定为前车的横向位置。如第一实施例中的那样,信号处理器37进一步将最右侧峰值对和最左侧峰值对之间的横向位置差确定为前车的宽度。处理随后前往步骤S370。
随后,在步骤S370中,信号处理器37生成至少包括指示前车相对于本车的速度(相对速度)的速度信息、指示前车的横向位置的横向位置信息、指示前车的宽度的宽度信息、指示代表峰值对和本车之间的距离的距离信息的目标信息,并且将目标信息发送到距离ECU3。该周期的处理随后结束。
再次参照图5A,将根据图5B中所示的流程图的流程解释目标检测单元371、代表目标选择单元372、相同对象目标选择单元373、对象位置确定单元374、大型车辆确定单元377和第一位置确定禁止单元378的操作。
在如上配置的雷达装置2中,目标检测单元(作为目标检测部件)371负责步骤S90中的操作,其中根据从目标反射的雷达波检测反射从装置2发射的雷达波的目标的位置(对应于各个峰值对)。
代表目标选择单元(作为代表目标选择部件)372负责从在步骤S100中识别为目标的峰值对中选择代表峰值对,即与最接近本车的目标对应的峰值对。
相同对象目标选择单元(作为相同对象目标选择部件)373负责步骤S110中的操作,其中从在步骤S100中识别为目标的峰值对中选择满足利用代表目标选择单元372选择的代表峰值对如上定义的预定的相同对象目标选择条件的峰值对。
大型车辆确定单元(作为大型车辆确定部件)377负责步骤S310中的操作,其中确定相同对象峰值对(包括代表峰值对)的数目是否等于或大于用于大型车辆确定的预定的阈值对数目。大型车辆确定单元377进一步负责步骤S320中的操作,其中确定具有最大频率峰值强度的相同对象峰值对的最大峰值接收功率是否等于或大于用于大型车辆确定的预定的阈值接收功率。
对象位置确定单元(作为对象位置确定部件)374负责步骤S340中的操作,其中从本车看到的最右侧峰值对的横向位置和从本车看到的最左侧峰值对的横向位置的中心被确定为前车的横向位置,其中前车在步骤S330中被确定为大型车辆。对象位置确定单元374进一步负责步骤S360中的操作,其中在前车是非大型车辆的情况下,代表峰值对的横向位置的中心被确定为前车的横向位置,其中前车在步骤S350中被确定为非大型车辆。
第一位置确定禁止单元(作为第一位置确定禁止部件)378负责如下操作:如果在步骤S350中确定前车不是大型车辆,则禁止对象位置确定单元374计算从本车看到的最右侧峰值对的横向位置和从本车看到的最左侧峰值对的横向位置的中心作为前车的横向位置。
在本实施例中,除非被第一位置确定禁止单元378禁止,否则允许对象位置确定单元374实现步骤S340中的操作。
在前车(特定反射对象)的横向位置变化由于前车是非大型车辆而可被忽略的情况下,这可以禁止如步骤S340中执行的前车的横向位置的不必要的计算。
(第六实施例)
现将参照图5A、5B解释本发明的第六实施例。将仅解释第六实施例与第五实施例的不同之处。
第六实施例的自动巡航控制系统1与第五实施例的自动巡航控制系统1相似,不同之处在于修改了对象位置确定单元374和目标信息生成处理的步骤S340中的操作。
在本实施例中,在接续步骤S310、S320的步骤S340中,信号处理器37将在步骤S110中选择的所有相同对象峰值对的横向位置的平均值确定为前车的横向位置。如第五实施例的目标信息生成处理的步骤S340中的那样,信号处理器37在步骤S340中进一步将从本车看到的最右侧峰值对和从本车看到的最左侧峰值对之间的横向位置差确定为前车的宽度。随后,处理前往步骤S370。
对象位置确定单元374负责目标信息生成处理的步骤S340中的操作。
在前车的横向位置变化由于前车是非大型车辆而可被忽略的情况下,这可以禁止如步骤S340中执行的前车的横向位置的不必要的计算。
(第七实施例)
现将参照图5A、5B解释本发明的第七实施例。将仅解释第七实施例与第五实施例的不同之处。
第七实施例的自动巡航控制系统1与第五实施例的自动巡航控制系统1相似,不同之处在于修改了对象位置确定单元374和目标信息生成处理的步骤S340中的操作。
在本实施例中,在接续步骤S310、S320的步骤S340中,信号处理器37将在步骤S110中选择的所有相同对象峰值对的横向位置的加权平均值确定为前车的横向位置。通过将各个相同对象峰值对的反射波接收功率的幅值用作权重来计算加权平均值。如第五实施例的目标信息生成处理的步骤S340中的那样,信号处理器37在步骤S340中进一步将从本车看到的最右侧峰值对和从本车看到的最左侧峰值对之间的横向位置差确定为前车的宽度。随后,处理前往步骤S370。
对象位置确定单元374负责目标信息生成处理的步骤S340中的操作。
在前车的横向位置变化由于前车是非大型车辆而可被忽略的情况下,这可以禁止如步骤S340中执行的前车的横向位置的不必要的计算。
(第八实施例)
现将参照图5C、5D解释本发明的第八实施例。将仅解释第八实施例与第四实施例的不同之处。
第八实施例的自动巡航控制系统1与第四实施例的自动巡航控制系统1相似,不同之处在于修改了目标信息生成处理和信号处理器37的操作。图5C是第八实施例的信号处理器37的示意性框图。图5D是第八实施例的目标信息生成处理的流程图。
如图5C中所示,第八实施例的信号处理器37与第四实施例的信号处理器37相似,不同之处在于添加了大型车辆确定单元377和转弯确定禁止单元379。如图5D中所示,第八实施例的目标信息生成处理与第四实施例的目标信息生成处理相似,不同之处在于添加了步骤S310、S320、S330和S350。
参照图5D,在接续步骤S210的步骤S310中,信号处理器37确定在步骤S110中选择的相同对象峰值对(包括代表峰值对)的数目是否等于或大于用于大型车辆确定的预定的阈值对数目。如果在步骤S310中确定相同对象峰值对的数目等于或大于用于大型车辆确定的预定的阈值对数目,则处理前往步骤S320,其中信号处理器37从在步骤S110中选择的相同对象峰值对中选择具有最大频率峰值强度的相同对象峰值对并且确定所选择的相同对象峰值对的反射波接收功率(以下称为最大峰值接收功率)是否等于或大于用于大型车辆确定的预定的阈值接收功率。
如果在步骤S320中确定所选择的相同对象峰值对的最大峰值接收功率等于或大于用于大型车辆确定的预定的阈值接收功率,则信号处理器37在步骤S330中确定前车是大型车辆。随后处理前往步骤S220。
另一方面,如果在步骤S310中确定相同对象峰值对的数目小于用于大型车辆确定的预定的阈值对数目,或者如果在步骤S320中确定所选择的相同对象峰值对的最大峰值接收功率小于用于大型车辆确定的预定的阈值接收功率,则信号处理器37在步骤S350中确定前车不是大型车辆。随后处理前往步骤S250。因此当前车是大型车辆时禁止校正前车的横向位置,即步骤S240中的操作。
再次参照图5C,大型车辆确定单元(作为大型车辆确定部件)377负责步骤S310中的操作,其中确定相同对象峰值对(包括代表峰值对)的数目是否等于或大于用于大型车辆确定的预定的阈值对数目。大型车辆确定单元377进一步负责步骤S320中的操作,其中确定具有最大频率峰值强度的相同对象峰值对的最大峰值接收功率是否等于或大于用于大型车辆确定的预定的阈值接收功率。
转弯确定禁止单元(作为转弯确定禁止部件)379负责如下操作:如果在步骤S350中确定前车不是大型车辆,则禁止转弯确定单元375确定本车是否正在转弯。
除非转弯确定单元375确定本车正在转弯,否则第二位置确定禁止单元(作为第二位置确定禁止部件)376禁止对象位置确定单元374计算代表峰值对的横向位置和最末端峰值对的横向位置的中心作为前车的横向位置。
在前车的横向位置变化由于前车是非大型车辆而可被忽略的情况下,这可以禁止在步骤S220至S240中在转弯期间执行的前车的横向位置的不必要的计算。
(一些修改)
现将解释可以在不偏离本发明的精神和范围的情况下构思的上述实施例的一些修改。
在第五实施例中,通过使用相同对象峰值对的数目和最大峰值接收功率确定前车是大型的。替选地,可以通过使用所拍摄的本车前方的图像等来确定前车是大型的。
在第五实施例中,当相同对象峰值对的数目等于或大于用于大型车辆确定的阈值对数目并且最大峰值接收功率等于或大于用于大型车辆确定的预定的阈值接收功率时,确定前车是大型车辆。替选地,当相同对象峰值对的数目等于或大于用于大型车辆确定的预定的阈值对数目时或者当最大峰值接收功率等于或大于用于大型车辆确定的预定的阈值接收功率时,确定前车是大型车辆。
在上述的实施例中,通过利用从本车到峰值对的距离和从本车到代表峰值对的距离之间的距离差、从本车到峰值对的峰值方向和从本车到代表峰值对的峰值方向的峰值方向差、以及峰值对相对于本车的速度和代表峰值对相对于本车的速度之间的相对速度差,来定义用于确定峰值对是否属于特定反射对象的相同对象目标选择条件。替选地,可以通过仅利用距离差、仅利用峰值方向差、仅利用相对速度差、或者通过距离差、峰值方向差和相对速度差的任何组合,来定义相同对象目标选择条件。
受益于在以上描述和附图中呈现的教导的本发明所属领域的技术人员将想到本发明的许多修改和其他实施例。因此,应当理解本发明不限于所公开的具体实施例和修改,并且其他实施例也应被包括在所附权利要求的范围内。尽管在这里采用了特定的术语,但它们仅是一般性的和描述性的,而非用于限制的目的。

Claims (4)

1.一种车载雷达装置(2),所述车载雷达装置用于在安装有所述装置的车辆的前进方向上传送雷达波,所述车辆在以下被称为安装有雷达的车辆,并且所述车载雷达装置用于接收从对象反射的雷达波以获取关于所述对象的信息,所述装置包括:
目标检测单元(371),其传送和接收雷达波以检测反射雷达波的目标的位置;
代表目标选择单元(372),其选择满足预定的代表目标指定条件的、由所述目标检测单元(371)检测到的目标中的一个,所述预定的代表目标指定条件用于指定由所述目标检测单元(371)检测到的目标的代表,所述预定的代表目标指定条件规定所述代表目标是所述目标检测单元(371)检测到的目标中的最接近所述安装有雷达的车辆的目标;
相同对象目标选择单元(373),其从所述目标检测单元(371)检测到的目标中,选择满足预定的相同对象目标选择条件的目标,所述预定的相同对象目标选择条件用于确定所述目标检测单元(371)检测到的目标中的哪个目标属于与所述代表目标相同的对象,所述代表目标和由所述相同对象目标选择单元(373)选择的与所述代表目标不同的目标一起形成相同对象目标组,并且所述相同对象目标组中的每个目标所属的对象称为特定反射对象;
对象位置确定单元(374),其计算所述相同对象目标组的两个或更多个目标的横向位置的预先定义的函数的值,作为所述特定反射对象的、沿着所述安装有雷达的车辆的车辆宽度方向的横向位置;以及
转弯确定单元(375),其确定所述安装有雷达的车辆是否正在转弯,
其中,当所述转弯确定单元(375)确定所述安装有雷达的车辆正在转弯时,所述对象位置确定单元(374)从所述相同对象目标组的目标中提取沿着与所述安装有雷达的车辆的转弯方向相对的横向方向的最末端目标,并且进一步计算所述代表目标的横向位置和所述最末端目标的横向位置的中心,作为前车的横向位置。
2.根据权利要求1所述的装置(2),进一步包括:
大型车辆确定单元(377),其确定所述特定反射对象是否是大型车辆;以及
转弯确定禁止单元(379),当所述大型车辆确定单元(377)确定所述特定反射对象不是大型车辆时,所述转弯确定禁止单元(379)禁止所述转弯确定单元(375)确定所述安装有雷达的车辆是否正在转弯。
3.根据权利要求1所述的装置(2),其中所述预定的相同对象目标选择条件包括以下至少之一:
第一条件:所述目标和所述代表目标之间的距所述安装有雷达的车辆的距离差等于或小于距离差的预定阈值;
第二条件:所述目标和所述代表目标之间的相对所述安装有雷达的车辆的峰值方向差等于或小于峰值方向差的预定阈值;以及
第三条件:所述目标和所述代表目标之间的相对所述安装有雷达的车辆的相对速度差等于或小于相对速度差的预定阈值。
4.根据权利要求1至3中任一项所述的装置(2),其中所述预定的代表目标指定条件规定所述代表目标是所述目标检测单元(371)检测到的目标中的、具有反射波的功率谱中的最大频率峰值强度的目标。
CN201310051390.0A 2012-02-13 2013-02-16 车载雷达装置 Active CN103245946B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-028567 2012-02-13
JP2012028567A JP5996878B2 (ja) 2012-02-13 2012-02-13 レーダ装置

Publications (2)

Publication Number Publication Date
CN103245946A CN103245946A (zh) 2013-08-14
CN103245946B true CN103245946B (zh) 2016-03-16

Family

ID=48868475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310051390.0A Active CN103245946B (zh) 2012-02-13 2013-02-16 车载雷达装置

Country Status (4)

Country Link
US (1) US9134409B2 (zh)
JP (1) JP5996878B2 (zh)
CN (1) CN103245946B (zh)
DE (1) DE102013202225B4 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009775B2 (ja) * 2012-02-13 2016-10-19 株式会社デンソー レーダ装置
JP6027365B2 (ja) * 2012-07-30 2016-11-16 富士通テン株式会社 レーダ装置、車両制御システム、および、信号処理方法
JP6181924B2 (ja) * 2012-12-06 2017-08-16 富士通テン株式会社 レーダ装置、および、信号処理方法
JP6020321B2 (ja) 2013-04-11 2016-11-02 株式会社デンソー 物標検出装置及び車両制御システム
JP5939224B2 (ja) * 2013-10-03 2016-06-22 株式会社デンソー 先行車選択装置
JP2015224899A (ja) * 2014-05-26 2015-12-14 株式会社デンソー 車載レーダ装置
JP6260483B2 (ja) * 2014-07-16 2018-01-17 株式会社デンソー 物標検出装置
JP6394138B2 (ja) * 2014-07-16 2018-09-26 株式会社デンソー 車載レーダ装置および報知システム
JP6413457B2 (ja) * 2014-08-08 2018-10-31 株式会社デンソー 降水判定装置
CN104477092A (zh) * 2014-11-20 2015-04-01 郑州宇通客车股份有限公司 一种判断司机转向意图的方法
JP6443011B2 (ja) * 2014-12-01 2018-12-26 株式会社デンソー 物標検出装置
CN104483667A (zh) * 2015-01-02 2015-04-01 江苏新瑞峰信息科技有限公司 一种车载雷达装置
US10126418B1 (en) * 2015-09-08 2018-11-13 Waymo LLP Pulse-doppler rada measurement of crossing target dynamics
JP6723836B2 (ja) * 2016-06-03 2020-07-15 株式会社デンソーテン レーダ装置および信号処理方法
US10502809B2 (en) * 2017-01-13 2019-12-10 Raytheon Company Reconfigurable analog-to-digital conversion sampling of antennas for phase interferometry
JP7188894B2 (ja) * 2018-03-16 2022-12-13 株式会社デンソーテン レーダ装置及び信号処理方法
JP7067175B2 (ja) 2018-03-23 2022-05-16 株式会社デンソー 運転支援装置、運転支援方法、およびコンピュータプログラム
JP7227227B2 (ja) * 2018-04-12 2023-02-21 株式会社小糸製作所 オブジェクト識別システム、自動車、車両用灯具
US10948590B2 (en) * 2018-07-26 2021-03-16 GM Global Technology Operations LLC Estimation and compensation of transceiver position offsets in a radar system for targets at unknown positions
KR102612335B1 (ko) * 2018-10-08 2023-12-12 주식회사 에이치엘클레무브 타깃 탐지 장치 및 방법과, 차량 제어 장치 및 방법
CN111366926B (zh) * 2019-01-24 2022-05-31 杭州海康威视系统技术有限公司 跟踪目标的方法、装置、存储介质和服务器
WO2020186420A1 (zh) * 2019-03-18 2020-09-24 深圳市大疆创新科技有限公司 一种目标检测方法、设备、毫米波雷达及可移动平台
CN110031821B (zh) * 2019-03-25 2020-11-17 白犀牛智达(北京)科技有限公司 一种车载避障激光雷达波形提取方法、激光雷达及介质
KR20200129526A (ko) * 2019-05-09 2020-11-18 주식회사 만도 차량용 레이더 장치, 및 차량용 레이더 제어 방법과 시스템
US11181614B2 (en) * 2019-06-06 2021-11-23 GM Global Technology Operations LLC Antenna array tilt and processing to eliminate false detections in a radar system
JP7476495B2 (ja) * 2019-08-20 2024-05-01 オムロン株式会社 自律走行車両の衝突回避装置、衝突回避方法、衝突回避プログラム
KR20210060237A (ko) * 2019-11-18 2021-05-26 현대모비스 주식회사 후방 교차 충돌 감지 시스템 및 방법
RU2735744C1 (ru) * 2020-03-27 2020-11-06 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459029A (zh) * 2001-03-15 2003-11-26 富士通天株式会社 扫描式雷达的信号处理方法
CN1609632A (zh) * 2003-10-24 2005-04-27 富士通天株式会社 雷达的扫描方法
EP1557690A1 (en) * 1999-01-13 2005-07-27 Honda Giken Kogyo Kabushiki Kaisha Radar apparatus
CN1657971A (zh) * 2004-02-18 2005-08-24 欧姆龙株式会社 雷达装置
CN101178437A (zh) * 2006-11-06 2008-05-14 丰田自动车株式会社 物体探测系统和物体探测方法
CN101561970A (zh) * 2009-05-25 2009-10-21 中国人民解放军理工大学气象学院 一种微波车辆检测雷达的控制方法
CN101806891A (zh) * 2010-04-23 2010-08-18 建程科技股份有限公司 雷达车辆侦测器判断车种、车速及侦测区域宽度的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827909A (ja) 1994-07-20 1996-01-30 Hitachi Metals Ltd コンクリ−ト接合金具
JP3470453B2 (ja) 1995-04-06 2003-11-25 株式会社デンソー 車間距離制御装置
US6085151A (en) 1998-01-20 2000-07-04 Automotive Systems Laboratory, Inc. Predictive collision sensing system
JPH1194946A (ja) * 1997-07-23 1999-04-09 Denso Corp 車両用障害物認識装置
JP3565713B2 (ja) * 1998-05-27 2004-09-15 富士通テン株式会社 Fm−cw方式スキャンレーダ用信号処理装置
JP4115638B2 (ja) 1999-10-19 2008-07-09 本田技研工業株式会社 物体認識装置
DE10047746A1 (de) * 2000-09-27 2002-04-11 Bayerische Motoren Werke Ag Verfahren zur Längsregelung eines Fahrzeuges, bei dem Informationen eines Navigationssystems erfasst werden
JP4064693B2 (ja) * 2001-03-15 2008-03-19 富士通テン株式会社 スキャン式fm−cwレーダの信号処理方法
JP2003294838A (ja) * 2002-04-01 2003-10-15 Hitachi Ltd 車載レーダ装置および車載用処理装置
US7136753B2 (en) * 2002-12-05 2006-11-14 Denso Corporation Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP4284652B2 (ja) * 2004-03-08 2009-06-24 オムロン株式会社 レーダ装置
JP2009042181A (ja) * 2007-08-10 2009-02-26 Denso Corp 推定装置
JP4680294B2 (ja) 2008-12-26 2011-05-11 トヨタ自動車株式会社 物体検出装置および物体検出方法
JP5604179B2 (ja) * 2010-05-27 2014-10-08 本田技研工業株式会社 物体検知装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557690A1 (en) * 1999-01-13 2005-07-27 Honda Giken Kogyo Kabushiki Kaisha Radar apparatus
CN1459029A (zh) * 2001-03-15 2003-11-26 富士通天株式会社 扫描式雷达的信号处理方法
CN1609632A (zh) * 2003-10-24 2005-04-27 富士通天株式会社 雷达的扫描方法
CN1657971A (zh) * 2004-02-18 2005-08-24 欧姆龙株式会社 雷达装置
CN101178437A (zh) * 2006-11-06 2008-05-14 丰田自动车株式会社 物体探测系统和物体探测方法
CN101561970A (zh) * 2009-05-25 2009-10-21 中国人民解放军理工大学气象学院 一种微波车辆检测雷达的控制方法
CN101806891A (zh) * 2010-04-23 2010-08-18 建程科技股份有限公司 雷达车辆侦测器判断车种、车速及侦测区域宽度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于DSP的车载防撞雷达系统的设计;陈海宁等;《微电子学》;20090430;第39卷(第2期);165-168 *

Also Published As

Publication number Publication date
DE102013202225A1 (de) 2013-08-14
US9134409B2 (en) 2015-09-15
US20130207832A1 (en) 2013-08-15
JP5996878B2 (ja) 2016-09-21
JP2013164391A (ja) 2013-08-22
DE102013202225B4 (de) 2023-04-27
CN103245946A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103245946B (zh) 车载雷达装置
CN103245945B (zh) 车载雷达装置
US9073548B2 (en) Vehicle-mounted radar apparatus
JP4561507B2 (ja) 道路形状認識装置
US9783196B2 (en) Vehicle control apparatus for implementing inter-vehicle distance control using offset associated with target on preceding vehicle
US9260115B2 (en) Vehicle control apparatus
US9260114B2 (en) Vehicle control apparatus
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
US10768293B2 (en) Object detecting apparatus using reflection point information of object
US9977126B2 (en) Radar apparatus
JP2016075524A (ja) レーダ装置
US9868441B2 (en) Vehicle control apparatus
US8896482B2 (en) Object detection method
US10802140B2 (en) Radar device and vehicle velocity correction method
JP2009300102A (ja) 方位検出装置、レーダ装置
CN105301571A (zh) 车辆控制设备
CN104483667A (zh) 一种车载雷达装置
JP4079739B2 (ja) 車載用レーダ装置
JP7188894B2 (ja) レーダ装置及び信号処理方法
JP2009058316A (ja) レーダ装置、物体検出方法、及び車両
JP2007232747A (ja) 車載用レーダ装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant