CN103215291B - 用于生产l-2-氨基丁酸的载体、工程菌株及方法 - Google Patents

用于生产l-2-氨基丁酸的载体、工程菌株及方法 Download PDF

Info

Publication number
CN103215291B
CN103215291B CN201210015308.4A CN201210015308A CN103215291B CN 103215291 B CN103215291 B CN 103215291B CN 201210015308 A CN201210015308 A CN 201210015308A CN 103215291 B CN103215291 B CN 103215291B
Authority
CN
China
Prior art keywords
gene
psugap
plasmid
ilva
c4h9no2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210015308.4A
Other languages
English (en)
Other versions
CN103215291A (zh
Inventor
杨晟
陶荣盛
朱傅赟
赵丽丽
蒋宇
杨俊杰
孙周通
沈正权
黄鹤
孙梁栋
董枫
刘映淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gyrochem (Shanghai Puyi) Co., Ltd.
Original Assignee
HUZHOU RESEARCH CENTER OF INDUSTRIAL BIOTECHNOLOGY SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES CHINESE ACADEMY OF SCIENCES
SHANGHAI RESEARCH AND DEVELOPMENT CENTER OF INDUSTRIAL BIOTECHNOLOGY
Shanghai Institutes for Biological Sciences SIBS of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUZHOU RESEARCH CENTER OF INDUSTRIAL BIOTECHNOLOGY SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES CHINESE ACADEMY OF SCIENCES, SHANGHAI RESEARCH AND DEVELOPMENT CENTER OF INDUSTRIAL BIOTECHNOLOGY, Shanghai Institutes for Biological Sciences SIBS of CAS filed Critical HUZHOU RESEARCH CENTER OF INDUSTRIAL BIOTECHNOLOGY SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES CHINESE ACADEMY OF SCIENCES
Priority to CN201210015308.4A priority Critical patent/CN103215291B/zh
Publication of CN103215291A publication Critical patent/CN103215291A/zh
Application granted granted Critical
Publication of CN103215291B publication Critical patent/CN103215291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及用于生产L-2-氨基丁酸的载体、工程菌株及方法。具体地,本发明涉及的重组载体包含苏氨酸脱氨酶编码基因和L-氨基酸脱氢酶编码基因以及合适的载体片段;本发明的基因工程菌株,是使用本发明提供的重组载体转化宿主菌得到;生产L-2-氨基丁酸的方法是通过发酵培养本发明提供的基因工程菌而获得的。本发明以葡萄糖为原料,通过发酵培养本发明构建的基因工程菌株而得到L-2-氨基丁酸。本发明方法成本低,产物浓度高,没有副产物影响,产物易于纯化,非常适于工业应用。

Description

用于生产L-2-氨基丁酸的载体、工程菌株及方法
技术领域
本发明属于生物技术领域,具体地,涉及用于生产L-2-氨基丁酸的载体、工程菌株及方法。
背景技术
L-2-氨基丁酸(L(+)-2-Aminobutyricacid),是一种非天然的手性α-氨基酸,分子式为C4H9NO2,主要用于合成治疗局限性及继发性全身性癫痫的疾病,同时也是合成抑菌抗结核药乙胺丁醇的关键手性前体。
转氨酶法是目前广泛应用的生产L-2-氨基丁酸的方法。早期采用酮酸和谷氨酸为底物,在氨基酸转氨酶的作用下生成L-2-氨基丁酸,该法收率较低;后采用L-苏氨酸为原料,采用三酶体系制备L-2-氨基丁酸,该法产率低且有副产物影响产品的纯化;氨基酸氧化酶法是使用D-氨基酸氧化酶在金属催化剂的作用下制备L-2-氨基丁酸,该法成本高,不适合大规模工业应用。
此外还有脱氢酶法、氨基酰化酶法等,但是存在生产成本过高以及酶活受到底物抑制的问题,因此工业应用效果不佳。因此本领域迫切需要开发高效经济的L-2-氨基丁酸的生产方法。
发明内容
本发明的目的在于提供一种用于构建发酵生产L-2-氨基丁酸的重组载体。
本发明的另一目的在于提供一种用于发酵生产L-2-氨基丁酸的基因工程菌株。
本发明的另一目的在于提供一种生产L-2-氨基丁酸的方法。
本发明另一目的在于提供前述载体、工程菌株和生产方法的用途。
在本发明的第一方面,提供了一种重组载体,所述重组载体具有编码苏氨酸脱氨酶的多核苷酸序列和编码L-氨基酸脱氢酶的多核苷酸序列。
在另一优选例中,编码苏氨酸脱氨酶的多核苷酸序列选自下组:
大肠杆菌来源的ilvA基因、大肠杆菌来源的TdcB基因、芽孢杆菌来源的ilvAbs基因、鼠伤寒沙门氏菌来源的苏氨酸脱氨酶基因、或拟南芥来源的苏氨酸脱氨酶基因。
在另一优选例中,编码苏氨酸脱氨酶的多核苷酸序列为:大肠杆菌来源的ilvA基因或大肠杆菌来源的TdcB基因。
在另一优选例中,所述的L-氨基酸脱氢酶选自下组:L-亮氨酸脱氢酶、L-丙氨酸脱氢酶、L-缬氨酸脱氢酶、L-苯丙氨酸脱氢酶。
在另一优选例中,编码L-氨基酸脱氢酶的多核苷酸序列选自下组:
芽孢杆菌来源的L-亮氨酸脱氢酶编码基因、芽孢杆菌来源的L-丙氨酸脱氢酶编码基因、古球菌来源的L-丙氨酸脱氢酶编码基因、链霉菌来源的L-缬氨酸脱氢酶编码基因、嗜热放线菌来源的L-苯丙氨酸脱氢酶编码基因,或芽孢杆菌来源的L-苯丙氨酸脱氢酶编码基因。
在另一优选例中,编码L-氨基酸脱氢酶的多核苷酸序列为:
芽孢杆菌来源的L-亮氨酸脱氢酶编码基因,嗜热芽孢杆菌来源的L-亮氨酸脱氢酶编码基因,或链霉菌来源的缬氨酸脱氢酶基因。
在另一优选例中,所述的重组载体从5’端到3’端依次具有:第一启动子、苏氨酸脱氨酶编码序列和第一终止子、L-氨基酸脱氢酶编码序列和第二终止子。
在另一优选例中,所述的重组载体从5’端到3’端依次具有:第一启动子、苏氨酸脱氨酶ilvA编码序列和第一终止子、L-亮氨酸脱氢酶基因leuDH编码序列和第二终止子。
在另一优选例中,苏氨酸脱氨酶ilvA编码序列来源于大肠杆菌W3110。
在另一优选例中,L-亮氨酸脱氢酶基因leuDH编码序列来源于芽孢杆菌Bacilluscereus。
在另一优选例中,所述的重组载体为pSUGAP-ilvA-leuDH,pSUGAP-leuDH-ilvA,pSUGAP-ilvA-BSleuDH,pSUGAP-Vdh-ilvA,pSUGAP-TdcB-leuDH,pSUGAP-TdcB-BSleuDH,或pSUGAP-Vdh-tdcB。
在本发明的第二方面,提供了一种宿主细胞,它含有本发明第一方面所述的载体或基因组中整合有本发明第一方面任一所述的多核苷酸序列。
在另一优选例中,所述的宿主细胞为原核细胞,较佳地为大肠杆菌细胞。
在另一优选例中,所述的大肠杆菌是高表达苏氨酸的大肠杆菌。
在另一优选例中,所述宿主细胞的染色体具有选自下组的至少一个特征:
(1)天冬氨酸激酶I基因thrA的1034位碱基发生C→T突变;
(2)天冬氨酸激酶III基因lysC的1055位碱基发生C→T突变;
(3)磷酸烯醇丙酮酸羧化酶基因ppc启动子为trc启动子;
(4)乙酰-CoA合成酶基因acs启动子为trc启动子;
(5)选自下组的至少一个基因失活或敲除:二氨基庚二酸盐脱羧酶基因lysA、高丝氨酸琥珀酰转移酶基因metA、苏氨酸脱氢酶基因tdh、苏氨酸转运酶基因tdcC和调控基因iclR。
在另一优选例中,所述宿主细胞为大肠杆菌THR。
在本发明的第三方面,提供了本发明第二方面所述的宿主细胞在制备L-2-氨基丁酸中的用途。
在本发明的第四方面,提供了一种生产L-2-氨基丁酸的方法,包括步骤:
(i)在合适的培养条件下,培养本发明第二方面所述的宿主细胞;和
(ii)从(i)的培养物中分离出所述的L-2-氨基丁酸。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
下列附图用于说明本发明的具体实施方案,而不用于限定由权利要求书所界定的本发明范围。
图1为酶切回收pSU2718的电泳结果。
图2为PCR得到的GAP片段的电泳结果。
图3为pSUGAP、pET28b-ilvA和pET28b-leuDH双酶切电泳检测结果,其中泳道1为pET28b-ilvA、泳道2为pET28b-leuDH、泳道3为pSUGAP。
图4为pSUGAP-ilvA和pSUGAP-leuDH的双酶切电泳检测结果,其中,泳道1和2为pSUGAP-ilvA1-2、泳道3-7为pSUGAP-leuDH1-5。
图5为pSUGAP-ilvA和pSUGAP-leuDH分别用BglII和BamHI双酶切电泳检测结果,泳道1为pSUGAP-ilvA用BglII单酶切,泳道2为pSUGAP-ilvA用BamHI酶切,泳道3为pSUGAP-leuDH用BglII单酶切,泳道4为pSUGAP-leuDH用BamHI酶切。
图6为pSUGAP-ilvA-leuDH的SalI酶切电泳检测结果,其中SM为Specialmarker,包括2354bp,1703bp和1151bp;泳道1-6为pSUGAP-ilvA-leuDH1-6。
图7为pSUGAP-leuDH-ilvA的XhoI/BamHI双酶切电泳检测结果,泳道1-4为pSUGAP-leuDH-ilvA1-4。
图8为pSUGAP-leuDH-ilvA的HindIII酶切电泳检测结果,其中,泳道1-3为pSUGAP-leuDH-ilvA1-3;SM为Specialmarker,包括2354bp、1703bp和1151bp。
图9为携带leuDH和ilvA的克隆子THR/pSUGAP的鉴定结果,其中,图9a为THR/pSUGAP-leuDH-ilvA克隆子鉴定结果;泳道1为pSUGAP-leuDH-ilvA、泳道8为THR、泳道9-13为THR/pSUGAP-leuDH-ilvA1-5;图9b为THR/pSUGAP-ilvA-leuDH克隆子鉴定结果,泳道4-6为THR/pSUGAP-ilvA-leuDH1-3;泳道7为pSUGAP-leuDH-ilvA;泳道9为THR。
图10为THR/pSUGAP-TdcB-leuDH克隆子鉴定结果;其中,泳道1为pSUGAP-TdcB-leuDH,泳道2-3为THR/pSUGAP-TdcB-leuDH1-2,泳道4为THR。
图11为pSUGAP的质粒图谱。
图12为pSUGAP-leuDH的质粒图谱。
图13为pSUGAP-ilvA质粒图谱。
图14为pSUGAP-ilvA-leuDH质粒图谱。
图15为pSUGAP-leuDH-ilvA质粒图谱。
图16为pSUGAP-BSleuDH质粒图谱。
图17为pSUGAP-ilvA-BSleuDH质粒图谱。
图18为pSUGAP-Vdh质粒图谱。
图19为pSUGAP-Vdh-ilvA质粒图谱。
图20为pET24a-TdcB的质粒图谱。
图21为pSUGAP-TdcB-leuDH的质粒图谱。
图22为pSUGAP-TdcB-BSleuDH质粒图谱。
图23为pSUGAP-TdcB质粒图谱。
图24为pSUGAP-Vdh-TdcB质粒图谱。
具体实施方式
本发明人经过广泛而深入的研究,首次构建了包含苏氨酸脱氨酶编码基因和L-氨基酸脱氢酶编码基因的重组载体,将该重组载体转化宿主菌,获得生产工程菌株,以葡萄糖为原料,通过发酵培养本发明构建的基因工程菌株而得到L-2-氨基丁酸。本发明方法成本低,产物浓度高,没有副产物影响,产物易于纯化,非常适于工业应用。
术语
载体的构建
本技术领域人员可方便地用各种已知方法构建载体,包括具有编码苏氨酸脱氨酶的序列和L-氨基酸脱氢酶编码基因的载体,以及与之操作性相连的调控序列。所述的“操作性相连”或“可操作地连于”指这样一种状况,即线性DNA序列的某些部分能够调节或控制同一线性DNA序列其它部分的活性。例如,如果启动子控制序列的转录,那么它就是可操作地连于编码序列。
本领域技术人员可以根据宿主细胞来选择合适的表达载体,根据已知空载体的酶切图谱,本领域技术人员可按照常规方法通过限制性酶剪切与拼接,将编码序列插入合适的限制性位点,制得本发明的重组载体。
在本方面的一个优选例中,构建的载体见表1。
表1
构建中使用的限制性内切酶见表2。
表2
本发明还提供了用于生产目的产物的工程菌株,例如但不限于大肠杆菌等。
在本发明的下述实施例中,涉及的大肠杆菌W3110基因组的GenBank登录号为AC_000091。大肠杆菌W3110的公开信息为:ColiGeneticStockCenterstrain(CGSC)No:4474。
使用的内切核酸酶KpnI、SmaI、SalI、XbaI、XhoI、BamHI、BglII均为市售用酶。使用的质粒pBR322和pKK223-3购于PharmaciaBiotech。使用的质粒pACYC184购于NewEnglandBiolabs。使用的质粒pMloxC参见《AlbertHetal.(1995)Site-specificintegrationofDNAintowild-typeandmutantloxsitesplacedintheplantgenome.PlantJournal7:649-659》披露的方法进行构建。
菌株Bacilluscereus保藏号为ATCC14579。
菌株E.coli购于Fermentas。
质粒pSU2718购于Fermentas。
菌株E.coiiDH5α购于Invitrogen。
质粒pET28b-ilvA参见《AbresciaP,etal.(1979)ThreonineDeaminase:AutogenousRegulatoroftheilvGenesinEscherichiacoilK-12.Molec.gen.Genet.171:261-275》披露的方法构建。
质粒pET28b-leuDH和pET28b-BSleuDH参见《KulaMR,StoyanT,RecktenwaldA.(1997)Cloning,sequencingandoverexpressionoftheleucinedehydrogenasegenefromBacilluscereus.JournalofBiotechnology.54:77-80》披露的方法构建。
质粒pET24a-Vdh参见《HyuuCG,KimSSetal.(2000)ValinedehydrogenasefromStreptomycesalbus:genecloning,heterologousexpressionandidentificationofactivesitebysite-directedmutagenesis.FEMSMicrobiologyLetters.182:29-34》披露的方法构建。
质粒pMD18-T购于TAKARA。
菌株E.coliBL21(DE3)购于Novagen。
液体LB培养基的配方为:10g/L胰蛋白胨,5g/L酵母提取物,10g/L氯化钠。
感受态细胞的制备和转化的方法参看《分子克隆实验指南(第三版)》第一章方案25(科学出版社,2002)》。
葡萄糖的含量测量方法参考《周雅璇等,酶法测定酒中葡萄糖含量,中国卫生检验杂志,2005,12(5):194-221》。
本发明的优点
1.发酵培养本发明构建的基因工程菌株用于生产L-2-氨基丁酸,获得的发酵液中L-2-氨基丁酸的含量高,发酵性质稳定;
2.本发明的方法成本大大降低,工艺稳定;
3.本发明的方法转化率高,没有副产的物影响,产物易于纯化,非常适于工业应用。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(NewYork:ColdSpringHarborLaboratoryPress,1989)中所述的条件,或按照制造厂商所建议的条件。
实施例1
L-苏氨酸高产菌株的构建及L-苏氨酸的发酵
1.高产L-苏氨酸代谢工程菌的构建
1.1大肠杆菌W3110中基因簇thrABC的基因修饰
参考LeeKH等的文献披露的方法(LeeKHetal.SystemsmetabolicengineeringofEscherichiacoliforL-threonineproduction.Molecularsystemsbiology.2007,3:149),从大肠杆菌W3110基因组扩增基因ThrABC、rhtC、rhtA、rhtB;thrA编码天冬氨酸激酶I,rhtA,rhtB编码苏氨酸和高丝氨酸转运子,将苏氨酸运出胞内,rhtC编码苏氨酸转运子,将苏氨酸运出胞内。利用重叠PCR将基因thrA第1034位碱基C定点突变为碱基T(Ser345→Phe),得到ThrA*BC,。
把ThrA*BC连接到具有tac启动子的质粒pKK223-3上,然后依次连入pBR322上1.6kb大小的rop基因和rhtC、rhtA、rhtB基因,得到的质粒pBRThrABCR3,将其转入宿主菌;同时PCR扩增tac启动子在内的thrA*BC-rhtC-rhtA-rhtB,同源重组到基因组中,替换的启动子见表3。
表3
对象 结果
thrABC的原始启动子 tac
acs(编码乙酰-CoA合成酶)的原始启动子 trc
ppc基因(编码磷酸烯醇丙酮酸羧化酶)的原始启动子 trc
经鉴定,thrA*BC-rhtC-rhtA-rhtB已同源重组到基因组中。
1.2大肠杆菌W3110中lysC基因定点突变
参考LeeKH等的文献披露的方法(LeeKHetal.SystemsmetabolicengineeringofEscherichiacoliforL-threonineproduction.Molecularsystemsbiology.2007,3:149),从大肠杆菌W3110基因组扩增基因lysC,lysC编码天冬氨酸激酶III。利用重叠PCR将基因lysC第1055位碱基C定点突变为碱基T(Thr342→Ile),同源重组到基因组中。经DNA序列分析鉴定,该突变位点已被同源重组到基因组中。
1.3大肠杆菌W3110中ppc基因和acs基因的启动子更换为trc启动子
参考YuanLZ等的文献(YuanLZetal.ChromosomalpromoterreplacementoftheisoprenoidpathwayforenhancingcarotenoidproductioninE.coli.MetabEng.2006,8:79-90)和LeeKH的文献(LeeKHetal.SystemsmetabolicengineeringofEscherichiacoliforL-threonineproduction.Molecularsystemsbiology.2007,3:149),将W3110基因组中编码磷酸烯醇丙酮酸羧化酶的ppc基因和编码乙酰-CoA合成酶的acs基因的原始启动子替换为trc启动子,见表1。
对于ppc基因更换启动子,第一次PCR以pACYC184为模板,扩增得到包含lox71-氯霉素标记-lox66的1047-bp片段;第二次PCR以1047-bp片段为模板,引物上带有trc启动子序列,PCR产物作为第三次PCR的模板,第三次PCR在引物中引入同源序列;最终PCR产物用λ-Red法重组到基因组,经DNA序列分析鉴定,ppc基因的启动子已被替换。
对acs基因更换启动子,第一次PCR以pMloxC为模板,扩增得到包含lox71-氯霉素标记-lox66的1195-bp片段,第二次PCR以1195-bp片段为模板,引物上带有trc启动子序列,PCR产物作为第三次PCR的模板,第三次PCR在引物中引入同源序列,最终PCR产物用λ-Red法重组到基因组,经DNA序列分析鉴定,acs基因的启动子已被替换。
1.4大肠杆菌W3110中lysA、metA、tdh、tdcC和iclR基因的敲除
参考DatsenkoKA等的文献(DatsenkoKA,WannerBL.One-stepinactivationofchromaosomalgenesinEscherichiacoliK-12usingPCRproducts.ProcNatlAcadSciUSA.2000,97:6640-6645)和LeeKH等的文献(LeeKHetal.SystemsmetabolicengineeringofEscherichiacoliforL-threonineproduction.Molecularsystemsbiology.2007,3:149),以大肠杆菌W3110为出发菌种,用λ-Red一步失活方法敲除基因lysA,metA,tdh,tdcC和iclR,见表4。
表4
经鉴定,上述基因已被敲除。
1.5大肠杆菌W3110经过前述一系列基因工程操作,最终得到生产L-苏氨酸的代谢工程菌,命名为THR。
1.6利用构建的代谢工程菌THR发酵生产L-苏氨酸
产L-苏氨酸代谢工程菌的摇瓶发酵工艺、罐上发酵工艺和葡萄糖、氨基酸的检测方法参考LeeKH等的文献披露的方法(LeeKHetal.SystemsmetabolicengineeringofEscherichiacoliforL-threonineproduction.Molecularsystemsbiology.2007,3:149)。
结果表明,经过步骤1.1、1.2改造而获得的代谢工程菌摇瓶发酵24小时后,L-苏氨酸的产量为1.8g/L;经过步骤1.1、1.2、1.4改造而获得的代谢工程菌摇瓶发酵24小时后,L-苏氨酸的产量为4.5g/L;经过所有步骤改造后,最终获得的产L-苏氨酸代谢工程菌THR摇瓶发酵24小时后,L-苏氨酸的产量为11g/L,进一步放大培养规模,对L-苏氨酸生产菌种THR进行发酵罐上的发酵培养,48小时后可检测到L-苏氨酸的产量为37g/L。
实施例2
基因工程菌株THR/pSUGAP-leuDH-ilvA和THR/pSUGAP-ilvA-leuDH的构建
苏氨酸脱氨酶基因ilvA来自大肠杆菌W3110(NCBI登录号:AP009048);亮氨酸脱氢酶基因leuDH来自芽孢杆菌Bacilluscereus(NCBI登录号:AE016877)。
1.pSUGAP质粒的构建
用质粒抽提试剂盒抽提质粒pSU2718(Martinezetal.,1988),用SacI/SmaI双酶在37℃下酶切质粒2h,酶切体系为:质粒76μl,10×Tangobuffer20μl,SacI2μl,SmaI2μl,电泳回收2.3Kb的pSU2718片段,如图1。
使用表3中的ecgapup和ecgapdn引物通过PCR从大肠杆菌(NCBI登录号:CP001509)中分离出包含GAP启动子的0.2Kb片段。
PCR条件:ddH2O33μl,10×KODbuffer5μl,模板2μl,25mMMgCl23μl,引物各1μl,dNTP4μl,KOD聚合酶1μl;温度条件为:94℃5分钟;94℃45秒,55℃45秒,72℃20秒,30个循环;72℃10分钟,电泳鉴定回收试剂盒回收GAP片段,如图2。
对此0.2kb片段用SacI/SmaI双酶切,酶切体系为:质粒76μl,10×Tangobuffer20μl,SacI2μl,SmaI2μl,电泳回收试剂盒回收后和上述回收得到的2.3kb的pSU2718片段在T4连接酶的作用下于16℃水浴连接过夜。
将上述连接产物用氯化钙法转化入感受态E.coliDH5α,挑选转化子,LB试管培养过夜,然后用试剂盒抽提质粒验证,得到pSUGAP质粒,质粒图谱如图11所示。
2.重组质粒的构建
2.1pSUGAP-ilvA-leuDH的构建
将pSUGAP用SalI和XbaI在37℃双酶切2h,酶切体系为pSUGAP76μl,10×Tangobuffer20μl,SalI2μl,XbaI2μl,核酸电泳并用胶回收试剂盒回收2.4kb的pSUGAP片段,见图3。
将已构建的pET28b-ilvA和pET28b-leuDH用XbaI和XhoI在37℃双酶切2小时,酶切体系为质粒76μl,10×Tangobuffer20μl,XhoI2μl,XbaI2μl,核酸电泳胶回收试剂盒回收1.6kb的ilvA片段和1.2kb的leuDH片段,见图3。利用SalI和XhoI同尾酶连接,将pSUGAP酶切片段分别与上述1.6kb的ilvA和1.2kb的leuDH基因片段在T4连接酶的作用下连接过夜。
将连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒,得到3.6kb的pSUGAP-leuDH(质粒图谱如图12所示)以及4.1kb的pSUGAP-ilvA(质粒图谱如图13所示)。之后用PstI/XhoI在37℃下双酶切上述pSUGAP-ilvA和pSUGAP-leuDH质粒2小时验证其正确性,酶切体系为:ddH2O6μl,10×Tangobuffer2μl,XhoI1μl,PstI1μl,质粒10μl;结果见图4。
将pSUGAP-leuDH用BglII在37℃酶切2小时,酶切体系为:质粒88μl,Obuffer10μl,BglII2μl,核酸电泳胶回收试剂盒回收3.7kb的pSUGAP-leuDH单酶切片段,见图5。产物用碱性磷酸酶CIAP在37℃水浴中去磷酸化反应30分钟,反应体系为:ddH2O8μl,10×AlkalinePhospharasebuffer5μl,pSUGAP-leuDH单酶切片35μl,CIAP2μl。核酸电泳胶回收试剂盒回收3.7kb的片段。
将pSUGAP-ilvA用BamHI在37℃单酶切2小时,酶切体系为质粒88μl,Gbuffer10μl,BamHI2μl,胶回收得到1.6kb的ilvA片段,见图5。
将此片段与上述pSUGAP-leuDH片段在T4连接酶的作用下16℃连接过夜,连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒。用SalI在37℃单酶切该质粒2小时,如图6所示,得到两条片段分别为2.3kb和2.9kb的质粒为构建正确的pSUGAP-ilvA-leuDH,质粒图谱如图14所示。
2.2pSUGAP-leuDH-ilvA的构建
将pSUGAP-ilvA用BglII在37℃单酶切2小时,酶切体系为:质粒88μl,Obuffer10μl,BglII2μl,核酸电泳胶回收试剂盒回收4.1kb的pSUGAP-ilvA单酶切片段,见图5。
产物用碱性磷酸酶CIAP在37℃水浴中去磷酸化反应30分钟,反应体系为:ddH2O8μl,10×AlkalinePhospharasebuffer5μl,pSUGAP-ilvA单酶切片段35μl,CIAP2μl。核酸电泳胶回收试剂盒回收4.1kb的片段。
将pSUGAP-leuDH用BamHI在37℃单酶切2小时,酶切体系为质粒88μl,Gbuffer10μl,BamHI2μl,胶回收其中的1.2kb的leuDH片段,见图5,将此片段与上述pSUGAP-ilvA片段在T4连接酶的作用下于16℃水浴中连接过夜,连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒。用两次酶切验证质粒构建的正确性,首先用XhoI/BamHI在30℃下双酶切该质粒2小时,得到三条片段分别为1.3kb、1.6kb、2.3kb的质粒初步确认为构建正确的pSUGAP-leuDH-ilvA,见图7。用HindIII在37℃下酶切上述挑选出的质粒2小时,如图8所示,得到四个片段分别为3.0kb、1.7kb、0.5kb和33bp的质粒为构建正确的pSUGAP-leuDH-ilvA,质粒图谱如图15所示。
3.基因工程菌株的构建
3.1基因工程菌株THR/pSUGAP-leuDH-ilvA的构建
将构建的重组质粒pSUGAP-leuDH-ilvA用氯化钙法转化入宿主菌THR,LB试管培养过夜,质粒抽提试剂盒抽提质粒,结果见图9a及图9b,将正确的克隆子THR/pSUGAP-leuDH-ilvA保存。
3.2基因工程菌株THR/pSUGAP-ilvA-leuDH的构建
将构建的重组质粒pSUGAP-ilvA-leuDH用氯化钙法转化入宿主菌THR,LB试管培养过夜,质粒抽提试剂盒抽提质粒,结果见图9a及图9b,将正确的克隆子THR/pSUGAP-ilvA-leuDH保存。
表5
实施例3
基因工程菌株THR/pSUGAP-ilvA-BSleuDH的构建
苏氨酸脱氨酶基因ilvA来自大肠杆菌W3110(NCBI登录号:AP009048);亮氨酸脱氢酶基因bsleuDH来自嗜热芽孢杆菌Bacillusstearothermophilus(NCBI登录号:M22977)。
1.重组质粒的构建
1.1pSUGAP-BSleuDH的构建
将pSUGAP用SalI和XbaI在37℃双酶切2小时,酶切体系为pSUGAP76μl,10×Tangobuffer20μl,SalI2μl,XbaI2μl,核酸电泳并用胶回收试剂盒回收2.4kb的pSUGAP片段。
将已构建的pET28b-BSleuDH用XbaI和XhoI在37℃双酶切2小时,酶切体系为质粒76μl,10×Tangobuffer20μl,XhoI2μl,XbaI2μl,核酸电泳胶回收试剂盒回收1.3kb的BSleuDH片段。利用SalI和XhoI同尾酶连接,将pSUGAP酶切片段分别与上述1.3kb的BSleuDH基因片段在T4连接酶的作用下连接过夜。将连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒,得到pSUGAP-BSleuDH(质粒图谱如图16所示)。之后用PstI/XhoI在37℃下双酶切,上述pSUGAP-BSleuDH质粒是正确的。
1.2pSUGAP-ilvA-BSleuDH的构建
pSUGAP-ilvA-BSleuDH的构建参照实施例2披露的方法构建,质粒图谱见图17。
2.基因工程菌株THR/pSUGAP-ilvA-BSleuDH的构建
pSUGAP-ilvA-BSleuDH转化宿主菌THR的方法和基因工程菌株的鉴定方法参照实施例2披露的方法。
实施例4
基因工程菌株THR/pSUGAP-Vdh-ilvA的构建
苏氨酸脱氨酶基因ilvA来自大肠杆菌W3110(NCBI登录号:AP009048);缬氨酸脱氢酶基因Vdh来自链霉菌Streptomycesalbus(NCBI登录号:AF061195)。
1.重组质粒的构建
1.1pSUGAP-Vdh的构建
将pSUGAP用SalI和XbaI在37℃双酶切2小时,酶切体系为pSUGAP76μl,10×Tangobuffer20μl,SalI2μl,XbaI2μl,核酸电泳并用胶回收试剂盒回收2.4kb的pSUGAP片段。
将已构建的pET24a-Vdh用XbaI和SalI在37℃双酶切2小时,酶切体系为质粒76μl,10×Tangobuffer20μl,SalI2μl,XbaI2μl,核酸电泳胶回收试剂盒回收1.1kb的Vdh片段。将pSUGAP酶切片段分别与上述1.1kb的Vdh基因片段在T4连接酶的作用下连接过夜。
将连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒,得到pSUGAP-Vdh(质粒图谱如图18所示)。之后用NdeI/SalI在37℃下双酶切,上述pSUGAP-Vdh质粒是正确的。
1.2pSUGAP-Vdh-ilvA的构建
pSUGAP-Vdh-ilvA的构建参照实施例2披露的方法构建,质粒图谱见图19。
2.基因工程菌株THR/pSUGAP-Vdh-ilvA的构建
pSUGAP-Vdh-ilvA转化宿主菌THR的方法和基因工程菌株的鉴定方法参照实施例2披露的方法。
实施例5
基因工程菌株THR/pSUGAP-TdcB-leuDH的构建
1.重组质粒的制备
1.1构建大肠杆菌来源的苏氨酸脱氨酶编码基因(NCBI登录号:CP001509)的重组质粒。以大肠杆菌E.coliBL21(DE3)基因组中NCBI登录号为CP001509的基因为模板合成正义引物和反义引物TdcB-NdeI-F和TdcB-HindIII-R(见表3)。
对反应溶液进行PCR扩增,反应溶液中含有上述一对引物,其中,每一个引物为50pmol,0.2mMdNTP,50ng基因组DNA,25mMMgCl2,1XKODplusbuffer(TOYOBO),KODplus2U(TOYOBO)。PCR的条件如下:95℃预变性5分钟,后按如下参数循环30次:94℃变性45秒,55℃退火45秒,68℃延伸1分钟,最后一个循环68℃延伸10分钟。
PCR反应结束后,用琼脂糖凝胶电泳进行分析,检测到一条大约1000bp的TdcB特异条带,为所需。用AxyPrepDNAGelExtractionKit回收PCR扩增产物,将TdcB片段克隆到pMD18-T载体(TAKARApMD18-T载体)上转化DH5α,涂布于含Amp的LB平板上进行培养。挑选阳性克隆,抽质粒鉴定重组体后经限制性内切酶NdeI和HindIII(MBI)双酶切,与同样酶切处理得表达载体pET24a(Novagen)用T4DNA连接酶(TAKARA)连接过夜,转化大肠杆菌DH5α,涂布于含Kan的LB平板上。酶切验证所需后转化表达宿主大肠杆菌BL21(DE3)中进行表达,将该重组质粒标记为pET24a-TdcB,质粒图谱如图20所示。
1.2构建含有大肠杆菌来源的苏氨酸脱氨酶(原名苏氨酸脱水酶)编码基因(NCBI登录号:CP001509)和芽孢杆菌来源的亮氨酸脱氢酶编码基因(NCBI登录号:AE016877)的重组质粒。以前述构建的pET24a-TdcB为模板合成正义引物和反义引物rbsTdcB-BamHI-F和rbsTdcB-BamHI-R(见表3)。对反应溶液进行PCR扩增,反应溶液中含有上述一对引物,其中,每一个引物为50pmol,0.2mMdNTP,50ng基因组DNA,25mMMgCl2,1XKODplusbuffer(TOYOBO),KODplus2U(TOYOBO)。PCR的条件如下:95℃预变性5分钟,后按如下参数循环30次:94℃变性45秒,55℃退火45秒,68℃延伸1分钟,最后一个循环68℃延伸10分钟。
PCR反应结束后,用琼脂糖凝胶电泳进行分析,检测到一条大约1000bp的特异条带,为所需。用AxyPrepDNAGelExtractionKit回收PCR扩增产物,TA克隆到pMD18-T载体(TAKARApMDl8-Tsimplevector)上转化DH5α,涂布于含Amp的LB平板上进行培养。挑选阳性克隆,抽质粒,用BamHI做单酶切验证,正确的重组质粒可切出1kb左右片段,并进一步测序验证,将该重组质粒标记为pMD18-T-rbsTdcB。
将pSUGAP-leuDH用BglII在37℃下酶切3小时h,酶切体系为:质粒25μL,10XBufferO5μL,BglII1μL,补水至总体系为50μL。用琼脂糖凝胶电泳进行分析,并用胶回收试剂盒(AxyPrepDNAGelExtractionKit)回收3.5kbpSUGAP-leuDH片段。产物用碱性磷酸酶CIAP(TAKARA)在37℃水浴中去磷酸化反应1小时,反应体系为:10×AlkalinePhospharasebuffer5μL,pSUGAP-leuDH单酶切片35μL,CIAP1μL,补水至总体系为50μL。
用胶回收试剂盒(AxyPrepDNAGelExtractionKit)过柱纯化去磷酸化片段。将pMD18-T-rbsTdcB用BamHI在37℃下单酶切3小时,酶切体系为:质粒25μL,10XBufferBamHI5μL,BamHI1μL,补水至总体系为50μL。胶回收得到1kb的TdcB片段,见图5,将此片段与上述pSUGAP-leuDH片段在T4连接酶的作用下16℃连接过夜,连接产物转化大肠杆菌DH5α感受态细胞,涂布含有Cm抗性的LB平板,37℃培养过夜。
挑单克隆培养抽提质粒,用XbaI在37℃下酶切1小时做验证,酶切体系为:pSUGAP-TdcB-leuDH5μL,10XTangoBuffer1μL,XbaI0.5μL,补水至总体系为10μL。正确的克隆可切出1kb左右TdcB片段。
2.基因工程菌株THR/pSUGAP-TdcB-leuDH的构建
将步骤1得到的重组质粒pSUGAP-TdcB-leuDH(质粒图谱如图21所示)转化产苏氨酸大肠杆菌THR感受态细胞,涂布于含有Kan/Cm的LB平板,挑取单克隆培养抽提质粒,做琼脂糖凝胶电泳对比质粒图谱,见图10,保存验证正确的菌种,得基因工程菌株THR/pSUGAP-TdcB-leuDH。
实施例6
基因工程菌株THR/pSUGAP-TdcB-BSleuDH的构建
苏氨酸脱氨酶基因TdcB来自大肠杆菌BL21(DE3)(NCBI登录号:CP001509);亮氨酸脱氢酶基因bsleuDH来自嗜热芽孢杆菌Bacillusstearothermophilus(NCBI登录号:M22977)。
pSUGAP-TdcB-BSleuDH的构建参照实施例5披露的方法构建,质粒图谱见图22。
pSUGAP-TdcB-BSleuDH转化宿主菌THR的方法和基因工程菌株的鉴定方法参照实施例2披露的方法。
实施例7
基因工程菌株THR/pSUGAP-Vdh-TdcB的构建
苏氨酸脱氨酶基因TdcB来自大肠杆菌BL21(DE3)(NCBI登录号:CP001509);缬氨酸脱氢酶基因Vdh来自链霉菌Streptomycesalbus(NCBI登录号:AF061195)。
1.重组质粒的构建
1.1pSUGAP-TdcB的构建
将pSUGAP用SalI和XbaI在37℃双酶切2小时,酶切体系为pSUGAP76μl,10×Tangobuffer20μl,SalI2μl,XbaI2μl,核酸电泳并用胶回收试剂盒回收2.4kb的pSUGAP片段。
将已构建的pET24a-TdcB用XbaI和XhoI在37℃双酶切2小时,酶切体系为质粒76μl,10×Tangobuffer20μl,XhoI2μl,XbaI2μl,核酸电泳胶回收试剂盒回收1kb的TdcB片段。利用SalI和XhoI同尾酶连接,将pSUGAP酶切片段分别与上述1kb的TdcB基因片段在T4连接酶的作用下连接过夜。
将连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒,得到pSUGAP-TdcB(质粒图谱如图23所示)。之后用PstI/XhoI在37℃下双酶切,上述pSUGAP-TdcB质粒是正确的。
1.2pSUGAP-Vdh-TdcB的构建
将pSUGAP-TdcB用BamHI在37℃单酶切2小时,酶切体系为:质粒88μl,BamHIbuffer10μl,BamHI2μl,核酸电泳胶回收试剂盒回收3.5kb的pSUGAP-TdcB单酶切片段。
产物用碱性磷酸酶CIAP在37℃水浴中去磷酸化反应30分钟,反应体系为:ddH2O8μl,10×AlkalinePhospharasebuffer5μl,pSUGAP-TdcB单酶切片段35μl,CIAP2μl。核酸电泳胶回收试剂盒回收3.5kb的片段。
将pSUGAP-Vdh用BamHI在37℃单酶切2小时,酶切体系为质粒88μl,BamHIbuffer10μl,BamHI2μl,胶回收其中的1.1kb的Vdh片段,将此片段与上述pSUGAP-TdcB片段在T4连接酶的作用下于16℃水浴中连接过夜,连接产物用氯化钙法转化入感受态细胞E.coliDH5α中,LB试管培养过夜,然后用质粒抽提试剂盒抽提质粒。经BamHI单酶切验证,得正确的重组质粒pSUGAP-Vdh-TdcB,质粒图谱见图24。
2.基因工程菌株THR/pSUGAP-Vdh-TdcB的构建
pSUGAP-Vdh-TdcB转化宿主菌THR的方法和基因工程菌株的鉴定方法参照实施例2披露的方法。
实施例8
利用基因工程菌株发酵生产L-2-氨基丁酸
挑单菌落于含终浓度25μg/ml氯霉素、100μg/ml卡那霉素的4ml液体LB培养基中,37℃过夜,然后按1%的接种量转接至含200mlLB培养基的1L摇瓶中,37℃培养6h左右,随后按5%-8%的接种量转接于5L的发酵罐(发酵罐的培养基装量为3L)中进行发酵。发酵采用低糖补料的方法,发酵温度为37℃,用浓氨水自动调pH至7.0,溶氧控制在10%-30%。起始通气量为4LPM,400rpm,溶氧浓度通过转速来调整,当pH开始上升时,开始补加葡萄糖(60%),使罐中的葡萄糖维持在低糖的状态。发酵过程中每隔3小时取样测定发酵液中的葡萄糖含量,以控制发酵液中葡萄糖浓度,同时以HPLC测定发酵液中L-2-氨基丁酸含量,HPLC的测定条件如下:
在EP管中依次加入PH=9.5的硼酸缓冲液300ul,转化液样品250ul,衍生剂200ul(取0.3430g邻苯二甲醛+5ml无水乙醇+0.1472gN-乙酰-L半胱氨酸,用0.1mol/L硼砂缓冲液(PH=9.5)定溶到25ml,避光备用),混匀后等待2分钟,严格控制时间和试剂添加量,然后进样。所需的化合物用0.05mol/L醋酸钠缓冲液∶甲醇=63∶35进行洗脱,流速1.0ml/min,采集时间为10min。色谱条件为XDB-C8(150mm)中性柱,柱温30℃,检测波长334nm。
经检测,
实施例2构建的代谢工程菌THR/pSUGAP-leuDH-ilvA发酵60小时后,L-2-氨基丁酸产量为10g/L,光学纯ee为99%;
实施例2构建的代谢工程菌THR/pSUGAP-ilvA-leuDH发酵60小时后,L-2-氨基丁酸产量达到20g/L,光学纯ee为99%;
实施例3构建的代谢工程菌THR/pSUGAP-ilvA-BSleuDH发酵60小时后,L-2-氨基丁酸产量达到15g/L,光学纯ee为99%;
实施例4构建的代谢工程菌THR/pSUGAP-Vdh-ilvA发酵60小时后,L-2-氨基丁酸产量达到10g/L,光学纯ee为99%;
实施例5构建的代谢工程菌THR/pSUGAP-TdcB-leuDH发酵60小时后,L-2-氨基丁酸产量为10g/L,光学纯ee为99%;
实施例6构建的代谢工程菌THR/pSUGAP-TdcB-BSleuDH发酵60小时后,L-2-氨基丁酸产量达到8g/L,光学纯ee为99%;
实施例7构建的代谢工程菌THR/pSUGAP-Vdh-TdcB发酵60小时后,L-2-氨基丁酸产量达到10g/L,光学纯ee为99%。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (5)

1.一种重组载体,其特征在于,所述重组载体具有编码苏氨酸脱氨酶的多核苷酸序列和编码L-氨基酸脱氢酶的多核苷酸序列,
其中,编码L-氨基酸脱氢酶的多核苷酸序列选自下组:蜡样芽孢杆菌来源的L-亮氨酸脱氢酶编码基因、或嗜热芽孢杆菌来源的L-亮氨酸脱氢酶编码基因,
编码苏氨酸脱氨酶的多核苷酸序列是:大肠杆菌来源的ilvA基因,和
所述的重组载体从5’端到3’端依次具有:第一启动子、苏氨酸脱氨酶编码序列和第一终止子、L-氨基酸脱氢酶编码序列和第二终止子。
2.一种宿主细胞,其特征在于,它含有权利要求1所述的载体或基因组中整合有编码苏氨酸脱氨酶的多核苷酸序列和编码L-氨基酸脱氢酶的多核苷酸序列;
其中,编码L-氨基酸脱氢酶的多核苷酸序列选自下组:蜡样芽孢杆菌来源的L-亮氨酸脱氢酶编码基因、或嗜热芽孢杆菌来源的L-亮氨酸脱氢酶编码基因;
编码苏氨酸脱氨酶的多核苷酸序列是大肠杆菌来源的ilvA基因。
3.如权利要求2所述的宿主细胞,其特征在于,所述宿主细胞的染色体具有选自下组的至少一个特征:
(1)天冬氨酸激酶Ⅰ基因thrA的1034位碱基发生C→T突变;
(2)天冬氨酸激酶Ⅲ基因lysC的1055位碱基发生C→T突变;
(3)磷酸烯醇丙酮酸羧化酶基因ppc启动子为trc启动子;
(4)乙酰-CoA合成酶基因acs启动子为trc启动子;
(5)选自下组的至少一个基因失活或敲除:二氨基庚二酸盐脱羧酶基因lysA、高丝氨酸琥珀酰转移酶基因metA、苏氨酸脱氢酶基因tdh、苏氨酸转运酶基因tdcC和调控基因iclR。
4.权利要求2或3所述的宿主细胞在制备L-2-氨基丁酸中的用途。
5.一种生产L-2-氨基丁酸的方法,其特征在于,包括步骤:
(i)在合适的培养条件下,培养权利要求2所述的宿主细胞;和
(ii)从(i)的培养物中分离出所述的L-2-氨基丁酸。
CN201210015308.4A 2012-01-18 2012-01-18 用于生产l-2-氨基丁酸的载体、工程菌株及方法 Active CN103215291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210015308.4A CN103215291B (zh) 2012-01-18 2012-01-18 用于生产l-2-氨基丁酸的载体、工程菌株及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210015308.4A CN103215291B (zh) 2012-01-18 2012-01-18 用于生产l-2-氨基丁酸的载体、工程菌株及方法

Publications (2)

Publication Number Publication Date
CN103215291A CN103215291A (zh) 2013-07-24
CN103215291B true CN103215291B (zh) 2015-11-18

Family

ID=48813448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210015308.4A Active CN103215291B (zh) 2012-01-18 2012-01-18 用于生产l-2-氨基丁酸的载体、工程菌株及方法

Country Status (1)

Country Link
CN (1) CN103215291B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148259B (zh) * 2015-04-28 2019-09-10 中国科学院微生物研究所 生产l-2-氨基丁酸的重组菌及其制备方法与应用
CN105543156A (zh) * 2016-03-02 2016-05-04 廊坊梅花生物技术开发有限公司 重组菌株及其制备方法、用途
CN105671098A (zh) * 2016-04-06 2016-06-15 河南巨龙生物工程股份有限公司 一种发酵法生产l-2-氨基丁酸的方法
CN107794284A (zh) * 2016-08-29 2018-03-13 湖州柏特生物科技有限公司 一种去除制备手性氨基酸反应体系中的l‑苏氨酸的方法
CN106399216B (zh) * 2016-11-16 2019-12-10 江南大学 一种高效合成α-氨基丁酸的单细胞工厂及其构建与应用
CN107012178B (zh) * 2017-05-11 2020-06-30 鲁东大学 一种酶法合成l-2-氨基丁酸的方法
CN108103038B (zh) * 2017-12-15 2021-03-02 江南大学 一种合成l-苯甘氨酸的单细胞工厂及其构建与应用
CN109182319B (zh) * 2018-08-20 2021-02-09 浙江大学 一种苏氨酸脱氨酶突变体及其制备方法和应用
CN111471638B (zh) * 2020-05-22 2021-11-23 江南大学 一株产l-高丝氨酸的谷氨酸棒杆菌突变株的构建与应用
WO2022094847A1 (zh) * 2020-11-05 2022-05-12 中国科学院深圳先进技术研究院 工程细菌的细胞裂解液及其在肿瘤治疗中的应用
CN114456995B (zh) * 2022-01-26 2024-03-15 浙江工业大学 高产l-2-氨基丁酸的基因工程菌、构建方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818178A (zh) * 2010-04-15 2010-09-01 尚科生物医药(上海)有限公司 一种酶法制备l-2-氨基丁酸的方法
WO2011106696A2 (en) * 2010-02-26 2011-09-01 The Regents Of The University Of California Compositions and methods for the production of l-homoalanine
CN102212567A (zh) * 2010-04-02 2011-10-12 中国科学院上海生命科学研究院湖州工业生物技术中心 一种l-2-氨基丁酸的生产方法
CN102605014A (zh) * 2012-03-14 2012-07-25 苏州汉酶生物技术有限公司 一种l-2-氨基丁酸的生物制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106696A2 (en) * 2010-02-26 2011-09-01 The Regents Of The University Of California Compositions and methods for the production of l-homoalanine
CN102212567A (zh) * 2010-04-02 2011-10-12 中国科学院上海生命科学研究院湖州工业生物技术中心 一种l-2-氨基丁酸的生产方法
CN101818178A (zh) * 2010-04-15 2010-09-01 尚科生物医药(上海)有限公司 一种酶法制备l-2-氨基丁酸的方法
CN102605014A (zh) * 2012-03-14 2012-07-25 苏州汉酶生物技术有限公司 一种l-2-氨基丁酸的生物制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine;Kechun Zhang et al.;《PNAS》;20100406;第107卷(第14期);6234-6239 *
Systems metabolic engineering of Escherichia coli for L-threonine production;Kwang Ho Lee et al.;《Molecular Systems Biology》;20071231;第3卷(第1期);1-8 *

Also Published As

Publication number Publication date
CN103215291A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103215291B (zh) 用于生产l-2-氨基丁酸的载体、工程菌株及方法
EP3178926B1 (en) Feedback-resistant acetohydroxy acid synthase variant and method for producing l-valine using the same
JP6341907B2 (ja) フィードバック耐性アルファ−イソプロピルリンゴ酸合成酵素
RU2745157C1 (ru) Дрожжи, продуцирующие эктоин
CN101287833A (zh) 酵母和l-乳酸的制造方法
RU2699516C2 (ru) Новая лизиндекарбоксилаза и способ получения кадаверина с ее использованием
CN105899664A (zh) 用于精细化学品的改进生产的重组微生物
CN107189991A (zh) 一种葡萄糖氧化酶突变体及其编码基因和应用
CN111411093B (zh) 活性提高的磷酸转酮酶及在生产代谢物中的应用
JP7061577B2 (ja) D-キシロネートの製造方法およびコリネ型細菌
CN101613707B (zh) 一种用代谢工程菌生产谷胱甘肽的方法
CN110872593B (zh) 一种丝氨酸羟甲基转移酶突变体及其应用
CN112522223A (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
EP2690109A1 (en) Modified microorganism for high efficient production of 1,4-butanediol
WO2023150538A1 (en) Methods of producing hydroxytyrosol
CN116355820A (zh) 一种高产麦角硫因工程菌株及其生产麦角硫因的方法
CN113583930B (zh) 一株不依赖抗生素并能高效生产γ-氨基丁酸的谷氨酸棒杆菌的构建
KR102481504B1 (ko) 2,3-부탄디올 생산용 메탄자화균 형질전환체
CN109929853B (zh) 嗜热菌来源的热激蛋白基因的应用
CA3068459A1 (en) Microorganism with stabilized copy number of functional dna sequence and associated methods
CN113604413B (zh) 一种重组菌株及制备方法与应用
EP3978515A1 (en) Genetically modified methylobacillus bacteria having improving properties
EP4215601A1 (en) Genetically modified bacteria resistant to mass cell lysis
CN114107270B (zh) 一种L-天冬氨酸β-脱羧酶突变体
US20210292716A1 (en) D-xylose dehydrogenase from coryneform bacteria and process for preparing d-xylonate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191202

Address after: 201612 Room 202, building 5, No. 518, shenzhuan Road, Songjiang hi tech park, Caohejing Development Zone, Songjiang District, Shanghai

Patentee after: Gyrochem (Shanghai Puyi) Co., Ltd.

Address before: 200031 No. 320, Yueyang Road, Shanghai, Xuhui District

Co-patentee before: Shanghai Institute for Biological Sciences China Academy of Sciences, Huzhou Research Center of Indu

Patentee before: Shanghai Institute of life Sciences, Chinese Academy of Sciences

Co-patentee before: Shanghai Research and Development Center of Industrial Biotechnology