CN103137438A - 在微细空间内形成功能部分的方法 - Google Patents

在微细空间内形成功能部分的方法 Download PDF

Info

Publication number
CN103137438A
CN103137438A CN2012104951011A CN201210495101A CN103137438A CN 103137438 A CN103137438 A CN 103137438A CN 2012104951011 A CN2012104951011 A CN 2012104951011A CN 201210495101 A CN201210495101 A CN 201210495101A CN 103137438 A CN103137438 A CN 103137438A
Authority
CN
China
Prior art keywords
micro mist
fine space
aqueous
functional
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104951011A
Other languages
English (en)
Inventor
关根重信
关根由莉奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAPULA CORP
Napra Co Ltd
Original Assignee
NAPULA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAPULA CORP filed Critical NAPULA CORP
Publication of CN103137438A publication Critical patent/CN103137438A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0305Solder used for other purposes than connections between PCB or components, e.g. for filling vias or for programmable patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供使用低温分散系功能性材料在微细空间内形成没有空隙、间隙或空洞的功能部分的方法。将在液状分散介质(51)中分散具有热熔化性的功能性微粉(52)而得到的分散系功能性材料(5)填充到微细空间(3)内。接着,使微细空间(3)内的液状分散介质(51)蒸发。然后,通过热处理使功能性微粉(52)热熔化后,一边加压一边冷却。

Description

在微细空间内形成功能部分的方法
技术领域
本发明涉及在微细空间内形成功能部分的方法。
背景技术
例如在以半导体器件为代表的电子器件或微型机械等中,有时必须要在内部形成具有高纵横比的微细的导体填充结构、绝缘结构或功能结构。在这种情况下,已知有通过将预先选择的填充材料填充到微细孔内来实现导体填充结构、绝缘结构及功能结构等的技术。但是,向具有高纵横比的微细孔内将填充材料充分地填充至其底部而不产生空隙和固化后变形等是很困难的。
作为能够克服这种技术困难的现有技术,已知有日本专利第4278007号公报及日本专利第4505540号公报中所记载的填充方法及装置。
日本专利第4278007号公报中记载的技术是将熔融金属填充到存在于晶片的微细孔中并使其固化的方法,其包含以下工序:在对上述微细孔内的上述熔融金属施加有超过大气压的强制外力的状态下,使上述熔融金属冷却而固化。关于上述强制外力,赋予选自按压压力、喷射压力或碾压压力中的至少1种,并在关闭上述微细孔的另一端侧的状态下从上述微细孔的开口的开口面侧向上述熔融金属进行施加。日本专利第4505540号公报公开了用于实施日本专利第4278007号公报中记载的方法的装置。
根据上述日本专利第4278007号公报、日本专利第4505540号公报中记载的技术,可获得以下优异的作用效果:能够用填充物将微细孔填满而不会产生空隙和孔隙等、能够避免在微细间隙被冷却后的固化金属的凹面化、以及有助于工序的简化、合格率的提高等。
发明内容
发明要解决的技术问题
本发明的技术问题在于提供使用低温分散系功能性材料在微细空间内形成没有空隙、间隙或空洞的功能部分的方法。
用于解决技术问题的手段
为了解决上述技术问题,本发明公开了属于一个发明构思的多个方法。
首先,第1方法为:当在微细空间内形成功能部分时,将在液状分散介质中分散具有热熔化性的功能性微粉而得到的分散系功能性材料填充到微细空间内,接着,使上述微细空间内的上述液状分散介质蒸发,然后,对功能性微粉进行加热,并一边进行加压一边使其固化。
如上所述,在第1方法中,使用在液状分散介质中分散功能性微粉而得到的分散系功能性材料。即,使用作为流动性填充材料的分散系功能性材料。因此,可以利用分散系功能性材料的流动性将原本具有难以填充的微粉形态的功能性微粉切实地填充到微细空间内。
将分散系功能性材料填充到微细空间内时,优选在真空室内的减压气氛下进行处理。在减压处理后,还可采用对真空室的内压进行增压的差压填充方式。通过该差压填充,可以将分散系功能性材料切实地填充到微细空间的内部。将分散系功能性材料填充到微细空间内时,例如若向对象物或装置赋予超声波振动等,则可以顺畅地进行填充作业。
接着,使上述微细空间内的上述液状分散介质蒸发。在微细空间的内部仅残留功能性微粉。然后,通过加热处理使残留的功能性微粉熔化后,一边进行加压一边使其固化。由此,在微细空间内形成没有空隙、间隙或空洞的功能部分。
对具有热熔化性的功能性微粉没有限定,例如为Sn合金等低熔点金属微粉。
在本说明书中,功能性材料是指以显现材料所具有的电特性、电介质特性、磁性、光学特性等特性为目的而使用的类型的材料。功能性微粉是指将这样的功能性材料进行微粉化而得到的物质。分散系是指微细的固体粒子分散在液体的分散介质中而得到的悬浮液或糊剂,包括相同粒度的粒子聚集而成的单分散系、粒度不一致地变化的多分散系这两种体系。另外,不仅包括粗粒的分散系,还包括胶体的分散系。
接着,第2方法的特征在于:使用在液状分散介质中分散功能性微粉及结合材料微粉而得到的分散系功能性材料。在第2方法中,也可获得在第1方法中所述的作用效果。
对功能性微粉及结合材料微粉没有限定,为高熔点金属微粉及低熔点金属微粉的组合。
进而,第3方法的特征在于:在微细空间内使液状分散介质蒸发后,使液状结合材料含浸于上述微细空间内的上述功能性微粉的微粒之间的间隙中,接着,通过热处理使上述液状结合材料与上述功能性微粉发生反应后,一边进行加压一边使其固化。在第3方法中,也可获得在第1方法中所述的作用效果。
在第1至第3方法中,作为液状分散介质,均可使用水性分散介质或挥发性有机分散介质。
发明效果
如上所述,根据本发明,可提供使用低温分散系功能性材料在微细空间内形成没有空隙、间隙或空洞的功能部分的方法。
附图说明
图1是表示本发明的第1方法的框图。
图2是表示本发明的第2方法的框图。
图3是表示本发明的第3方法的框图。
符号说明
1      对象物
3      微细空间
5      分散系功能性材料
50     功能部分
51     分散介质
52、53 功能性微粉
具体实施方式
图1是表示第1方法的图。该第1方法是在微细空间3内形成金属部分的具体方法。首先,准备具有微细空间3的对象物1(图1(a))。对象物广泛包括晶片、电路基板、层叠基板、半导体芯片、MEMS(微机电系统;Micro-Electro-Mechanical Systems)等具有微细空间的物质。微细空间除TSV(硅通孔;Through Silicon Via)所代表的贯穿孔、非贯穿孔(盲孔)之外,还包括在层叠的基板间产生的微细间隙等。功能性微粒可以采取球状、鳞片状、扁平状等任意的形状。
作为使功能性微粒分散的液状分散介质,可以使用水性分散介质或挥发性有机分散介质。特别优选在常温下挥发的挥发性有机分散介质。作为这样的液状分散介质,已知有各种介质,因此选择这些介质使用即可。
关于设于对象物1中的微细空间3,在本实施例中为贯穿孔或非贯穿孔,具有开口部的孔径D1、深度H1。孔径D1例如为25μm以下,深度H1是使得其与孔径D1的纵横比达到1以上、优选达到5以上的值。当对象物1例如为晶片时,在晶片面内设置多个上述微细空间3。
在上述对象物1的微细空间3中,填充(流入)在液状分散介质中分散低熔点金属微粉而得到的分散系功能性材料5(图1(b))。这种情况下的分散系功能性材料5为在分散介质51中分散低熔点金属微粉52作为具有热熔化性的功能性微粉而得到的分散系。低熔点金属微粉52的代表例为Sn合金微粉。Sn合金微粉优选由属于nm尺寸(为1μm以下)的纳米微粒或具有纳米复合结构的微粒构成。也可以以Sn合金微粉为基底而含有其他的金属微粉例如Bi、Ga或In的微粉中的至少1种。微粒可以采取球状、鳞片状、扁平状等任意的形状。在填充工序中,优选采用上述差压填充。
将分散系功能性材料5填充到微细空间3内时,优选在真空室内的减压气氛下进行处理。在减压处理后,可以采用对真空室的内压进行增压的差压填充方式。通过该差压填充,可将分散系功能性材料5切实地填充到微细空间3的内部。
接着,在微细空间3的内部使低熔点金属微粉52热熔化,同时使液状分散介质51蒸发(图1(c)、(d))。由此,在低熔点金属微粉52的微粒之间产生间隙G1,同时该间隙G1被熔化后的低熔点金属微粉52填埋。当低熔点金属微粉52以Sn合金微粉为基底时,可以在其熔点(约为231℃)下使其热熔化。
进而,一边对热熔化后的低熔点金属微粉52施加压力F1一边进行冷却而使其固化(图1(e))。由此,在对象物1的微细空间3的内部形成由低熔点金属形成的功能部分50。在上述工序中,优选至少图1(a)~(d)在真空室内进行。
如上所述,由于将分散系功能性材料5填充到微细空间3的内部,因此可以利用分散系功能性材料5的流动性将原本具有难以填充的微粉形态的低熔点金属微粉52切实地填充到微细空间3的内部。在填充时,可以采用差压填充方式。
另外,由于使用在液状分散介质51中分散低熔点金属微粉52而得到的分散系功能性材料5,因此与使用熔融金属的现有技术不同,不需要熔融工序。通过差压填充方式等即可将处于低温状态的分散系功能性材料5填充到微细空间3的内部。另外,当具有微细空间3的对象物1例如为已形成有半导体电路的晶片等时,可以将热量对半导体电路的不良影响抑制到最小限度。此外,由于不需要用于熔融的热能,因而可以减少能耗。
在第1方法中,将上述分散系功能性材料5填充到微细空间3的内部,接着在微细空间3的内部使低熔点金属微粉52热熔化,同时使液状分散介质51蒸发,进而一边对热熔化后的低熔点金属微粉52进行加压一边进行冷却而使其固化,由此可获得例如Sn合金等低电阻体的功能部分50(图1(e))。
另外,由于一边对热熔化后的低熔点金属微粉52进行加压一边进行冷却而使其固化,因此可通过加压来避免有时因冷却时的体积缩小而在微细空间3与成形体之间产生间隙、空隙,从而形成没有间隙和空隙的高品质的功能部分50。
进而,由于一边对热熔化后的低熔点金属微粉52进行加压一边进行冷却而使其固化,因此低熔点金属的晶粒生长、晶体生长得到抑制。其结果是,柱状晶体的生长得到抑制,低熔点金属形成等轴晶体,应力降低,可避免在具有微细空间3的对象物1上产生微裂纹等不良现象。
接着,图2示出了第2方法。图中对于与图1所示的构成部分对应的部分赋予相同的参照符号。图2所示的第2方法的特征在于,兼用高熔点和低熔点金属微粉作为功能性材料及结合材料,在微细空间3内形成由高熔点金属及低熔点金属形成的金属部分。在第2方法中,当在微细空间3的内部形成金属部分时,与第1方法的情况同样地准备具有微细空间3的对象物1(图2(a))。然后,如图2所示那样,通过上述差压填充法将在液状分散介质51中分散低熔点金属微粉52及高熔点金属微粉53而得到的分散系功能性材料5填充到微细空间3的内部(图2(b))。低熔点金属微粉52及高熔点金属微粉53的粒径可以不一致、也可以统一。
接着,在微细空间3的内部使低熔点金属微粉52热熔化,同时使液状分散介质51蒸发(图2(c)),进而一边对高熔点金属微粉53及低熔点金属微粉52的熔化物进行加压一边进行冷却而使其固化。在上述工序中,利用低熔点金属微粉52的熔化物将高熔点金属微粒53-53之间的间隙G1填埋,使其与高熔点金属粒子53发生扩散接合。在上述工序中,至少图2(a)~(c)在真空室内进行。
作为低熔点金属微粉52,可以使用上述Sn合金基底的微粉。如上所述,也可以以Sn合金微粉为基底而含有其他的金属微粉例如Bi微粉、Ga微粉、In微粉。高熔点金属微粉53具体地可以由含有选自Ag、Cu、Au、Pt、Ti、Zn、Al、Fe、Si或Ni中的至少1种的材料构成。这些高熔点金属微粉53优选由属于nm尺寸(1μm以下)的纳米微粒或具有纳米复合结构的微粒构成。低熔点金属微粉52及高熔点金属微粉53的粒径可以不一致、也可以统一。另外,可以采取球状、鳞片状、扁平状等任意的形状。
根据第2方法,也可以利用分散系功能性材料5的流动性将原本具有难以填充的微粉形态的低熔点金属微粉52及高熔点金属微粉53切实地填充到微细空间3内。
另外,由于使用在液状分散介质51中分散低熔点金属微粉52及高熔点金属微粉53而得到的分散系功能性材料5,因此与使用熔融金属的现有技术不同,不需要熔融工序。将处于低温状态的分散系功能性材料5通过利用其流动性并赋予选自气压、按压压力、喷射压力或碾压压力中的至少1种施加压力的手段即可容易地填充到微细空间3的内部。另外,当具有微细空间3的对象物1为已形成有半导体电路等的晶片等时,可以将热量对半导体电路的不良影响抑制到最小限度。此外,由于不需要用于熔融的热能,因而可以减少能耗。
另外,将分散系功能性材料5填充到微细空间3的内部,接着在微细空间3的内部使低熔点金属微粉52热熔化,同时使液状分散介质51蒸发,进而一边对高熔点金属微粉53及低熔点金属微粉52的熔化物施加压力F1一边进行冷却而使其固化。通过上述工序,可获得由高熔点金属及低熔点金属形成的功能部分50(图2(e))。在成型时,可以利用由低熔点金属微粉52的熔化及凝固所产生的结合力,而不需要其他的结合材料。因此,可以直接发挥高熔点金属微粉53及低熔点金属微粉52所具有的特性。
另外,由于一边对高熔点金属微粉53及低熔点金属微粉52的熔化物施加压力F1一边进行冷却,因而可以通过施加压力F1来避免有时因冷却时的体积缩小而在微细空间3与成形体之间产生间隙、空隙,从而形成没有间隙和空隙的高品质的功能部分50。
进而,由于一边对热熔化后的低熔点金属微粉52进行加压一边进行冷却而成型,因此低熔点金属及高熔点金属的晶粒生长、晶体生长得到抑制。其结果是,低熔点金属及高熔点金属形成等轴晶体,应力降低,可以避免在具有微细空间3的对象物1上产生微裂纹等不良现象。
根据第2方法,利用低熔点金属微粉52的熔化物将高熔点金属微粉53的高熔点金属微粒之间的间隙填埋,使其与上述高熔点金属粒子发生扩散接合。因此,低熔点金属及高熔点金属在相互形成一体的状态下构成成型体,发挥与两金属的特性相应的功能。
图3示出了第3方法。图中对于与图1所示的构成部分对应的部分赋予相同的参照符号。第3方法是在微细空间3内形成电绝缘部分的具体方法。参照图3,当在微细空间3的内部形成电绝缘部分时,将在液状分散介质51中分散绝缘性陶瓷微粉54而得到的分散系功能性材料5填充到微细空间3的内部(图3(a)、(b)),接着在微细空间3的内部使分散系功能性材料5中含有的液状分散介质51蒸发(图3(c)),接着使液状结合材料55含浸于微细空间3内部的绝缘性陶瓷微粉54的微粒之间的间隙G1中(图3(d))。然后,通过加热处理使液状结合材料55与绝缘性陶瓷微粉54发生化学反应等,并一边对陶瓷微粉54及液状结合材料55进行加压一边使其固化(图3(e))。
根据第3方法,也可以使用液状分散介质51中分散具有难以填充的微粉形态的绝缘性陶瓷微粉54而得到的分散系功能性材料5并利用其流动性而容易地填充到微细空间3内。
另外,通过下述工序可获得由绝缘性陶瓷及结合材料形成的具有电绝缘性的功能部分50:使填充到微细空间3内部的液状分散介质51蒸发,接着使液状结合材料55含浸于位于微细空间3内部的绝缘性陶瓷微粉54的微粒之间的间隙中,最后一边对绝缘性陶瓷微粉54及液状结合材料55进行加压一边使其固化。
进而,由于一边对绝缘性陶瓷微粉54及液状结合材料55进行加压一边使其固化,因而可通过加压来避免有时在微细空间3与作为成形体的功能部分50之间产生间隙、空隙,从而形成没有间隙和空隙的高品质的功能部分50。
液状结合材料55可以是液体玻璃、也可以是有机树脂。作为有机树脂,优选热固化型树脂。绝缘性陶瓷微粉54并无限定,可以包含SiO2、Al2O3等金属氧化物或SiN等氮化物中的至少1种。
作为液状分散介质51,如上所述可以使用水性分散介质或挥发性有机分散介质。作为挥发性有机分散介质的代表例,有具有羟基(OH)的醇类。接着,对使用这种挥发性有机分散介质51时的具体例子进行描述。
当使用具有羟基(OH)的醇类作为挥发性有机分散介质51时,在真空室内的减压气氛下其大部分蒸发,因此会在绝缘性陶瓷微粉54的微粒之间的间隙产生间隙G1。另外,挥发性有机分散介质51中含有的OH基利用与陶瓷微粒、例如与SiO2的键合力而附着于绝缘性陶瓷微粉54的表面。使分散介质51蒸发后,也可以对绝缘性陶瓷微粉54的集合体进行加压。
作为挥发性有机分散介质,当使用具有羟基(OH)的醇类时,作为液状结合材料55,可以使用液体二氧化硅或液体Si化合物。由液体二氧化硅或液体Si化合物形成的液状结合材料55会渗透至绝缘性陶瓷微粉54的微粒之间的间隙G1中。这种情况下也继续在真空室内的减压气氛下处理。在减压处理后,也可以将真空室的内压进行增压(差压填充方式)。通过该差压填充,可以使液状结合材料55充分地渗透至陶瓷微粒的周围。
当使用液体二氧化硅时,其有机溶剂会蒸发而发生二氧化硅转化。当使用液体Si化合物时,使Si化合物与附着在绝缘性陶瓷微粉54表面的OH基发生反应,使其转化成二氧化硅。
作为液体Si化合物的例子,有硅氮烷、硅氧烷、硅烷醇等。这里,以使用硅氮烷的无机聚合物即聚硅氮烷(PHPS)的情况为例进行说明。聚硅氮烷与水分或氧发生反应而转化成二氧化硅。作为有机溶剂,可使用二甲苯、矿物质松节油或高沸点芳香族系溶剂等。
通过在绝缘性陶瓷微粉54的表面上残留OH基、并使聚硅氮烷与该OH基发生反应,从而使其转化成二氧化硅。如此获得的二氧化硅通常为无定形。
为了促进二氧化硅转化,优选在加热工序中一边使用按压板等进行加压一边进行加热。加热温度虽然根据聚硅氮烷的种类而不同,但通常在室温~450℃的范围内进行选择。在该加热处理工序中排出有机溶剂的分解气体。
在上述工序后,为了进一步促进二氧化硅转化以及排出分解气体,优选例如在1000℃左右进行烧成。
微细空间不限于贯穿孔或非贯穿孔。在层叠多个基板的层叠电子器件中,采取在基板之间产生的微小间隙(微细空间)中填充电绝缘物的底涂层结构。本发明也可适用于这种底涂层形成。
以上参照优选的实施例对本发明的内容进行了具体说明,但根据本发明的基本技术思想及启示,本领域技术人员显然可以想到各种变形方式以及未说明的其他适用技术领域。

Claims (7)

1.一种在微细空间内形成功能部分的方法,其包含下述工序:
将在液状分散介质中分散具有热熔化性的功能性微粉而得到的分散系功能性材料填充到微细空间内,
接着,使所述微细空间内的所述液状分散介质蒸发,
然后,对功能性微粉进行加热,并一边加压一边使其固化。
2.根据权利要求1所述的方法,其中,所述功能性微粉为低熔点金属微粉。
3.一种在微细空间内形成功能部分的方法,其包含下述工序:
将在液状分散介质中分散功能性微粉及结合材料微粉而得到的分散系功能性材料填充到微细空间内,
接着,使所述微细空间内的所述液状分散介质蒸发,
然后,对功能性微粉进行加热,并一边加压一边使其固化。
4.根据权利要求3所述的方法,其中,所述功能性微粉及所述结合材料微粉是由高熔点金属微粉及低熔点金属微粉形成的。
5.一种在微细空间内形成功能部分的方法,其包含下述工序:
将在液状分散介质中分散功能性微粉而得到的分散系功能性材料填充到微细空间内,
接着,在所述微细空间内使所述液状分散介质蒸发,
接着,使液状结合材料含浸于所述微细空间内的所述功能性微粉的微粒之间的间隙中,
然后,通过热处理使所述液状结合材料与所述功能性微粉发生反应后,一边进行加压一边使其固化。
6.根据权利要求5所述的方法,其中,所述功能性微粉为陶瓷微粉,所述液状结合材料为液体玻璃。
7.根据权利要求1~6中任一项所述的方法,其中,所述液状分散介质为水性分散介质或挥发性有机分散介质。
CN2012104951011A 2011-11-28 2012-11-28 在微细空间内形成功能部分的方法 Pending CN103137438A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011259001A JP5687175B2 (ja) 2011-11-28 2011-11-28 微細空間内に機能部分を形成する方法
JP2011-259001 2011-11-28

Publications (1)

Publication Number Publication Date
CN103137438A true CN103137438A (zh) 2013-06-05

Family

ID=47227726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104951011A Pending CN103137438A (zh) 2011-11-28 2012-11-28 在微细空间内形成功能部分的方法

Country Status (6)

Country Link
US (2) US20130136645A1 (zh)
EP (1) EP2596884A1 (zh)
JP (1) JP5687175B2 (zh)
KR (1) KR20130059281A (zh)
CN (1) CN103137438A (zh)
TW (1) TW201331995A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598056A (zh) * 2018-06-29 2018-09-28 北京梦之墨科技有限公司 一种应用tsv技术的电子器件及其制作方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687175B2 (ja) * 2011-11-28 2015-03-18 有限会社 ナプラ 微細空間内に機能部分を形成する方法
JP6134884B2 (ja) * 2013-07-19 2017-05-31 株式会社ザイキューブ 電極、電極材料及び電極形成方法
JP5885351B2 (ja) * 2013-10-09 2016-03-15 有限会社 ナプラ 接合部及び電気配線
JP6347104B2 (ja) * 2013-12-27 2018-06-27 セイコーエプソン株式会社 電気配線層の製造方法、電気配線層形成用部材、電気配線層、電気配線基板の製造方法、電気配線基板形成用部材、電気配線基板、振動子、電子機器および移動体
JP6022492B2 (ja) * 2014-02-13 2016-11-09 有限会社 ナプラ 微細空間内に導体を形成する製造方法
US9305866B2 (en) 2014-02-25 2016-04-05 International Business Machines Corporation Intermetallic compound filled vias
JP5822977B2 (ja) * 2014-04-18 2015-11-25 有限会社 ナプラ 電子デバイス、その製造方法、金属粒子及び導電性ペースト
DE112016000838T5 (de) * 2015-02-19 2017-12-07 Sumitomo Precision Products Co., Ltd. Füllverfahren und Füllvorrichtung
JP5859162B1 (ja) * 2015-08-06 2016-02-10 住友精密工業株式会社 金属充填装置および金属充填方法
TWI733693B (zh) * 2015-09-07 2021-07-21 日商昭和電工材料股份有限公司 接合用銅糊、接合體的製造方法及半導體裝置的製造方法
US9515044B1 (en) 2015-10-14 2016-12-06 Napra Co., Ltd. Electronic device, method of manufacturing the same, metal particle, and electroconductive paste
US20180138110A1 (en) * 2016-11-17 2018-05-17 Texas Instruments Incorporated Enhanced Adhesion by Nanoparticle Layer Having Randomly Configured Voids
US9865527B1 (en) 2016-12-22 2018-01-09 Texas Instruments Incorporated Packaged semiconductor device having nanoparticle adhesion layer patterned into zones of electrical conductance and insulation
US9941194B1 (en) 2017-02-21 2018-04-10 Texas Instruments Incorporated Packaged semiconductor device having patterned conductance dual-material nanoparticle adhesion layer
CN113510241A (zh) * 2021-04-25 2021-10-19 福建尚辉润德新材料科技有限公司 一种磁粉注射成型粘结剂、制备方法及应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953629A (en) * 1995-06-09 1999-09-14 Vacuum Metallurgical Co., Ltd. Method of thin film forming on semiconductor substrate
CN1325331A (zh) * 1998-08-27 2001-12-05 联合讯号公司 对用水性粘结剂制造的金属注塑零件进行脱粘结剂和烧结的方法
US20060292877A1 (en) * 2005-06-28 2006-12-28 Lake Rickie C Semiconductor substrates including vias of nonuniform cross section, methods of forming and associated structures

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864715A (en) * 1972-12-22 1975-02-04 Du Pont Diode array-forming electrical element
US4613369A (en) * 1984-06-27 1986-09-23 Pall Corporation Porous metal article and method of making
JP2685112B2 (ja) * 1992-06-24 1997-12-03 大同特殊鋼 株式会社 粉末成形品の製造法
US5770136A (en) * 1995-08-07 1998-06-23 Huang; Xiaodi Method for consolidating powdered materials to near net shape and full density
TW436882B (en) * 1998-06-01 2001-05-28 Toshiba Corp Semiconductor device and method for manufacturing the same
JP2001237140A (ja) * 1999-12-13 2001-08-31 Murata Mfg Co Ltd 積層型セラミック電子部品およびその製造方法ならびにセラミックペーストおよびその製造方法
JP2003305588A (ja) * 2002-04-11 2003-10-28 Fujitsu Ltd 接合材料
TWI325739B (en) * 2003-01-23 2010-06-01 Panasonic Corp Electroconductive paste, its manufacturing method, circuit board using the same electroconductive paste, and its manufacturing method
JP2006131952A (ja) * 2004-11-05 2006-05-25 Hitachi Powdered Metals Co Ltd Fe−Ti焼結合金の製造方法
JP4278007B1 (ja) * 2008-11-26 2009-06-10 有限会社ナプラ 微細空間への金属充填方法
JP4563506B1 (ja) * 2010-01-13 2010-10-13 有限会社ナプラ 電極材料
EP2259307B1 (en) * 2009-06-02 2019-07-03 Napra Co., Ltd. Electronic device
JP4505540B1 (ja) * 2009-06-02 2010-07-21 有限会社ナプラ 金属充填装置
JP5250582B2 (ja) * 2010-04-22 2013-07-31 有限会社 ナプラ 充填用基材及びそれを用いた充填方法
US8609532B2 (en) * 2010-05-26 2013-12-17 Intel Corporation Magnetically sintered conductive via
JP4790089B2 (ja) * 2011-01-24 2011-10-12 有限会社ナプラ 導電性組成物及び電子デバイスの製造方法
JP5687175B2 (ja) * 2011-11-28 2015-03-18 有限会社 ナプラ 微細空間内に機能部分を形成する方法
FI125558B (en) * 2013-05-29 2015-11-30 Iprotoxi Oy Device for controlling sensors
US9807871B2 (en) * 2013-08-28 2017-10-31 3M Innovative Properties Company Electronic assembly with fiducial marks for precision registration during subsequent processing steps
JP6022492B2 (ja) * 2014-02-13 2016-11-09 有限会社 ナプラ 微細空間内に導体を形成する製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953629A (en) * 1995-06-09 1999-09-14 Vacuum Metallurgical Co., Ltd. Method of thin film forming on semiconductor substrate
CN1325331A (zh) * 1998-08-27 2001-12-05 联合讯号公司 对用水性粘结剂制造的金属注塑零件进行脱粘结剂和烧结的方法
US20060292877A1 (en) * 2005-06-28 2006-12-28 Lake Rickie C Semiconductor substrates including vias of nonuniform cross section, methods of forming and associated structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598056A (zh) * 2018-06-29 2018-09-28 北京梦之墨科技有限公司 一种应用tsv技术的电子器件及其制作方法

Also Published As

Publication number Publication date
JP5687175B2 (ja) 2015-03-18
JP2013115177A (ja) 2013-06-10
US9950925B2 (en) 2018-04-24
US20130136645A1 (en) 2013-05-30
US20170305743A1 (en) 2017-10-26
TW201331995A (zh) 2013-08-01
KR20130059281A (ko) 2013-06-05
EP2596884A1 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
CN103137438A (zh) 在微细空间内形成功能部分的方法
KR101660673B1 (ko) 전극 재료
JP4278007B1 (ja) 微細空間への金属充填方法
CN102237325B (zh) 填充用基材及使用了该基材的填充方法
US8448333B2 (en) Method for manufacturing wiring board and method for manufacturing inkjet printhead substrate
CN104561989B (zh) 铝碳化硅冷喷镀铜方法及所得电子封装底板
JP6022492B2 (ja) 微細空間内に導体を形成する製造方法
JP4611429B2 (ja) 微細空間への金属充填方法
CN115053339A (zh) 导电导孔及其制造方法
KR102153964B1 (ko) 기능성 소재 표면코팅에 의한 복합소재 및 그 제조방법
JP6376649B2 (ja) 貫通電極基板の製造方法
JP6738760B2 (ja) 貫通孔の封止構造及び封止方法、並びに、貫通孔を封止するための転写基板
CN107710891B (zh) 在基板上形成贯通连接的过孔和导体的方法
JP2013190354A (ja) 接合部材及びその製造方法
JP6357271B1 (ja) 柱状導体構造
JP5450780B1 (ja) 微細空間内に導体を形成する方法
CN109075127B (zh) 贯通孔的密封结构及密封方法、以及用于将贯通孔密封的转印基板
JP6808882B1 (ja) 半導体基板に設けられた微細空間内に導体を形成する方法
JP6836006B1 (ja) 電子機器基板
US20230005834A1 (en) Electrically conductive vias and methods for producing same
JP2013089641A (ja) 流動性充填材の充填方法、充填装置及びウエハ
JP2004146695A (ja) 金属化装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1183374

Country of ref document: HK

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130605

WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1183374

Country of ref document: HK