CN103087682A - 具有吸光和导电性质的复合定形相变材料及其制备方法 - Google Patents

具有吸光和导电性质的复合定形相变材料及其制备方法 Download PDF

Info

Publication number
CN103087682A
CN103087682A CN201310039705XA CN201310039705A CN103087682A CN 103087682 A CN103087682 A CN 103087682A CN 201310039705X A CN201310039705X A CN 201310039705XA CN 201310039705 A CN201310039705 A CN 201310039705A CN 103087682 A CN103087682 A CN 103087682A
Authority
CN
China
Prior art keywords
change material
phase change
composite shape
organic phase
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310039705XA
Other languages
English (en)
Inventor
陈良杰
邹如强
刘振濮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201310039705XA priority Critical patent/CN103087682A/zh
Publication of CN103087682A publication Critical patent/CN103087682A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种具有吸光和导电性质的复合定形相变材料及其制备方法,该材料由质量分数为15%-5%的多孔碳材料和分布于多孔碳材料内的质量分数为85%-95%的有机相变材料组成,有机相变材料分布于所述多孔碳材料内。该方法包括:制备具有三维连通多孔性质的碳材料;将有机相变材料加热熔化并浇注于多孔碳材料上;将所得混合物在100~120℃震动一定时间,使有机相变材料在多孔碳材料中均匀分布;在室温下将混合物绞碎,然后置于模具中压制成型。本发明的复合定形相变材料具有良好的导热、吸光和导电性能,能显著提高相变材料的传热效率,同时可以将太阳能和电能高效转化为热能存储于相变材料中,是一种光电复合定形相变材料。

Description

具有吸光和导电性质的复合定形相变材料及其制备方法
技术领域
本发明属于储能材料技术领域,具体涉及一种以有机相变材料为储能基质,以三维连通多孔碳材料为封装定形骨架,具有吸光、导电性质的复合定形相变材料及其制备方法。
背景技术
相变材料作为一种高效的热能储存材料,在建筑控温节能、电力调峰、太阳能利用、余热回收等方面具有广阔的应用前景,而有机相变材料(石蜡类、脂肪酸类和脂肪醇类)因其良好的循环性能、无过冷和无相分离等优点而被广泛应用。但是有机相变材料同时也存在缺点,低的导热率使得相变材料在吸收和释放能量时速率小,对环境的热响应慢,限制了有机相变材料应用的进一步发展。同时有机相变材料从固态转化为液态后还需要容器进行封装,因此对相变材料进行封装的同时改善其热导性能也是一个研究热点。而多孔碳材料因其热导率高和成本低等优点在相变材料的封装上发挥了很大作用。Anne Mallow等(Journal ofMaterials Chemistry,2012,22,24469)采用鳞片石墨封装石蜡并讨论了复合材料的稳定性,复合材料在封装石蜡的同时起到了提高导热性能的作用。
复合定形相变材料在应用过程中能量来源可分为环境给热、太阳能给热和电能给热,其中环境给热主要通过空气对流来传热,增加相变材料的热导率就可以提高能量传输效率,目前研究的主要目的是提升复合相变材料的导热率,而对于太阳能和电能的利用却很少研究。
J.L.Zeng等(Polyaniline/1-Tetradecanol Composites Form-stable PCMS and electricalconductive materials,Journal of Thermal Analysis and Calorimetry,Journal of Thermal Analysisand Calorimetry,2008,91,455)采用导电性高分子聚苯胺复合封装有机相变材料十四烷醇,在改善相变材料导热率的同时使得复合相变材料具有导电性,但是该技术并没有讨论将电能转化为热能储存于相变材料中,而电能高效转化为热能并储存于相变材料在电力调峰领域具有广泛应用,十分有必要进行深入研究。
发明内容
本发明的目的是提供一种具有吸光、导电性质的复合定形相变材料及其制备方法,该复合定形相变材料不需要容器封装,在显著改善相变材料导热率的同时具有良好的吸光和导电性能,能够将太阳能和光能高效转化为热能储存于相变材料中。
本发明的复合定形相变材料,由质量分数为85%-95%的有机相变材料和15%-5%的多孔碳材料组成,所述有机相变材料分布于所述多孔碳材料内。
所述有机相变材料选自石蜡、脂肪酸、脂肪醇中的一种或多种的混合物。
所述多孔碳材料选自碳纳米管海绵、碳纳米管阵列、石墨烯凝胶中的一种。
本发明的复合定形相变材料的制备方法,包括以下步骤:
1)制备具有三维连通多孔性质的碳材料;
2)将有机相变材料加热熔化,使其温度达100~120℃;
3)将液态的有机相变材料缓慢浇注于多孔碳材料上,形成的混合物中有机相变材料的质量分数为85%-95%,多孔碳材料的质量分数为15%-5%;
4)将所述混合物在温度为100~120℃的条件下震动一定时间,使有机相变材料在多孔碳材料中均匀分布;
5)在室温下将步骤4)所得混合物绞碎,然后置于模具中压制成型,得到具有吸光、导电性质的复合定形相变材料。
优选地,所述三维连通多孔性质的碳材料可以采用化学气相沉积法、高温炉碳化法和水热法等方法制备。
优选地,所述震动的持续时间为0.1-1小时。
优选地,步骤5)使用绞碎机将混合物绞碎。
优选地,步骤5)所述压制成型的压力为0.8-5MPa。
本发明采用有机类相变材料作为储热基质,三维连通多孔碳材料作为支撑骨架能够直接有效的封装相变材料。有机相变材料与三维连通多孔碳材料之间强的分子间作用力和多孔材料的毛细作用完成有机相变材料的有效封装,达到有机相变材料不泄露的目的,而多孔碳材料同时起到了封装剂和结构支撑的作用。本发明的特点是,三维连通多孔碳材料具有良好的导热率,使得复合定形相变材料具有良好的导热性能;同时该三维连通多孔碳材料骨架具有良好的吸光性能,使得复合定形相变材料能够吸收阳光将太阳能高效转化为热能存储于相变材料中;由于多孔碳材料为三维连通的,其整个碳骨架具有优良的导电性能,所以在加电压下能够将电能高效转化为热能储存于相变材料中。
本发明的有益效果是,制备得到的复合定形相变材料在显著改善相变材料导热率的同时使得复合材料具有了良好的吸光和导电性能,能够将太阳能和光能高效转化为热能储存于相变材料;该复合定形相变材料制备工艺简单,能广泛应用于建筑控温节能、电力调峰、太阳能利用、余热回收等领域。
附图说明
图1是实施例1获得的样品与纯石蜡的示差扫描量热曲线对比图。
图2是实施例1获得的样品的100次循环示差扫描量热曲线,所有量热曲线几乎重合说明样品具有很好的循环性能。
图3是实施例1获得的样品与碳纳米管海绵吸收太阳能后温度变化曲线对比图。
图4是实施例1获得的样品与碳纳米管海绵加电压后温度变化曲线对比图。
图5是实施例2获得的样品与纯石蜡的示差扫描量热曲线对比图。
图6是实施例2获得的样品的100次循环示差扫描量热曲线,所有量热曲线几乎重合说明样品具有很好的循环性能。
图7是实施例1制得的复合定形相变材料中相变材料为固态时的SEM图。
图8是实施例1制得的复合定形相变材料中相变材料为液态时的SEM图。
具体实施方式
下面通过具体实施例,并配合附图,对本发明做进一步说明。
实施例1:
采用化学气相沉积法制备碳纳米管海绵这一具有三维连通多孔性质的新型碳材料,具体步骤为将二茂铁溶解于1,2-二氯苯并使其浓度为0.06g/mL,然后在860℃下将二茂铁的1,2-二氯苯溶液通过注射泵打入反应管中,同时分别以300mL/min和2000mL/min的速率通入氢气和氦气,反应持续12小时得到碳纳米管海绵。取0.9g熔点为20.3℃,相变热焓为136.1J/g的石蜡加热熔化,使其温度达100℃,将液态下的石蜡缓慢浇注于0.1g碳纳米管海绵上。将混合物在震动情况下保持在100℃半个小时,在室温下使用绞碎机将混合物绞碎,将绞碎后的混合物置于模具中在1MPa压力下压制成型,得到质量分数为90%的复合定形相变材料。
使用法国Setaram公司131evo示差扫描量热仪对本实施例获得的样品进行测试,图1是本实施例获得的样品与纯石蜡的示差扫描量热曲线对比图,测得复合材料的相变起始温度为24.5℃,相变热焓为138.3J/g。并对复合定形相变材料进行循环性能测试,图2是本实施例获得的样品的100次循环示差扫描量热曲线,发现在100次循环后复合定形相变材料的相变储热性能没有发生变化。
由于碳纳米管海绵良好的导热性能,复合定形相变材料的热导率可达石蜡导热率的6.7倍。同时由于碳纳米管海绵良好的吸光和导电性能,能够将太阳能和电能高效的转化为热能储存于复合定形相变材料中。
图3是根据本实施例获得的样品与碳纳米管海绵吸收太阳能后温度变化曲线对比图。从图中可以看出,复合定形相变材料在光照下的升温过程以及在撤去光照后的降温过程都有温度变化的拐点,因此在光照下复合定形相变材料将光能转化为热能并将相变材料熔化,这说明了制备得到的复合定形相变材料能够有效利用太阳能。
图4是根据本实施例获得的样品与碳纳米管海绵加电压后温度变化曲线对比图。从图中可以看出,复合定形相变材料在两端加电压下的升温过程以及在撤去电压后的降温过程都有温度变化的拐点,因此在电压下复合定形相变材料将电能转化为热能并将相变材料熔化,这说明了制备得到的复合定形相变材料能够有效利用电能。
图7是本实施例制得的复合定形相变材料中相变材料为固态时的SEM图,图8是本实施例制得的复合定形相变材料中相变材料为液态时的SEM图。
实施例2:
采用化学气相沉积法制备碳纳米管阵列这一具有三维连通多孔性质的新型碳材料,具体步骤为将二茂铁溶解于二甲苯并使其浓度为0.06g/mL,然后在850℃下将二甲苯溶液通过注射泵打入反应管中,同时分别以300mL/min和2000mL/min的速率通入氢气和氦气,反应持续12小时得到碳纳米管阵列。取0.9g熔点为35.7℃,相变热焓为231J/g的石蜡加热熔化,使其温度达100℃,将液态下的石蜡缓慢浇注于0.1g碳纳米管阵列上。将混合物在震动情况下保持在100℃半个小时,在室温下使用绞碎机将混合物绞碎,将绞碎后的混合物置于模具中在1MPa压力下压制成型,得到质量分数为90%的复合定形相变材料。
使用法国Setaram公司131evo示差扫描量热仪对本实施例获得的样品进行测试,图5是实施例2获得的样品与纯石蜡的示差扫描量热曲线对比图,测得复合材料的相变起始温度为34.8℃,相变热焓为215J/g。并对复合定形相变材料进行循环性能测试,图6是实施例2获得的样品的100次循环示差扫描量热曲线,发现在100次循环后复合定形相变材料的相变储热性能没有发生变化。由于碳纳米管阵列良好的导热性能,复合定形相变材料的热导率可达石蜡导热率的9倍。同时由于碳纳米管阵列良好的吸光和导电性能,能够将太阳能和电能高效的转化为热能储存于复合定形相变材料中。
实施例3:
首先按文献方法制备石墨烯凝胶,冰水浴烧杯中加入110mL浓硫酸恒温0℃进行搅拌,加入5g鳞片状石墨粉,再加入2.5gNaNO3,缓慢加入15gKMnO4并搅拌1.5小时。再升温至35℃搅拌30min后,升温至70℃左右搅拌的情况下,缓慢加入220mL的去离子水,然后缓慢加入137.83mL5%的双氧水。最后向上述溶液中加入500mL HCl,静置至分层。在加入2000mL洗涤,多次后直至中性。取0.9g熔点为57℃,相变热焓为239J/g的十八烷醇加热熔化,使其温度达120℃,将液态下的十八烷醇缓慢浇注于0.1g石墨烯凝胶上。将混合物在震动情况下保持在120℃半个小时,在室温下使用绞碎机将混合物绞碎,将绞碎后的混合物置于模具中在1MPa压力下压制成型,得到质量分数为90%的复合定形相变材料。
实施例4:
首先按文献方法制备石墨烯凝胶,冰水浴烧杯中加入110mL浓硫酸恒温0℃进行搅拌,加入5g鳞片状石墨粉,再加入2.5gNaNO3,缓慢加入15gKMnO4并搅拌1.5小时。再升温至35℃搅拌30min后,升温至70℃左右搅拌的情况下,缓慢加入220mL的去离子水,然后缓慢加入137.83mL5%的双氧水。最后向上述溶液中加入500mL HCl,静置至分层。在加入2000mL洗涤,多次后直至中性。取0.9g熔点为61℃,相变热焓为207J/g的棕榈酸加热熔化,使其温度达120℃,将液态下的棕榈酸缓慢浇注于0.1g石墨烯凝胶上。将混合物在震动情况下保持在120℃半个小时,在室温下使用绞碎机将混合物绞碎,将绞碎后的混合物置于模具中在1MPa压力下压制成型,得到质量分数为90%的复合定形相变材料。
以上实施例仅用以说明本发明的技术方案而非对其进行限制,本领域的普通技术人员可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的精神和范围,本发明的保护范围应以权利要求所述为准。

Claims (10)

1.一种具有吸光和导电性质的复合定形相变材料,其特征在于,由质量分数为85%-95%的有机相变材料和质量分数为5%-15%的多孔碳材料组成,所述有机相变材料分布于所述多孔碳材料内。
2.如权利要求1所述的复合定形相变材料,其特征在于,所述有机相变材料是石蜡、脂肪酸、脂肪醇中的一种或多种的混合物。
3.如权利要求1所述的复合定形相变材料,其特征在于,所述多孔碳材料选自碳纳米管海绵、碳纳米管阵列、石墨烯凝胶中的一种。
4.权利要求1所述复合定形相变材料的制备方法,其步骤包括:
1)制备具有三维连通多孔性质的碳材料;
2)将有机相变材料加热熔化,使其温度达100~120℃;
3)将液态的有机相变材料缓慢浇注于多孔碳材料上,形成的混合物中有机相变材料的质量分数为85%-95%,多孔碳材料的质量分数为5%-15%;
4)将所述混合物在温度为100~120℃的条件下震动一定时间,使有机相变材料在多孔碳材料中均匀分布;
5)在室温下将步骤4)所得混合物绞碎,然后置于模具中压制成型,得到具有吸光、导电性质的复合定形相变材料。
5.如权利要求4所述的方法,其特征在于,所述三维连通多孔性质的碳材料的制备方法为化学气相沉积法、高温炉碳化法、水热法中的一种。
6.如权利要求4所述的复合定形相变材料,其特征在于,所述有机相变材料是石蜡、脂肪酸、脂肪醇中的一种或多种的混合物。
7.如权利要求4所述的复合定形相变材料,其特征在于,所述多孔碳材料选自碳纳米管海绵、碳纳米管阵列、石墨烯凝胶中的一种。
8.如权利要求4所述的方法,其特征在于,步骤4)所述震动的持续时间为0.1-1小时。
9.如权利要求4所述的方法,其特征在于,步骤5)使用绞碎机将混合物绞碎。
10.如权利要求4所述的方法,其特征在于,步骤5)所述压制成型的压力为0.8-5MPa。
CN201310039705XA 2013-01-31 2013-01-31 具有吸光和导电性质的复合定形相变材料及其制备方法 Pending CN103087682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310039705XA CN103087682A (zh) 2013-01-31 2013-01-31 具有吸光和导电性质的复合定形相变材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310039705XA CN103087682A (zh) 2013-01-31 2013-01-31 具有吸光和导电性质的复合定形相变材料及其制备方法

Publications (1)

Publication Number Publication Date
CN103087682A true CN103087682A (zh) 2013-05-08

Family

ID=48200829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310039705XA Pending CN103087682A (zh) 2013-01-31 2013-01-31 具有吸光和导电性质的复合定形相变材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103087682A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710965A (zh) * 2015-04-02 2015-06-17 北京科技大学 一种多级孔道碳基复合相变材料的制备方法
RU2557611C2 (ru) * 2013-09-13 2015-07-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Теплоноситель для солнечного коллектора
CN105018043A (zh) * 2015-07-14 2015-11-04 中国科学院合肥物质科学研究院 一种储热放热石墨烯复合相变材料的用途
CN105038720A (zh) * 2015-07-07 2015-11-11 安徽理工大学 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN105112021A (zh) * 2015-07-14 2015-12-02 中国科学院合肥物质科学研究院 一种具有储热放热性能的节能型三维石墨烯骨架复合相变材料及其制备方法
CN105505330A (zh) * 2016-01-25 2016-04-20 浙江碳谷上希材料科技有限公司 一种基于石墨烯的三维相变材料及其制备方法
CN105505327A (zh) * 2015-11-26 2016-04-20 浙江工业大学 一种碳纳米管封装石蜡相变材料的制备方法
CN105733516A (zh) * 2016-01-25 2016-07-06 浙江大学 一种基于石墨烯的复合相变膜及其制备方法
CN105950121A (zh) * 2016-06-30 2016-09-21 中山火炬职业技术学院 一种纳米胶囊智能可调相变材料及其制备方法
CN106047303A (zh) * 2016-06-30 2016-10-26 郭舒洋 一种高导热复合储热材料的制备方法
CN106190041A (zh) * 2016-07-14 2016-12-07 北京科技大学 一种3d多孔碳骨架基复合相变材料的制备方法
CN106281233A (zh) * 2016-08-04 2017-01-04 浙江工业大学 一种氧化亚铜修饰碳纳米管/石蜡复合材料的制备方法
CN106634855A (zh) * 2016-10-28 2017-05-10 同济大学 一种混杂石墨烯凝胶/相变导热复合材料的制备方法
CN107601449A (zh) * 2017-08-21 2018-01-19 北京科技大学 一种多孔碳及其复合材料的制备方法
CN108251063A (zh) * 2016-12-28 2018-07-06 北京有色金属研究总院 一种高性能复合相变材料及其制备方法
CN108676550A (zh) * 2018-07-04 2018-10-19 山东建筑大学 一种无机水合盐多孔碳复合相变材料及其制备方法
CN108715754A (zh) * 2018-04-04 2018-10-30 南方科技大学 一种导热脂组合物及其制备方法和应用
CN109689833A (zh) * 2016-09-02 2019-04-26 日立化成株式会社 复合构件及其制造方法、蓄热材及其制造方法、蓄热式空调装置、以及蓄热型热管式供油设备
CN110003863A (zh) * 2019-03-29 2019-07-12 上海海事大学 一种微冻冷藏食品保鲜用相变蓄冷材料及制备方法
CN110872488A (zh) * 2018-08-31 2020-03-10 青海大学 一种月桂酸/多孔碳化木复合相变储能材料的制备方法
WO2020253094A1 (zh) * 2019-06-17 2020-12-24 中国科学院深圳先进技术研究院 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
WO2021249061A1 (zh) * 2020-06-12 2021-12-16 张力 蓄冷材料、制备方法、包括其的蓄冷液及应用
CN114214035A (zh) * 2021-11-29 2022-03-22 苏州大学 一种光电驱动纤维素基柔性相变材料及其制备方法
US11471078B1 (en) 2019-10-30 2022-10-18 Brigham Young University Miniaturized spectrometers for wearable devices
US11589764B1 (en) 2019-10-30 2023-02-28 Brigham Young University Methods and devices for aligning miniaturized spectrometers and impedance sensors in wearable devices
US11630316B1 (en) 2019-10-30 2023-04-18 Brigham Young University Miniaturized collimators
US11877845B1 (en) 2019-10-30 2024-01-23 Brigham Young University Miniaturized spectrometers on transparent substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848414A (zh) * 2005-04-14 2006-10-18 清华大学 热界面材料制备方法
CN102432258A (zh) * 2011-08-31 2012-05-02 南京工业大学 一种建筑用定型相变储能材料及其制备方法
CN102585776A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 三维石墨烯/相变储能复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848414A (zh) * 2005-04-14 2006-10-18 清华大学 热界面材料制备方法
CN102432258A (zh) * 2011-08-31 2012-05-02 南京工业大学 一种建筑用定型相变储能材料及其制备方法
CN102585776A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 三维石墨烯/相变储能复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANGJIE CHEN ET AL.: "《Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges》", 《ACSNANO》, vol. 6, no. 12, 17 November 2012 (2012-11-17) *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2557611C2 (ru) * 2013-09-13 2015-07-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Теплоноситель для солнечного коллектора
CN104710965A (zh) * 2015-04-02 2015-06-17 北京科技大学 一种多级孔道碳基复合相变材料的制备方法
CN105038720B (zh) * 2015-07-07 2018-02-23 安徽理工大学 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN105038720A (zh) * 2015-07-07 2015-11-11 安徽理工大学 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN105018043A (zh) * 2015-07-14 2015-11-04 中国科学院合肥物质科学研究院 一种储热放热石墨烯复合相变材料的用途
CN105112021A (zh) * 2015-07-14 2015-12-02 中国科学院合肥物质科学研究院 一种具有储热放热性能的节能型三维石墨烯骨架复合相变材料及其制备方法
CN105112021B (zh) * 2015-07-14 2019-06-18 中国科学院合肥物质科学研究院 一种具有储热放热性能的节能型三维石墨烯骨架复合相变材料及其制备方法
CN105018043B (zh) * 2015-07-14 2019-06-18 中国科学院合肥物质科学研究院 一种储热放热石墨烯复合相变材料的用途
CN105505327A (zh) * 2015-11-26 2016-04-20 浙江工业大学 一种碳纳米管封装石蜡相变材料的制备方法
CN105505327B (zh) * 2015-11-26 2019-01-08 浙江工业大学 一种碳纳米管封装石蜡相变材料的制备方法
CN105505330A (zh) * 2016-01-25 2016-04-20 浙江碳谷上希材料科技有限公司 一种基于石墨烯的三维相变材料及其制备方法
CN105733516B (zh) * 2016-01-25 2018-10-12 浙江大学 一种基于石墨烯的复合相变膜及其制备方法
CN105733516A (zh) * 2016-01-25 2016-07-06 浙江大学 一种基于石墨烯的复合相变膜及其制备方法
CN105505330B (zh) * 2016-01-25 2019-02-22 浙江碳谷上希材料科技有限公司 一种基于石墨烯的三维相变材料及其制备方法
CN106047303A (zh) * 2016-06-30 2016-10-26 郭舒洋 一种高导热复合储热材料的制备方法
CN105950121B (zh) * 2016-06-30 2019-10-15 中山火炬职业技术学院 一种纳米胶囊智能可调相变材料及其制备方法
CN105950121A (zh) * 2016-06-30 2016-09-21 中山火炬职业技术学院 一种纳米胶囊智能可调相变材料及其制备方法
CN106190041A (zh) * 2016-07-14 2016-12-07 北京科技大学 一种3d多孔碳骨架基复合相变材料的制备方法
CN106190041B (zh) * 2016-07-14 2020-06-26 北京科技大学 一种3d多孔碳骨架基复合相变材料的制备方法
CN106281233A (zh) * 2016-08-04 2017-01-04 浙江工业大学 一种氧化亚铜修饰碳纳米管/石蜡复合材料的制备方法
CN106281233B (zh) * 2016-08-04 2019-07-26 浙江工业大学 一种氧化亚铜修饰碳纳米管/石蜡复合材料的制备方法
CN109689833A (zh) * 2016-09-02 2019-04-26 日立化成株式会社 复合构件及其制造方法、蓄热材及其制造方法、蓄热式空调装置、以及蓄热型热管式供油设备
CN106634855A (zh) * 2016-10-28 2017-05-10 同济大学 一种混杂石墨烯凝胶/相变导热复合材料的制备方法
CN108251063A (zh) * 2016-12-28 2018-07-06 北京有色金属研究总院 一种高性能复合相变材料及其制备方法
CN107601449A (zh) * 2017-08-21 2018-01-19 北京科技大学 一种多孔碳及其复合材料的制备方法
CN108715754A (zh) * 2018-04-04 2018-10-30 南方科技大学 一种导热脂组合物及其制备方法和应用
CN108715754B (zh) * 2018-04-04 2020-12-22 南方科技大学 一种导热脂组合物及其制备方法和应用
CN108676550A (zh) * 2018-07-04 2018-10-19 山东建筑大学 一种无机水合盐多孔碳复合相变材料及其制备方法
CN110872488A (zh) * 2018-08-31 2020-03-10 青海大学 一种月桂酸/多孔碳化木复合相变储能材料的制备方法
CN110003863A (zh) * 2019-03-29 2019-07-12 上海海事大学 一种微冻冷藏食品保鲜用相变蓄冷材料及制备方法
WO2020253094A1 (zh) * 2019-06-17 2020-12-24 中国科学院深圳先进技术研究院 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
US11471078B1 (en) 2019-10-30 2022-10-18 Brigham Young University Miniaturized spectrometers for wearable devices
US11589764B1 (en) 2019-10-30 2023-02-28 Brigham Young University Methods and devices for aligning miniaturized spectrometers and impedance sensors in wearable devices
US11630316B1 (en) 2019-10-30 2023-04-18 Brigham Young University Miniaturized collimators
US11877845B1 (en) 2019-10-30 2024-01-23 Brigham Young University Miniaturized spectrometers on transparent substrates
WO2021249061A1 (zh) * 2020-06-12 2021-12-16 张力 蓄冷材料、制备方法、包括其的蓄冷液及应用
CN113801636A (zh) * 2020-06-12 2021-12-17 张力 蓄冷材料、制备方法、包括其的蓄冷液及应用
CN114214035A (zh) * 2021-11-29 2022-03-22 苏州大学 一种光电驱动纤维素基柔性相变材料及其制备方法

Similar Documents

Publication Publication Date Title
CN103087682A (zh) 具有吸光和导电性质的复合定形相变材料及其制备方法
Wang et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage
Sun et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity
Yi et al. Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage
Wang et al. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites
Yi et al. Three-dimensional montmorillonite/Ag nanowire aerogel supported stearic acid as composite phase change materials for superior solar-thermal energy harvesting and storage
Liu et al. Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest
CN104319371B (zh) 一种锂离子电池SnS2/CNTs/PPy复合负极材料的制备方法
CN105112021B (zh) 一种具有储热放热性能的节能型三维石墨烯骨架复合相变材料及其制备方法
CN112094625A (zh) 一种氮化硼纳米管气凝胶/相变导热复合材料及其制备方法
CN108997977A (zh) 一种导热增强有机相变储能材料及其制备方法
CN104845592A (zh) 一种高导热中温定形相变材料及其制备方法
CN105776182A (zh) 一种中空管状生物碳的制备方法及应用
Lin et al. Grid structure phase change composites with effective solar/electro-thermal conversion for multi-functional thermal application
CN104559936A (zh) 一种中温用相变蓄热材料及其制备方法
CN106099089A (zh) 一种钠离子电池负极材料用生物碳的制备方法
WO2020147295A1 (zh) 一种Se掺杂MXene电池负极材料及其制备方法和应用
CN103146351B (zh) 一种高导热定形相变材料及其制备方法
CN106967390A (zh) 一种低温无机复合相变储热材料及其制备方法
Li et al. Encapsulation of lauric acid in reduced graphene-N-doped porous carbon supporting scaffold for multi-functional phase change composites
Yang et al. Ultralight and flexible carbon-based phase change composites with high porosity for enhanced shape memory and photothermal conversion performance
CN108878167A (zh) 一种超级电容器用CoNi2S4/石墨烯复合材料及其制备方法
Yang et al. Nickel foam/Covalent-Organic Frameworks for composite phase change materials with enhanced solar-thermal energy conversion and storage capacity
Zhao et al. Cloth-derived anisotropic carbon scroll attached with 2D oriented graphite layers for supporting phase change material with efficient thermal storage
Wang et al. Electro-and photo-thermal energy conversion investigation of polyethylene glycol infiltrated porous carbon aerogels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130508