WO2021249061A1 - 蓄冷材料、制备方法、包括其的蓄冷液及应用 - Google Patents

蓄冷材料、制备方法、包括其的蓄冷液及应用 Download PDF

Info

Publication number
WO2021249061A1
WO2021249061A1 PCT/CN2021/091509 CN2021091509W WO2021249061A1 WO 2021249061 A1 WO2021249061 A1 WO 2021249061A1 CN 2021091509 W CN2021091509 W CN 2021091509W WO 2021249061 A1 WO2021249061 A1 WO 2021249061A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
carbon
microspheres
paraffin
ice crystal
Prior art date
Application number
PCT/CN2021/091509
Other languages
English (en)
French (fr)
Inventor
张力
邓昌沪
Original Assignee
张力
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张力 filed Critical 张力
Publication of WO2021249061A1 publication Critical patent/WO2021249061A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to the technical field of cold storage materials, in particular to a cold storage material, a preparation method, a cold storage liquid including the same, and applications.
  • Cold storage refrigeration devices for example, ice storage air conditioners, refrigerators, cold storage, cold chain transport vehicles, etc.
  • Cold storage refrigeration devices usually include cold storage materials.
  • the refrigeration system uses off-peak electric energy to store the required cooling capacity in the cold storage liquid (The cold storage material and water form a cold storage liquid, and the cold storage liquid can store cold when it is in a frozen state);
  • the release system uses the cold released by the melting ice to meet the cooling demand, which can relieve The power supply system is in the peak power period when the power supply is tight.
  • the high degree of subcooling of cold storage materials results in low crystallization nucleation rate and prone to supercooling, which results in extended operating time and energy consumption of the refrigeration system; although the addition of nucleating agents such as inorganic salts and metal powders can improve Cold phenomenon, but it is necessary to add a thickener to the cold storage liquid to prevent precipitation of the nucleating agent.
  • the thickener is prone to degradation, agglomeration, precipitation, phase separation and failure under alternating high-temperature to low-temperature operating conditions, which affects the reliability of the cold storage refrigeration device.
  • the embodiments of the present invention provide a cold storage material, a preparation method, a cold storage liquid including the same, and applications, which can reduce the degree of supercooling of the cold storage material without adding a thickener to the cold storage material, thereby improving the performance of the cold storage refrigeration device. Reliability in use.
  • the embodiments of the present invention provide a cold storage material
  • the cold storage material includes carbon composite paraffin ice crystal nucleating microspheres
  • the components of the carbon composite paraffin ice crystal nucleating microspheres include paraffin wax and carbon material
  • the The carbon material accounts for 1-4.5% of the mass percentage of the carbon composite paraffin ice crystal nucleating microspheres.
  • the carbon material accounts for 3% of the mass percentage of the carbon composite paraffin wax ice crystal nucleating microspheres.
  • the carbon material includes carbon nanotubes, graphene, or a combination of both.
  • the carbon material is graphene.
  • the particle size of the carbon composite paraffin ice crystal nucleating microspheres is less than 900um.
  • the embodiment of the present invention provides a method for preparing a cold storage material, which includes the following steps:
  • the molten composite solution is sprayed and granulated in an air environment below 30°C, and the particle size is controlled to be less than 900um;
  • the carbon material is graphene, and the mass percentage of the graphene in the composite material is 3%.
  • an embodiment of the present invention provides a cold storage liquid, the components of which include water and the cold storage material described in the first aspect, the cold storage material includes carbon composite paraffin ice crystal nucleating microspheres; the cold storage material occupies The mass percentage of the cold storage liquid is 15-25%.
  • the mass percentage of the cold storage material in the cold storage liquid is 20%.
  • the cold storage liquid provided in the third aspect of the embodiment of the present invention is applied to the cold storage refrigeration device.
  • the cold storage material, the preparation method, the cold storage liquid including the cold storage material, and the application provided by the embodiments of the present invention have the following advantages:
  • the cold storage material provided by the embodiment of the present invention includes carbon composite paraffin ice crystal nucleating microspheres, and the carbon material accounts for 1-4.5% of the mass percentage of the carbon composite paraffin ice crystal nucleating microspheres, and the balance is paraffin.
  • Carbon composite paraffin ice crystal nucleating microspheres have good thermal conductivity in liquid water or ice layer, and can provide cold storage liquid nucleation and freezing conditions, which can reduce the supercooling degree of cold storage materials, which is beneficial to carbon composite paraffin ice crystal nucleation microspheres
  • the crystal nucleus on the surface of the sphere forms and increases the crystallization rate of the cold storage liquid, which can overcome the problem that the existing cold storage materials require a large degree of subcooling nucleation conditions that cause the performance coefficient of the refrigeration unit to decrease, and improve the refrigeration efficiency.
  • the present invention provides a cold storage material, a preparation method, and a cold storage including the same.
  • Other technical problems that can be solved by the liquid and its application, other technical features included in the technical solution, and the beneficial effects brought about by these technical features will be described in further detail in the specific implementation.
  • Fig. 1 is a schematic flow chart of a method for preparing a cold storage material provided in Example 2 of the present invention
  • FIG. 2 is a schematic structural diagram of a cold storage refrigeration device for cold storage liquid application provided by the fourth embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of an ice storage refrigerator provided by a fourth embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an icing evaporator provided in the fourth embodiment of the present invention.
  • the embodiment of the present invention provides a cold storage material, which includes carbon composite paraffin wax ice crystal nucleating microspheres, and the carbon material accounts for 1-4.5% of the mass percentage of the carbon composite paraffin wax ice crystal nucleating microspheres, and the balance is paraffin.
  • Carbon composite paraffin ice crystal nucleating microspheres have good thermal conductivity in liquid water or ice layer, and can provide cold storage liquid nucleation and freezing conditions, which can reduce the supercooling degree of cold storage materials, thereby increasing the crystallization rate of cold storage liquid;
  • the addition of a thickener to the cold storage material can overcome the problem that the thickener is added to the cold storage material that affects the reliability of the cold storage refrigeration device, thereby improving the reliability of the cold storage refrigeration device.
  • the embodiment of the present invention provides a cold storage material, which includes carbon composite paraffin wax ice crystal nucleation microspheres.
  • the carbon composite paraffin wax ice crystal nucleation microspheres include paraffin and carbon materials, and the carbon material accounts for the mass of the carbon composite paraffin wax ice crystal nucleation microspheres. The percentage is 1-4.5%.
  • the paraffin wax can be paraffin wax with a molecular weight of 366, which has a melting point of 56.3° C., a latent heat of fusion of 256.2 kJ/kg, a solid density of 770 kg/m 3 , and a thermal conductivity of 0.22 W/(m ⁇ K).
  • the chemical properties of paraffin wax are soluble in non-polar solvents and insoluble in polar solvents.
  • the chemical activity of paraffin wax is low, neutral, and chemically stable.
  • a carbon material with a small specific gravity and high thermal conductivity can be added to the paraffin wax for compounding.
  • the compounded carbon material and paraffin wax are used to prepare carbon composite paraffin wax ice crystal nucleating microspheres.
  • the carbon material dispersed in paraffin accounts for 1-4.5% of the composite formed carbon composite paraffin ice crystal nucleating microspheres.
  • the carbon composite paraffin wax ice crystal nucleating microspheres with this composition can increase the thermal conductivity of the cold storage material , And the density will not increase, the cold storage material (carbon composite paraffin ice crystal nucleating microspheres) can be kept suspended in the aqueous solution.
  • This solution refers to the cold storage liquid formed by adding the cold storage material to the water, also known as the freezing solution .
  • the carbon composite paraffin ice crystal nucleating microspheres suspended in the aqueous solution constitute the ice nucleation condition of the cold storage liquid; if the particles of the carbon composite paraffin ice crystal nucleating microspheres are smaller, the carbon composite paraffin ice crystals contained in the cold storage liquid in the same volume
  • the particle size is less than 900um, thereby reducing the degree of subcooling of the cold storage material.
  • the carbon material selected in this embodiment can be carbon nanotubes, graphene, or a combination of carbon nanotubes and graphene; among them, carbon nanotubes and graphene are carbon materials with a density of 2.25 g/cm 3 , It is chemically stable and corrosion-resistant; and it is not easy to react with acids, alkalis and other compounds.
  • the carrier mobility of graphene at room temperature is about 15000cm 2 /(V ⁇ s), and the electron mobility of graphene is less affected by temperature changes.
  • graphite The electron mobility of alkenes is about 15000 cm 2 /(V ⁇ s).
  • graphene has very good thermal conductivity, and its thermal conductivity is as high as 5300W/(m ⁇ K).
  • adding graphene to paraffin is beneficial to the heat conduction of graphene ice crystal nucleation microspheres in the liquid water and ice layer, and is beneficial to the formation of crystal nuclei on the ball surface interface of the graphene ice crystal nucleation microspheres, and the dendritic ice crystals are quickly removed from the surface.
  • the place where the crystal nucleus is generated spreads outward, and dendritic ice crystals grow along the low-temperature boundary layer near the wall of the graphene ice crystal nucleation microsphere.
  • Table 1 Thermal conductivity of graphene ice crystal nucleation microspheres with different mixing ratios in a "zero" °C environment
  • graphene is used as an example to analyze the thermal conductivity of graphene ice crystal nucleating microspheres with different mixing ratios at the critical freezing temperature of 0°C. According to the thermal conductivity test data in Table 1, sample 3 Medium thermal conductivity is the best. Continue to increase the mass percentage of graphene, which will affect the dispersion effect of graphene in paraffin, making graphene not evenly distributed in paraffin, and reducing the thermal conductivity.
  • the graphene added to paraffin wax accounts for the proportion of graphene ice crystal nucleating microspheres.
  • the mass percentage is 3%.
  • This design can enhance the thermal conductivity of the cold storage material. It is understandable that the examples shown in Table 1 do not represent a limitation of this solution.
  • the carbon material added to paraffin in the tested examples can be carbon nanotubes, that is, whether carbon nanotubes or graphene are added to paraffin, When the carbon material accounts for 3% of the mass percentage of the carbon composite paraffin wax ice crystal nucleating microspheres, the thermal conductivity is the best.
  • the cold storage material provided in this embodiment includes carbon composite paraffin ice crystal nucleating microspheres, the carbon material accounts for 1-4.5% of the mass percentage of the carbon composite paraffin ice crystal nucleating microspheres, and the balance is paraffin.
  • Carbon composite paraffin ice crystal nucleating microspheres are suspended in an aqueous solution to form a freezing solution to provide ice nucleation conditions; carbon composite paraffin ice crystal nucleating microspheres have good thermal conductivity in liquid water or ice and can reduce the cost of cold storage materials
  • the degree of supercooling can increase the crystallization rate of the cold storage liquid; there is no need to add a thickener to the cold storage material, which can overcome the problem of the reduction of the crystallization rate and the decrease of the thermal conductivity caused by the addition of the thickener to the cold storage material, and improve the cold storage refrigeration The reliability of the device.
  • the preparation method of the cold storage material provided in this embodiment includes the following steps:
  • Step S100 Weigh the paraffin wax and the carbon material in proportion; specifically, weigh the paraffin wax and the carbon material in proportion.
  • the carbon material may be graphene, and the mass percentage of graphene in the composite material composed of graphene and paraffin is 1- 4.5%, preferably graphene accounts for 3% of the composite material.
  • Step S200 Dehydrate and dry the paraffin wax and the carbon material respectively; specifically, put the graphene and the paraffin wax in an anhydrous nitrogen drying box for drying and dehydration. In the process of drying and dewatering, it is necessary to perform multiple air exchanges to replace the water so as to drain the water out of the drying box.
  • Step S300 Melt the wax, put the dehydrated paraffin into the oil bath and stir slowly, and keep the temperature of the oil bath at 100°C during the stirring process.
  • Step S400 Add a dehydrated carbon material to the molten paraffin and grind to form a composite solution.
  • Step S500 spray granulation.
  • a spray granulator is used to spray a 100°C molten liquid composite solution into the air below 30°C, and the liquid mist-like composite solution quickly solidifies into microspheres. Further, during the spraying process, the spray granulation is controlled.
  • the particle size of the microspheres formed by the machine control is less than 900um to form micron-level carbon composite paraffin wax ice crystal nucleating microspheres. It is understandable that the above composite solution may be a graphene and paraffin composite solution, that is, spray granulation can form graphene ice crystal nucleating microspheres.
  • Step S600 Collect the prepared carbon composite paraffin ice crystal nucleating microspheres, and store them in a closed environment with dry nitrogen. Specifically, the graphene ice crystal nucleation microspheres are collected, and the collected graphene ice crystal nucleation microspheres are stored in a packaging bag with dry nitrogen gas, and the graphene ice crystal nucleation microspheres are protected by the dry nitrogen gas.
  • the spray granulator involved in step S500 of the above embodiment may be a pressure spray granulator and a centrifugal sprayer; wherein the granulation process using the pressure spray granulator is as follows: 100°C molten graphene paraffin wax The composite solution is fed into the nozzle through the diaphragm pump at a high pressure of 2-20MPa, and the nozzle sprays mist-like droplets; then, the mist-like droplets and air flow down; the 100°C molten liquid graphene paraffin composite solution in the form of mist-like droplets and The air cools and solidifies in the process of co-current descent, and forms micron spheres.
  • the atomized droplets (the surface area is greatly increased) are in full contact with air at 30°C, and the cooling and solidification process can be quickly completed, and the microsphere powder or fine particles of graphene ice crystal nucleation microspheres can be obtained. .
  • the granulation process using a centrifugal sprayer is as follows: the graphene and paraffin wax composite solution in a molten liquid at 100°C is thrown out from the edge of the turntable and atomized by centrifugal force in a high-speed turntable (the linear speed should be above 110m/s); Using the action of a high-speed rotating disk, when the graphene-paraffin composite solution is injected into the disk surface, the graphene-paraffin composite solution is accelerated by centrifugal force and gravity to split and atomize.
  • the graphene and paraffin wax composite solution in the molten liquid state of 100°C in the misty droplet state cools and solidifies during the co-flow process of descending with air, and forms micron spheres.
  • the atomized droplets (the surface area is greatly increased) are in full contact with air at 30°C to quickly complete the process of solidification into balls, and obtain micron ball powder or fine particles of graphene ice crystal nucleation microspheres.
  • the cold storage liquid provided by the embodiment of the present invention includes water and cold storage materials added to the water, and the cold storage material includes carbon composite paraffin ice crystal nucleating microspheres.
  • the cold storage liquid can also be called a freezing solution.
  • the components of the freezing solution include water and carbon composite paraffin ice crystal nucleating microspheres, wherein the carbon composite paraffin ice crystal nucleating microspheres account for the mass percentage of the freezing solution It is 15-25%, that is, the mass percentage of the cold storage material in the cold storage liquid is 15-25%.
  • the carbon composite paraffin wax ice crystal nucleating microspheres account for 20% by mass of the freezing solution, and the carbon composite paraffin wax ice crystal nucleating microspheres can be formed by adding graphene to paraffin wax. Graphene ice crystal nucleation microspheres.
  • the temperature of the graphene ice crystal nucleation microspheres is lower than the freezing temperature of the water in the freezing solution, and the temperature of the graphene ice crystal nucleation microspheres is lower than "zero" and continues to be cooled, and the graphene ice crystals nucleate
  • the crystal nucleus is formed at the interface of the microsphere surface; after the crystal nucleus appears to the formation of dendritic ice crystals, this process is called dendritic ice crystal formation.
  • dendritic ice crystals quickly diffuse outward from the place where the crystal nuclei are generated.
  • the entire volume of the icing solution is based on the interface crystal nuclei on the spherical surface of the graphene ice crystal nucleation microspheres.
  • the dendritic ice crystals grow along the low-temperature boundary layer near the wall of the graphene ice crystal nucleation microsphere, and gradually form an ice layer.
  • the ice layer growing along the walls of the graphene ice crystal nucleation microspheres gradually thickened, and finally expanded to the entire volume, and the ice storage liquid all solidified into ice.
  • crystal nuclei appearing from the spherical surface of the graphene ice crystal nucleation microspheres dendritic ice crystals are formed, and the freezing solution is completely solidified, which is called the latent heat storage process; as all the freezing solution continues to cool down , Sensible heat is released, and the temperature of the ice layer continues to decrease.
  • the latent heat storage process As all the freezing solution continues to cool down , Sensible heat is released, and the temperature of the ice layer continues to decrease.
  • From the crystal nucleus on the sphere surface of the graphene ice crystal nucleation microspheres dendritic ice crystals are formed, and the freezing solution is completely solidified.
  • the nucleation work required to form crystal nuclei on the particle surface is closer to zero. Crystal nuclei are formed in the case of supercooling; that is, the cold storage material formed by the graphene ice crystal nucleation microspheres provided in this embodiment can reduce the supercooling of the cold storage material.
  • the cold storage liquid provided in this embodiment is applied to a cold storage refrigeration device, as shown in Figures 2 to 4, the cold storage refrigeration device includes an ice making and cold storage device 40, which includes a water tank 41 and an icing set in the water tank 41
  • the evaporator 42; the freezing evaporator 42 has a phase-changeable refrigerant, and the water tank 41 is provided with cold storage liquid; the refrigerant and the cold storage refrigeration device exchange heat through the freezing evaporator 42.
  • the cold storage refrigeration device When the power supply system is in the valley period, the cold storage refrigeration device enters the cold storage state, and the refrigerant exchanges heat with the cold storage liquid, so that the cold storage liquid is in a freezing state and stores cold capacity; when the power supply system is in the peak power period, the cold storage refrigeration device enters Melting ice to release the cold state, the melted ice solution melted by the cold storage liquid in the frozen state exchanges heat with the air through the surface cooler and provides coldness to cool the surrounding air; it can make full use of the power resources during the valley electricity period to improve the valley electricity The utilization rate of power resources during the period. At the same time, the cold storage refrigeration device can release cold energy when the power supply system is in the peak power period, so as to reduce the power consumption of the power supply system for cooling during the peak power period, and relieve the power supply shortage during the peak power period of the power supply system.
  • the cold storage refrigeration device can be one or a combination of refrigerators, air conditioners, or cold chain transportation equipment; this embodiment takes the air conditioner as an example to illustrate the application of cold storage liquid in the cold storage refrigeration device; the refrigeration air conditioner provided in this embodiment not only has The air-conditioning mode working condition also includes the ice-making cold storage mode working condition and the ice melting release cooling air-conditioning working condition.
  • the refrigeration air conditioner is in the air conditioner mode
  • the compressor 10 compresses the incoming low-temperature and low-pressure gaseous refrigerant to form a high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant flows into the condenser 20 from the refrigerant outlet of the compressor 10 and is condensed.
  • the high-temperature and high-pressure gaseous refrigerant is condensed into a medium-temperature and high-pressure liquid refrigerant, and this process is called isostatic condensation.
  • the condensed liquid refrigerant maintains a high pressure, flows out through the refrigerant outlet of the condenser 20 and enters the first three-way reversing valve 101, and then enters the second thermal expansion valve through the reversing valve outlet of the first three-way reversing valve 101 70.
  • the low-temperature and low-pressure mist liquid refrigerant formed after being throttled and decompressed by the second thermal expansion valve 70 enters the evaporator 80 through the fourth pipeline 400. Under the forced convection of the third convection fan 81, the inside of the evaporator 80 The liquid refrigerant in the evaporator 80 exchanges heat with the surrounding environment to reduce the temperature of the surrounding environment.
  • the liquid refrigerant in the tube of the evaporator 80 is converted from a low-temperature and low-pressure liquid refrigerant to a low-temperature and low-pressure gaseous refrigerant after heat exchange with the surrounding environment.
  • the low-temperature and low-pressure gaseous refrigerant flows out of the refrigerant outlet of the evaporator 80, flows into the fifth pipe 500, and flows back to the refrigeration compressor 10 through the second three-way reversing valve 201 to be compressed again.
  • the refrigeration and air conditioner is in ice-making and cold storage mode
  • the compressor 10 compresses the low-temperature and low-pressure gaseous refrigerant flowing into it to form a high-temperature and high-pressure gaseous refrigerant, which can be transmitted to the condenser 20 through the first pipeline 100.
  • the high-temperature and high-pressure gaseous refrigerant The refrigerant outlet of the compressor 10 flows into the condenser 20 and condenses; under the forced convection of the first convection fan 21, the high-temperature and high-pressure gaseous refrigerant in the condenser 20 is condensed into a medium-temperature and high-pressure liquid refrigerant. This process is called The isobaric condensation.
  • the condensed liquid refrigerant maintains a high pressure, flows out through the refrigerant outlet of the condenser 20, and enters the first three-way reversing valve 101.
  • the medium-temperature and high-pressure liquid refrigerant flowing out of the reversing valve outlet of the first three-way reversing valve 101 enters the first thermal expansion valve 30 through the first pipeline 100, and is formed after being throttled and decompressed by the first thermal expansion valve 30 Low temperature and low pressure mist liquid refrigerant. Then the low-temperature and low-pressure liquid refrigerant flows into the ice storage refrigerator 40 and into the icing evaporator 42.
  • the icing evaporator includes a refrigerant liquid connection pipe 421, a refrigerant return gas connection pipe 422, a refrigerant liquid connection pipe 421, and a refrigerant liquid branch pipe 423.
  • Evaporation pipe 425 Evaporation pipe 425; therefore, the low-temperature and low-pressure liquid refrigerant enters the refrigerant pipe 421, and then enters the refrigerant pipe 423.
  • the low-temperature and low-pressure liquid refrigerant enters the evaporator pipe 425 from the refrigerant pipe 423, and enters the evaporator pipe 425.
  • the low-temperature and low-pressure liquid refrigerant exchanges heat with the cold storage liquid submerged in the evaporation tube 425.
  • the cold storage liquid enters the water tank 41 through the chilled water return pipe 412, and flows out of the water tank through the chilled water supply pipe 411, and a chilled water circulation pipeline is provided between the chilled water return pipe 412 and the chilled water supply pipe 411.
  • the low-temperature and low-pressure liquid refrigerant absorbs the heat of the cold storage liquid and is converted into a low-temperature and low-pressure gaseous refrigerant.
  • the low-temperature and low-pressure gas refrigerant entering the second pipeline 200 flows back to the compressor 10 through the second three-way switching valve 201 to be compressed again.
  • the heat exchange between the low-temperature and low-pressure gaseous refrigerant entering the evaporator tube 425 and the cold storage liquid submerged in the evaporator tube 425 is continuously circulated; the cold storage liquid is continuously cooled until the cold storage liquid in the water tank 41 is completely solidified and frozen , In order to achieve the purpose of storing cold capacity.
  • the refrigeration air conditioner is in the condition of melting ice and releasing cold air conditioner
  • the chilled water return stop valve 302 When you need to use cold storage, open the chilled water return stop valve 302, and then open the chilled water supply valve 301. Due to the height difference between the third pipeline (the chilled water circulation pipeline) 300 and the sealed water tank 41, the chilled water circulation pipeline
  • the chilled water (the cold storage liquid that is in the chilled water circulation pipeline and is not frozen can be called chilled water) can enter the non-icing space on the top of the water tank 41; since the chilled water in the chilled water circulation pipeline is at the same temperature as the ambient temperature, its temperature When the ice storage temperature in the water tank 41 is higher than the ice storage temperature in the water tank 41, the ice storage in the water tank 41 starts to melt.
  • the chilled water circulating pump 50 is started to pump the melted ice solution in the water tank 41 to the surface cooler 60 to exchange heat with the ambient air.
  • the surface cooler 60 Under the action of the second convection fan 61, the surface cooler The ice solution in the 60 releases cold to the ambient air, so as to achieve the purpose of reducing the indoor air temperature by using the energy storage of ice storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

本发明提供了一种蓄冷材料、制备方法、包括其的蓄冷液及应用,属于蓄冷材料技术领域,其旨在解决目前蓄冷材料的过冷度高以及添加至蓄冷材料中的增稠剂容易失效的问题,所述蓄冷材料包括碳复合石蜡冰晶成核微球;碳复合石蜡冰晶成核微球的组分包括石蜡及碳材料,碳材料占碳复合石蜡冰晶成核微球的质量百分比为1-4.5%。本发明提供的蓄冷材料、制备方法、包括其的蓄冷液及应用,能够降低蓄冷液的过冷度,同时无需在蓄冷材料中添加增稠剂,从而可提升蓄冷制冷装置的使用可靠性。

Description

蓄冷材料、制备方法、包括其的蓄冷液及应用 技术领域
本发明涉及蓄冷材料技术领域,尤其涉及一种蓄冷材料、制备方法、包括其的蓄冷液及应用。
背景技术
蓄冷制冷装置(例如,冰蓄冷空调、冰箱、冷库、冷链运输车辆等)通常包括蓄冷材料,在供电系统处于谷电时段时,制冷系统利用非峰值电能将所需要的制冷量储存于蓄冷液(蓄冷材料与水形成蓄冷液,并且蓄冷液处于结冰状态时可存储冷量)中;在供电系统处于峰电时段时,释冷系统通过融冰释放的冷量来满足降温需求,可缓解供电系统处于峰电时段时的供电紧张。
目前蓄冷材料的过冷度高,导致结晶成核率低而易出现过冷现象,从而造成制冷系统的运行时间延长和能耗增加;虽然添加无机盐、金属粉体等成核剂能改善过冷现象,但需要在蓄冷液中添加增稠剂防止成核剂出现沉淀。然而,增稠剂在高温至低温交变工况下,其容易发生降解、团聚、沉淀、相分离而失效,从而影响蓄冷制冷装置使用可靠性。
发明内容
本发明实施例提供了一种蓄冷材料、制备方法、包括其的蓄冷液及应用,其能够降低蓄冷材料的过冷度,同时无需在蓄冷材料中添加增稠剂,从而可提升蓄冷制冷装置的使用可靠性。
为了实现上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种蓄冷材料,所述蓄冷材料包括碳复合石蜡冰晶成核微球;所述碳复合石蜡冰晶成核微球的组分包括石蜡及碳材料,所述碳材料占所述碳复合石蜡冰晶成核微球的质量百分比为1-4.5%。
在一种可选实施例中,所述碳材料占所述碳复合石蜡冰晶成核微球的质量百分比为3%。
在一种可选实施例中,所述碳材料包括碳纳米管、石墨烯或者两者组合。
在一种可选实施例中,所述碳材料为石墨烯。
在一种可选实施例中,所述碳复合石蜡冰晶成核微球的粒径小于900um。
第二方面,本发明实施例提供了一种蓄冷材料的制备方法,包括以下步骤:
按比例称取石蜡及碳材料,并且所述碳材料占所述石蜡及所述碳材料形成的复合材料的质量百分比为1-4.5%;
对所述石蜡及所述碳材料分别进行脱水及干燥处理;
熔蜡,将脱水后的所述石蜡投入油浴锅中,并保持油浴温度为100℃;
在熔融的所述石蜡中添加脱水碳材料并研磨,形成复合溶液;
喷雾造粒,熔融液态的所述复合溶液在低于30℃空气环境中进行喷雾造粒,并控制粒径小于900um;
收集制备形成的碳复合石蜡冰晶成核微球,并存放于具有干燥氮气的封闭环境中。
在一种可选实施例中,所述碳材料为石墨烯,且所述石墨烯占复合材料的质量百分比为3%。
第三方面,本发明实施例提供了一种蓄冷液,其组分包括水及第一方面所述的蓄冷材料,所述蓄冷材料包括碳复合石蜡冰晶成核微球;所述蓄冷材料占所述蓄冷液的质量百分比为15-25%。
在一种可选实施例中,所述蓄冷材料占所述蓄冷液的质量百分比为20%。
另一方面,本发明实施例第三方面提供的所述蓄冷液应用在所述蓄冷制冷装置中。
与相关技术相比,本发明实施例提供的蓄冷材料、制备方法、包括其的蓄冷液及应用具有以下优点;
本发明实施例提供的蓄冷材料中包括碳复合石蜡冰晶成核微球,且碳 材料占碳复合石蜡冰晶成核微球的质量百分比为1-4.5%,余量为石蜡。碳复合石蜡冰晶成核微球在液态水或者冰层中导热性能好,并且能够提供蓄冷液成核结冰条件,可降低蓄冷材料的过冷度,有利于在碳复合石蜡冰晶成核微球的球表面界面水晶核形成并提升蓄冷液的结晶速率,其能够克服现有的蓄冷材料由于需要较大的过冷度的成核条件而导致制冷机组性能系数下降的问题,提升了制冷效率。
另外,其无需在蓄冷材料中添加增稠剂,能够克服增稠剂在高温至低温交变工况下,其容易发生降解、团聚、沉淀、相分离而失效的问题,从而影响蓄冷制冷装置使用可靠性。
除了上面所描述的本发明解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本发明提供的一种蓄冷材料、制备方法、包括其的蓄冷液及应用所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例二提供的蓄冷材料的制备方法的流程示意图;
图2为本发明实施例四提供的蓄冷液应用的蓄冷制冷装置的结构示意图;
图3为本发明实施例四提供的蓄冰制冷器的结构示意图;
图4为本发明实施例四提供的结冰蒸发器的结构示意图。
具体实施方式
现有蓄冷材料的过冷度太高,导致制冷机组的能效比太低,从而造成 制冷系统的运行时间延长和能耗增加;虽然添加无机盐、金属粉体等成核剂能改善过冷现象,但需同时添加增稠剂防止成核剂出现沉淀。添加增稠剂后的蓄冷材料的结晶速率降低以及导热系数降低;同时,增稠剂在高温-低温交变的工况下,增稠剂容易发生降解、团聚、沉淀、相分离而失效,导致蓄冷制冷装置可靠性下降。
为解决上述问题,本发明实施例提供一种蓄冷材料,其包括碳复合石蜡冰晶成核微球,且碳材料占碳复合石蜡冰晶成核微球的质量百分比为1-4.5%,余量为石蜡。碳复合石蜡冰晶成核微球在液态水或者冰层中导热性能好,并能够提供蓄冷液成核结冰条件,可降低蓄冷材料的过冷度,从而可提升蓄冷液的结晶速率;无需在蓄冷材料中添加增稠剂,能够克服在蓄冷材料中添加增稠剂而带来的影响蓄冷制冷装置的可靠性的问题,从而提升了蓄冷制冷装置的可靠性。
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
实施例一
本发明实施例提供了一种蓄冷材料,其包括碳复合石蜡冰晶成核微球,碳复合石蜡冰晶成核微球包括石蜡及碳材料,且碳材料占碳复合石蜡冰晶成核微球的质量百分比为1-4.5%。
具体地,石蜡可采用分子量366牌号石蜡,其熔点为56.3℃、熔化潜热为256.2kJ/kg、固体密度770kg/m 3、导热系数为0.22W/(m·K)。石蜡化学性质,溶于非极性溶剂,不溶于极性溶剂,石蜡的化学活性较低、呈中性,且化学性质稳定。
为提升石蜡的导电系数,可通过在石蜡中添加比重小且具有高导热系数的碳材料进行复合,复合后的碳材料及石蜡并用于制备碳复合石蜡冰晶成核微球。其中,分散于石蜡中的碳材料占复合形成后的碳复合石蜡冰晶成核微球的1-4.5%,具有此种组分的碳复合石蜡冰晶成核微球能增大蓄冷材料的导热系数,且密度不会增加,可使蓄冷材料(碳复合石蜡冰晶成核 微球)在水溶液中保持悬浮状态,此溶液指的是蓄冷材料添加至水至形成的蓄冷液,也称为结冰溶液。
悬浮在水溶液中的碳复合石蜡冰晶成核微球构成蓄冷液结冰成核条件;若碳复合石蜡冰晶成核微球的粒子越小,在相同体积内的蓄冷液中含有的碳复合石蜡冰晶成核微球的数量也就越多,就可以为蓄冷液提供更好的结冰成核环境;因此,本实施例提供的碳复合石蜡冰晶成核微球可以是微米尺度的微球,其粒径小于900um,从而降低蓄冷材料过冷度。
进一步的,本实施例所选的碳材料可以使纳米碳管、石墨烯或者纳米碳管、石墨烯的组合;其中,碳纳米管、石墨烯属于碳材料,其密度为2.25g/cm 3、化学性质稳定、耐腐蚀;且与酸、碱等化合物不易发生反应。本实施例可优选采用将石墨烯添加至石蜡至制作碳复合石蜡冰晶成核微球,制作而成的碳复合石蜡冰晶成核微球称为石墨烯冰晶成核微球。
其中,石墨烯在室温下的载流子迁移率约为15000cm 2/(V·s),石墨烯的电子迁移率受温度变化的影响较小,在50~500K之间的任何温度下,石墨烯的电子迁移率都在15000cm 2/(V·s)左右。此外,石墨烯具有非常好的热传导性能,其导热系数高达5300W/(m·K)。
故在石蜡中添加石墨烯,有利于石墨烯冰晶成核微球在液态水、冰层中导热,有利于石墨烯冰晶成核微球的球表面界面水晶核形成,及枝状冰晶并迅速从晶核产生的地方向外扩散,枝状冰晶沿着近石墨烯冰晶成核微球壁面的低温边界层生长。
表1:不同混合比例的石墨烯冰晶成核微球“零”℃环境的导热系数
Figure PCTCN2021091509-appb-000001
参阅表1,本实例以石墨烯为例,对具有不同混合比例的石墨烯冰晶 成核微球在临界结冰温度0℃的导热系数进行分析,根据表1导热系数测试数据可知,样例3中导热系数最佳,继续增加石墨烯的质量百分比,会影响石墨烯在石蜡中的分散效果,使石墨烯不能均匀分布在石蜡中,而使导热系数下降。
因此,本实例可优选的,在石蜡中添加石墨烯制作碳复合石蜡冰晶成核微球以形成石墨烯冰晶成核微球,且在石蜡中添加的石墨烯占石墨烯冰晶成核微球的质量百分比为3%,如此设计,可增强蓄冷材料的导热系数。可理解的是,表1所示的样例不代表对本方案的限制,所测试样例中添加至石蜡中的碳材料可以是碳纳米管,即无论在石蜡中添加碳纳米管或石墨烯,当碳材料占碳复合石蜡冰晶成核微球的质量百分比为3%时,导热性能最佳。
本实施例提供的蓄冷材料,其包括碳复合石蜡冰晶成核微球,碳材料占碳复合石蜡冰晶成核微球的质量百分比为1-4.5%,余量为石蜡。碳复合石蜡冰晶成核微球悬浮在水溶液中组成结冰溶液,以提供结冰成核条件;碳复合石蜡冰晶成核微球在液态水或者冰层中导热性能好,并可降低蓄冷材料的过冷度,从而可提升蓄冷液的结晶速率;无需在蓄冷材料中添加增稠剂,能够克服在蓄冷材料中添加增稠剂而导致的结晶速率降低以及导热系数降低的问题,且提升蓄冷制冷装置的可靠性。
实施例二
如图1所示,本实施例提供的蓄冷材料的制备方法,包括以下步骤:
步骤S100:按比例称取石蜡及碳材料;具体地,按比例分别称取石蜡及碳材料,碳材料可以是石墨烯,且石墨烯所占石墨烯和石蜡组成复合材料的质量百分比为1-4.5%,可优选的石墨烯所占复合材料的3%。
步骤S200:对石蜡及碳材料分别进行脱水及干燥处理;具体地,将石墨烯及石蜡分别放入无水氮气干燥箱中进行干燥脱水。在干燥脱水过程中需多次进行换气以置换水分,以将水分排出干燥箱外。
步骤S300:熔蜡,将脱水后的石蜡投入油浴锅中,并缓慢搅拌,搅拌过程中需保持油浴温度为100℃。
步骤S400:在熔融的石蜡中添加脱水碳材料并研磨,以形成复合溶液。
步骤S500:喷雾造粒。具体地,利用喷雾造粒机将100℃熔融液态的 复合溶液,喷雾于低于30℃空气中,液态雾状的复合溶液迅速凝固成微球,进一步的在喷雾过程中,通过控制喷雾造粒机控制形成的微球的粒径小于900um,以形成微米级别的碳复合石蜡冰晶成核微球。可理解的是,上述复合溶液可以是石墨烯石蜡复合溶液,即喷雾造粒可形成石墨烯冰晶成核微球。
步骤S600:收集制备形成的碳复合石蜡冰晶成核微球,并存放于具有干燥氮气的封闭环境中。具体地,收集石墨烯冰晶成核微球,并将收集的石墨烯冰晶成核微球放置在具有干燥氮气的包装袋中存储,干燥氮气保护石墨烯冰晶成微球。
在上述实施例的步骤S500中所涉及的喷雾造粒机可以是压力喷雾造粒机以及离心喷雾机;其中,利用压力喷雾造粒机进行造粒的过程如下:100℃熔融液态的石墨烯石蜡复合溶液通过隔膜泵2-20MPa高压输入喷嘴,喷嘴喷出雾状液滴;然后,雾状液滴与空气并流下降;呈雾状液滴态的100℃熔融液态的石墨烯石蜡复合溶液与空气并流下降过程中冷却凝固,并形成微米球。本实施例中经过雾化后的液滴(表面积大大增加)与30℃空气充分接触,可迅速完成冷却凝固成球过程,并得到微米球粉体或细小颗粒的石墨烯冰晶成核微球成品。
进一步的,利用离心喷雾机进行造粒过程如下:100℃熔融液态的石墨烯石蜡复合溶液在高速转盘(线速度应在110m/s以上)中受离心力作用从转盘的边缘甩出而雾化;利用高速旋转盘作用,当石墨烯石蜡复合溶液注入盘面时,石墨烯石蜡复合溶液受到离心力和重力的作用下得到加速而分裂雾化。
同时,石墨烯石蜡复合溶液与周围空气形成的接触面处,存在摩擦力而促使形成雾滴。雾状液滴态的100℃熔融液态的石墨烯石蜡复合溶液与空气并流下降过程冷却凝固,并形成微米球。本实施例中,经过雾化后的液滴(表面积大大增加)与30℃空气充分接触,迅速完成凝固成球过程,并得到微米球粉体或细小颗粒的石墨烯冰晶成核微球成品。
实施例三
本发明实施例还提供的蓄冷液,其组分包括水及添加在水中的蓄冷材料,蓄冷材料包括碳复合石蜡冰晶成核微球。具体地,蓄冷液也可称为结 冰溶液,结冰溶液的组分包括水和碳复合石蜡冰晶成核微球组成,其中,碳复合石蜡冰晶成核微球所占结冰溶液的质量百分比为15-25%,即蓄冷材料占蓄冷液的质量百分比为15-25%。
可理解的是,在一些实施例中,碳复合石蜡冰晶成核微球所占结冰溶液的质量百分比为20%,并且碳复合石蜡冰晶成核微球可以是在石蜡中添加石墨烯形成的石墨烯冰晶成核微球。
本实施例中,石墨烯冰晶成核微球的温度低于结冰溶液中的水的结冰温度,石墨烯冰晶成核微球的温度低于“零度”被继续冷却,石墨烯冰晶成核微球的球表面界面水晶核形成;晶核出现之后至树枝状冰晶形成时,此过程称为枝状冰晶形成过程。随着结冰溶液温度继续降低,枝状冰晶并迅速从晶核产生的地方向外扩散,随即,整个结冰溶液体积以石墨烯冰晶成核微球的球表面的界面水晶核为基础,大量的枝状冰晶形成;同时,枝状冰晶沿着近石墨烯冰晶成核微球壁面的低温边界层生长,逐渐形成冰层。沿着石墨烯冰晶成核微球的壁面生长的冰层逐渐增厚,最后扩展至整个体积,蓄冰液全部凝固成冰。
本实施例中从石墨烯冰晶成核微球的球表面界面水晶核出现,枝状冰晶形成,到结冰溶液完全凝固的过程,称为潜热蓄冷过程;随着全部凝固的结冰溶液继续降温,放出显热,冰层温度继续降低。从石墨烯冰晶成核微球的球表面界面水晶核出现,枝状冰晶形成,到结冰溶液凝固完全止,粒子表面形成晶核所需的成核功越接近于零,此时在几乎无过冷度的情况下形成晶核;即本实施例提供的石墨烯冰晶成核微球形成的蓄冷材料,可降低蓄冷材料的过冷度。
实施例四
本实施例提供的蓄冷液应用于蓄冷制冷装置中,如图2至图4所示,蓄冷制冷装置包括制冰蓄冷器40,制冰蓄冷器40包括水箱41及设置在水箱41内的结冰蒸发器42;结冰蒸发器42内具有可相变的制冷剂,水箱41内设置有蓄冷液;制冷剂与蓄冷制冷装置通过结冰蒸发器42发生热交换。
当供电系统处于谷电时段时,蓄冷制冷装置进入蓄冷状态,制冷剂与蓄冷液进行热交换,使蓄冷液处于结冰状态且存储冷量;当供电系统处于峰电时段时,蓄冷制冷装置进入融冰释冷状态,结冰状态的蓄冷液融化而成的融 冰溶液通过表冷器与空气进行热交换并提供冷量,使周围空气降温;可充分利用谷电时段的电力资源,提升谷电时段的电力资源的利用率。同时,蓄冷制冷装置在供电系统处于峰电时段时,其可释放冷量,以降低供电系统处于峰电时段用于降温的用电量,缓解供电系统的峰电时段供电紧张。
蓄冷制冷装置可以是冰箱、空调或者冷链运输设备中的一种或者组合;本实施例以空调为例,对蓄冷液在蓄冷制冷装置中应用进行说明;本实施例提供的制冷空调,不仅具有空调模式工况,还具有制冰蓄冷模式工况以及融冰释冷空调工况。
下面结合制冷空调所处的不同工况,对蓄冷液在蓄冷制冷装置中的应用进行说明。
制冷空调处于空调模式工况
如图2所示,压缩机10将流入的低温低压的气态制冷剂经压缩形成高温高压的气态制冷剂,高温高压气态制冷剂由压缩机10的制冷剂出口流入冷凝器20并进行冷凝,在第一对流风机21的作用下,高温高压的气态制冷剂冷凝为中温高压的液态制冷剂,这一过程称之等压冷凝。
冷凝后的液态制冷剂保持高压,经冷凝器20的制冷剂出口流出并进入第一三通换向阀101,然后经第一三通换向阀101的换向阀出口进入第二热力膨胀阀70,经第二热力膨胀阀70节流减压后形成的低温低压雾状的液态制冷剂经过第四管路400进入蒸发器80,在第三对流风机81强制对流作用下,蒸发器80内的液态制冷剂与周围环境形成热交换,使周围环境温度降低,蒸发器80管内的液态制冷剂与周围环境经热交换后由低温低压液态制冷剂转换为低温低压的气态制冷剂。低温低压的气态制冷剂由蒸发器80的制冷剂出口流出,并流入第五管路500,并通过第二三通换向阀201回流至制冷压缩机10再次压缩。
制冷空调处于制冰蓄冷模式工况
如图2至图4,压缩机10将流入其的低温低压的气态制冷剂经压缩后形成高温高压的气态制冷剂,并经第一管路100可传输至冷凝器20,高温高压气态制冷剂由压缩机10的制冷剂出口流入冷凝器20并进行冷凝;在第一对流风机21的强制对流下,冷凝器20内的高温高压气态制冷剂冷凝为中温高压的液态制冷剂,这一过程称之等压冷凝。冷凝后的液态制冷剂保持高压, 经冷凝器20的制冷剂出口流出,并进入第一三通换向阀101。
然后,经第一三通换向阀101的换向阀出口流出的中温高压液态制冷剂经第一管路100进入第一热力膨胀阀30,经第一热力膨胀阀30节流减压后形成低温低压雾状的液态制冷剂。随之低温低压液态制冷剂流入蓄冰制冷器40并流入结冰蒸发器42中,结冰蒸发器包括制冷液接管421、制冷剂回气接管422、制冷液接管421、制冷剂分液管423、蒸发管425;因此,低温低压液态制冷剂进入制冷液接管421,然后进入制冷剂分液管423,低温低压液态制冷剂由制冷剂分液管423分别进入蒸发管425,进入蒸发管425的低温低压液态制冷剂与浸没蒸发管425的蓄冷液热交换。可理解的是,蓄冷液由冷冻水回水接管412进入水箱41,由冷冻水供水接管411流出水箱,并且冷冻水回水接管412和冷冻水供水接管411之间设置有冷冻水循环管路。
低温低压液态制冷剂吸收蓄冷液的热量后转换为低温低压的气态制冷剂,并经制冷剂集气管424集中后,然后经制冷剂回气接管422进入第二管路200。进入第二管路200内的低温低压气态制冷剂经第二三通转换阀201回流至压缩机10再次压缩。本实施例中,进入蒸发管425内的低温低压的气态制冷剂与浸没蒸发管425的蓄冷液的热交换不断循环进行;使蓄冷液不断降温,直至位于水箱41内的蓄冷液全部凝固结冰,以达到存储冷量的目的。
制冷空调处于融冰释冷空调工况
参阅图2至图4,当水箱41内蓄冷液完成结冰之后,按照制冰蓄冷模式工况下操作程序,密封水箱41的顶层部分保持了无结冰空间。
待需要使用蓄冷时,开启冷冻水回水截止阀302,再开启冷冻水供水阀301,由于第三管路(冷冻水循环管路)300与密封水箱41之间存在高度差,冷冻水循环管路中的冷冻水(处于冷冻水循环管路中且未结冰的蓄冷液可称为冷冻水)可进入水箱41的顶层无结冰空间;由于冷冻水循环管路中的冷冻水与环境温度等温,其温度高于水箱41内的蓄冰温度,水箱41内的蓄冰开始溶冰。
水箱41内的蓄冰开始溶冰之后,启动冷冻水循环泵50,将水箱41内的溶冰溶液泵送至表冷器60与环境空气热交换,在第二对流风机61作用下,表冷器60内的溶冰溶液对环境空气释冷,从而达到利用冰蓄冷的储能降低室内空气温度的目的。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种蓄冷材料,其特征在于,所述蓄冷材料包括碳复合石蜡冰晶成核微球;
    所述碳复合石蜡冰晶成核微球的组分包括石蜡及碳材料,所述碳材料占所述碳复合石蜡冰晶成核微球的质量百分比为1-4.5%。
  2. 根据权利要求1所述的蓄冷材料,其特征在于,所述碳材料占所述碳复合石蜡冰晶成核微球的质量百分比为3%。
  3. 根据权利要求1所述的蓄冷材料,其特征在于,所述碳材料包括碳纳米管、石墨烯或者两者组合。
  4. 根据权利要求3所述的蓄冷材料,其特征在于,所述碳材料为石墨烯。
  5. 根据权利要求1至4任一项所述的蓄冷材料,其特征在于,所述碳复合石蜡冰晶成核微球的粒径小于900um。
  6. 一种蓄冷材料的制备方法,其特征在于,包括以下步骤:
    按比例称取石蜡及碳材料,并且所述碳材料占所述石蜡及所述碳材料形成的复合材料的质量百分比为1-4.5%;
    对所述石蜡及所述碳材料分别进行脱水及干燥处理;
    熔蜡,将脱水后的所述石蜡投入油浴锅中,并保持油浴温度为100℃;
    在熔融的所述石蜡中添加脱水后的所述碳材料并研磨,形成复合溶液;
    喷雾造粒,熔融液态的复合溶液在低于30℃空气环境中进行喷雾造粒,并控制粒径小于900um;
    收集制备而成的碳复合石蜡冰晶成核微球,并存放于具有干燥氮气的封闭环境中。
  7. 根据权利要求6所述的蓄冷材料的制备方法,其特征在于,所述碳材料为石墨烯,且所述石墨烯占所述复合材料的质量百分比为3%。
  8. 一种蓄冷液,其特征在于,其组分包括水及权利要求1至5任一项所述的蓄冷材料;
    所述蓄冷材料占所述蓄冷液的质量百分比为15-25%。
  9. 根据权利要求8所述的蓄冷液,其特征在于,所述蓄冷材料占所 述蓄冷液的质量百分比为20%。
  10. 权利要求8或9所述的蓄冷液应用在蓄冷制冷装置中。
PCT/CN2021/091509 2020-06-12 2021-04-30 蓄冷材料、制备方法、包括其的蓄冷液及应用 WO2021249061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010537631.2 2020-06-12
CN202010537631.2A CN113801636B (zh) 2020-06-12 2020-06-12 蓄冷材料、制备方法、包括其的蓄冷液及应用

Publications (1)

Publication Number Publication Date
WO2021249061A1 true WO2021249061A1 (zh) 2021-12-16

Family

ID=78845140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091509 WO2021249061A1 (zh) 2020-06-12 2021-04-30 蓄冷材料、制备方法、包括其的蓄冷液及应用

Country Status (2)

Country Link
CN (1) CN113801636B (zh)
WO (1) WO2021249061A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206941A1 (en) * 2000-11-22 2004-10-21 Gurin Michael H. Composition for enhancing conductivity of a carrier medium and method of use thereof
CN101407714A (zh) * 2008-09-16 2009-04-15 上海第二工业大学 一种石蜡基碳纳米管复合相变蓄热材料及制备方法
CN103087682A (zh) * 2013-01-31 2013-05-08 北京大学 具有吸光和导电性质的复合定形相变材料及其制备方法
CN104357021A (zh) * 2014-10-22 2015-02-18 王子韩 一种石墨烯/石蜡复合相变储能材料及制备方法
CN107617396A (zh) * 2017-10-25 2018-01-23 中国科学院苏州纳米技术与纳米仿生研究所 相变微球、其制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342181C (zh) * 2005-10-14 2007-10-10 中国科学院广州能源研究所 一种水合物蓄冷冰球
CN100516723C (zh) * 2006-12-28 2009-07-22 广州贝龙环保热力设备股份有限公司 一种提高结冰或溶冰速度的成核剂
CN103602318A (zh) * 2013-12-03 2014-02-26 上海海事大学 一种复合低温相变蓄冷材料
CN109609096A (zh) * 2018-10-18 2019-04-12 浙江大学山东工业技术研究院 一种空调蓄冷相变材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206941A1 (en) * 2000-11-22 2004-10-21 Gurin Michael H. Composition for enhancing conductivity of a carrier medium and method of use thereof
CN101407714A (zh) * 2008-09-16 2009-04-15 上海第二工业大学 一种石蜡基碳纳米管复合相变蓄热材料及制备方法
CN103087682A (zh) * 2013-01-31 2013-05-08 北京大学 具有吸光和导电性质的复合定形相变材料及其制备方法
CN104357021A (zh) * 2014-10-22 2015-02-18 王子韩 一种石墨烯/石蜡复合相变储能材料及制备方法
CN107617396A (zh) * 2017-10-25 2018-01-23 中国科学院苏州纳米技术与纳米仿生研究所 相变微球、其制备方法及应用

Also Published As

Publication number Publication date
CN113801636A (zh) 2021-12-17
CN113801636B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Zhao et al. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures
Li et al. Review of cold storage materials for air conditioning application
CN207881304U (zh) 低温流体冷能利用工艺
CN109028404B (zh) 一种冰水混合物蓄冷空调系统及其控制方法
CN107421030B (zh) 一种基于相变微胶囊液浆储冷装置的冷却系统及运行方法
Li et al. Cold thermal energy storage materials and applications toward sustainability
CN104344479A (zh) 一种蓄冷式节能空调系统及其运行方法
CN1174074C (zh) 蓄冷剂
CN104214866A (zh) 一种单元式蓄冰空调系统
CN106839198A (zh) 一种机房制冷用双回路水冷热管风冷空调一体机
WO2021249061A1 (zh) 蓄冷材料、制备方法、包括其的蓄冷液及应用
JP3407658B2 (ja) 水和物の製造方法および装置
WO2017063475A1 (zh) 直接蒸发式冰浆循环动态制冰装置
CN208704235U (zh) 一种基于重力热管的组合式lng冷能回收汽化器
JP3508549B2 (ja) 蓄熱装置
CN206637881U (zh) 制冷循环系统
CN104315635A (zh) 中小型大温差双工况动态流态冰冰蓄冷空调
CN204176831U (zh) 中小型大温差双工况动态流态冰冰蓄冷空调
CN205048615U (zh) 一种冷水机组自然冷源热管式蓄冷系统
Boetcher Cool Thermal Energy Storage: Water and Ice to Alternative Phase Change Materials
JP3407659B2 (ja) 空調設備
CN208936373U (zh) 一种冰水混合物蓄冷空调系统
CN113803809A (zh) 蓄冷制冷装置
CN113214797A (zh) 一种复合水溶类水合物相变蓄冷剂及其制备方法
CN205919545U (zh) 冷链与蓄冷耦合系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822221

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822221

Country of ref document: EP

Kind code of ref document: A1