CN103069055A - 尺寸性二氧化硅基多孔硅结构及其制造方法 - Google Patents

尺寸性二氧化硅基多孔硅结构及其制造方法 Download PDF

Info

Publication number
CN103069055A
CN103069055A CN2011800407756A CN201180040775A CN103069055A CN 103069055 A CN103069055 A CN 103069055A CN 2011800407756 A CN2011800407756 A CN 2011800407756A CN 201180040775 A CN201180040775 A CN 201180040775A CN 103069055 A CN103069055 A CN 103069055A
Authority
CN
China
Prior art keywords
base material
silica glass
glass base
reaction
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800407756A
Other languages
English (en)
Other versions
CN103069055B (zh
Inventor
R·A·贝尔曼
N·F·伯雷利
D·A·德纳卡
S·M·奥马利
V·M·施耐德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN103069055A publication Critical patent/CN103069055A/zh
Application granted granted Critical
Publication of CN103069055B publication Critical patent/CN103069055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Recrystallisation Techniques (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

本发明考虑了制造含多孔硅层的尺寸性二氧化硅基基材或结构的方法。根据一个实施方式,通过在加热的惰性气氛中使金属气体与二氧化硅玻璃基材反应,将氧从所述基材的原子元素组成中提取出来,以沿着所述基材的表面形成金属-氧复合物。将所述金属-氧复合物从所述二氧化硅玻璃基材的表面除去以产生晶体多孔硅表面部分,并在所述二氧化硅玻璃基材的晶体多孔硅表面部分上形成一层或多层附加层以产生含所述多孔硅层的尺寸性二氧化硅基基材或结构。还考虑了其它实施方式,其中所述基材是玻璃基的玻璃基材,而不一定是二氧化硅基的玻璃基材。本发明还描述了其他的实施方式,并要求专利保护。

Description

尺寸性二氧化硅基多孔硅结构及其制造方法
要求在先提交的美国申请的权益
本申请根据35U.S.C.§119要求2010年8月24日提交的美国临时申请系列第61/376,379号的优先权,以及根据35U.S.C.§120要求2011年5月4日提交的美国申请系列第13/100,593号的优先权,通过参考将两个申请都纳入本文。
背景技术
本发明涉及尺寸性(dimensional)二氧化硅基多孔硅结构,以及更具体而言,涉及制造所述结构的方法。
发明内容
根据本发明的一个实施方式,提供了一种制造含多孔硅层的尺寸性二氧化硅基结构的方法。根据所述方法,通过在加热的惰性气氛中使金属气体与二氧化硅玻璃基材反应,将氧从所述基材的原子元素组成中提取出来,以沿着所述基材的表面形成金属-氧复合物。将金属-氧复合物从所述二氧化硅玻璃基材的表面除去以产生晶体多孔硅表面部分,并在所述二氧化硅玻璃基材的晶体多孔硅表面部分上形成一层或多层附加层以产生含多孔硅层的尺寸性二氧化硅基结构。还考虑了其它实施方式,其中所述基材是玻璃基的玻璃基材,而不一定是二氧化硅基的玻璃基材。本发明还描述了其他的实施方式,并要求专利保护。
附图说明
当结合以下附图阅读下面对本发明的具体实施方式的详细描述时,可对其形成最好的理解,附图中相同的结构用相同的编号表示,其中:
图1-3示意性说明了根据本发明的一个实施方式制造尺寸性二氧化硅基多孔硅结构的方法;
图4说明了根据本发明另一个实施方式的尺寸性二氧化硅基多孔硅结构;
图5示意性说明了结合本发明二氧化硅基多孔硅层的绝缘体上硅结构;以及
图6示意性说明了结合本发明二氧化硅基多孔硅层的光伏电池。
具体实施方式
本发明的图1-3参考二氧化硅玻璃基材和镁基金属热还原法描述了本发明的制造方法,但是本发明的范围延伸大大超出了特定的金属热还原法。更具体而言,根据所述的制造方法,通过将氧从二氧化硅玻璃基材10的原子元素组成中提取出来,可制造含多孔硅层的尺寸性二氧化硅基结构。所述二氧化硅玻璃基材10可为高纯度熔凝二氧化硅基材、碱土金属铝硼硅酸盐玻璃、或任意类型的含二氧化硅的玻璃。在加热的惰性气氛20中通过使金属气体Mg与所述二氧化硅玻璃基材10反应,将氧从所述二氧化硅玻璃基材10中提取出来,以沿着所述二氧化硅玻璃基材10的表面形成金属-氧复合物30。
为了促进氧提取,将所述惰性气氛20加热至反应温度T,在许多二氧化硅玻璃基材的情况中,该反应温度T将约为650-750℃。例如而非限制性的,对于碱土金属铝硼硅酸盐玻璃,合适的反应温度T将为略低于或等于约675℃,并且可保持约2小时。在大多数情况中,所述二氧化硅玻璃基材10的特征可在于热应变点,并且可将所述惰性气氛20加热至低于所述二氧化硅玻璃基材10的热应变点的反应温度。例如而非限制性的,对于应变点约为669℃的玻璃,可将所述惰性气氛加热至约660℃。对于低压反应腔室考虑采用降低的反应温度。
所述二氧化硅玻璃基材10可包括任意类型的二氧化硅基玻璃,所述二氧化硅基玻璃包括但不限于高纯度熔凝二氧化硅、气凝胶玻璃、碱土金属铝硼硅酸盐玻璃,所述二氧化硅基玻璃可包括硼、磷、钛、锗、锆、钒等元素的氧化物,并且所述二氧化硅基玻璃可被制造成不含附加的砷、锑、钡和卤化物,或者也可不被制造成不含附加的砷、锑、钡和卤化物。出于描述和定义本发明的目的,应注意本文的术语“高纯度熔凝二氧化硅”旨在包括本领域通常公认的高纯度熔凝二氧化硅的组合物和纯度水平。在高纯度熔凝二氧化硅的情况中,考虑所述玻璃可以以下形式存在:可再拉制的玻璃的熔融拉制片、硅的软质玻璃板或用于辊到辊制造的硅层压基材。
尽管主要参考二氧化硅基玻璃和使用Mg作为金属气体来描述本发明的实施方式,还考虑了其它实施方式,其中所述基材是玻璃基玻璃基材,而不一定是二氧化硅基玻璃基材。例如,考虑可使用非二氧化硅玻璃形成剂提供其它玻璃基材,所述非二氧化硅玻璃形成剂包括例如硼、磷、钛、锗、锆、钒的氧化物,以及其它金属氧化物。另外,考虑在不偏离本发明的范围的情况下可采用各种合适的还原性气体。例如而非限制性的,考虑金属还原性气体可包括Mg、Na、Rb或其组合。在一个简化的有点理想的情况中,其中所述金属气体包括Mg,与所述二氧化硅玻璃基材的相应的化学计量反应如下:
2Mg+SiO2→Si+2MgO。
类似的反应将以类似的还原性气体为特征。
在非化学计量或更复杂的情况中,会产生诸如Mg2Si的反应副产物,并且在上述还原步骤后可进行本文所述的副产物去除步骤。为了避免生成副产物及对副产物去除步骤的需要,考虑可对还原反应的化学计量进行调整,使得提供的金属气体的量不足以产生副产物。然而,在许多情况中,玻璃的组成将导致无法避免地产生额外的反应副产物,在该情况中,可通过本文所述的蚀刻和热副产物去除步骤来除去这些额外的副产物。
为了促进还原,在所述金属气体与所述二氧化硅玻璃基材10反应时,可对所述基材10进行微波或射频照射。所述金属气体可衍生自任意常规的或仍待开发的来源,所述来源包括例如施加微波、等离子体或激光升华、电流或等离子体电弧以引发金属气体形成的金属源。在金属气体衍生自金属源的情况中,考虑当所述金属气体与所述二氧化硅玻璃基材反应时可改变金属源的组成以进一步促进还原。
通过用电子辐照所述基材的表面可在所述二氧化硅玻璃基材中形成额外的缺陷。所得缺陷使得通过金属热还原性气体试剂提取氧更容易和广泛,如此在上述金属热还原法之前通过对所述玻璃基材进行电子束辐照可用于促进氧提取。考虑的剂量包括但不限于,约10-75kGy的剂量,采用约125KV的加速电压。考虑更高的剂量和加速电压,并认为可能是有利的。
如图2示意性所示,将沿着所述二氧化硅玻璃基材10的表面形成的金属-氧复合物30从二氧化硅玻璃基材10的表面上除去,以产生晶体多孔硅表面部分,形成多孔硅层40。尽管本发明的各种实施方式不限于具体去除方法,应注意可通过进行反应后酸蚀刻步骤将所述金属-氧复合物30从所述二氧化硅玻璃基材10的表面上除去。例如而非限制性的,反应后酸蚀刻可在1M HCl溶液(HCl:H2O:EtOH摩尔比=0.66:4.72:8.88)中进行至少2小时。根据所述玻璃的孔隙率,一些额外的MgO可能被截留在所述玻璃内部,可能需要使用所述酸性混合物多次冲洗进行更长时间的额外蚀刻。
如图3示意性所示,可在所述二氧化硅玻璃基材10的晶体多孔硅表面部分上形成一层或多层附加层50,以产生包括所述多孔硅层40的尺寸性二氧化硅基结构100。通常而言,所述附加层50包括半导体或晶体覆盖层,并且将所述多孔硅层40用作所述覆盖层外延生长或沉积的晶种层。考虑所述外延生长或沉积层可为例如硅、锗、或另一种半导体或晶体材料。
在所述附加层50包括单晶硅层、微晶硅层、多晶硅层或无定形硅层的情况中,所述方法还可包括使所述附加层50重结晶的步骤,该步骤通过在一定温度和持续时间下进行退火,所述温度和持续时间足以促进结晶并增大覆盖层中的粒度。考虑常规退火配置以及局部激光或焰炬退火可能是合适的。通常,多孔硅层40将提高所述外延生长或沉积硅层50的结晶度。在多晶硅生长的情况中,在玻璃模板上的多孔硅上外延生长或沉积的硅可能具有的粒度为约10纳米至数十微米,例如>20微米。出于描述和定义本发明的目的,应注意微晶硅(有时也称作单晶硅)是其中整个材料的晶体结构是均相的形式。在整个材料中取向、晶格参数和电子性质是恒定的。多晶硅由许多不同晶体取向的较小的硅晶粒组成。微晶硅(有时也称作纳米晶体硅)是类似于无定形硅的多孔硅形式,其中微晶硅具有无定形相。然而,微晶硅在无定形相中具有小晶粒的晶体硅。这与仅由晶体硅晶粒组成的多晶硅不同,所述晶体硅晶粒被晶界分开。
参见图4中所示的尺寸性二氧化硅基结构100',应注意,在许多情况中,所述结构100'将形成在下方二氧化硅玻璃基材70之上,所述下方二氧化硅玻璃基材70不是高纯度熔凝二氧化硅,即包括掺杂剂、添加剂或其它杂质的二氧化硅玻璃基材。例如但非限制性的,铝硼硅酸盐玻璃基材是工业中广泛使用的对象。其它考虑的二氧化硅玻璃基材包括添加剂,例如硼、磷、钛、锗、锆、钒等。在这些情况中,通常将需要利用分离层60以抑制这些杂质从下方玻璃基材70迁移至所述结构100'的剩余部分。例如,所述分离层60可能包括氮化硅介电层。
参见图5所示的绝缘体上硅薄膜晶体管结构200,其中设置各种附加层以形成单晶绝缘体上硅结构,将多孔硅层40用作晶种层,用于包括多孔硅层40的绝缘体上硅结构的外延制造。考虑还可设置本发明的尺寸性二氧化硅基结构以形成光伏电池300(参见图6)、温差电池和其它类似结构。还考虑可设置本发明的尺寸性二氧化硅基结构以形成硅基光电器件,例如发光器件、波导、光子晶体或太阳能电池。在许多上述实施方式中,所述结构将在二氧化硅玻璃基材上形成,所述二氧化硅玻璃基材包括显著量的掺杂剂、添加剂或其它杂质,如铝硼硅酸盐玻璃基材。在这些和其它情况中,考虑在所述结构中将结合入类似于参考图4的上述分离层。
另外,考虑可设置本发明的尺寸性二氧化硅基结构以形成环境界面器件,出于描述和定义本发明的目的,所述环境界面器件是设置以改变外部环境组分、被外部环境组分改变,或者通过其它的方式与外部环境组分相互联系的器件,所述外部环境组分包括例如空气、水、外部主体等。例如而非限制性的,所述环境界面器件可为微反应器、过滤介质或气体传感器,在这些情况中,所述环境界面器件的活性结构中的多孔硅层将包括所述器件的催化层、沸石层或其它活性层。考虑其它环境界面器件,其中将所述多孔硅层设置为疏水层、防指纹接触层或耐化学性或强度提高的表面层。
在本发明的一些实施方式中,将所述二氧化硅玻璃基材设置为包括N型或P型掺杂剂,并且调整氧提取步骤和金属-氧复合物去除步骤,以在所述二氧化硅玻璃基材的晶体多孔硅表面部分中留下显著量的掺杂剂。如果存在足够量的这些掺杂剂,该掺杂剂可向形成在所述二氧化硅玻璃基材的晶体多孔硅表面部分上的附加层提供掺杂剂。例如,典型掺杂剂包括但不限于Al、P、B和As。或者,考虑可通过常规扩散或离子注入技术将N型或P型掺杂剂引入所述二氧化硅玻璃基材的晶体多孔硅表面部分。
在本发明的其它实施方式中,考虑可向所述二氧化硅玻璃基材提供局部膜,用于控制所述二氧化硅玻璃基材的所得晶体多孔硅表面部分的厚度、孔隙率或晶体特征。考虑这些局部膜可为硅酸盐、磷酸盐或任意玻璃形成剂,包括但不限于硼、磷、钛、锗、锆、钒的氧化物和其它金属氧化物。例如而非限制性的,可通过以下方法在所述玻璃上形成局部膜:原子层沉积(ALD)、化学气相沉积(CVD)及其变体(例如PECVD、LPCVD、APCVD)、分子束蒸发(MBE)、溅射沉积等。还考虑向所述二氧化硅玻璃基材的表面提供凹槽、凸起特征或其它纹理,以产生特定光学性质或联合的光电性质,例如光散射。还考虑可调整原料基材玻璃组成,以提高热加工能力,例如JADETM玻璃包含钡,并且在高达725℃的温度是稳定的。另外,考虑可选择玻璃组成以提高光学透明度、偏振性或抗冲击性。
在本发明的其它实施方式中,考虑可通过以下方式使尺寸性二氧化硅基结构致密化:将附加玻璃层或金属氧化物层涂覆在所述二氧化硅玻璃基材的晶体多孔硅表面部分上,并在反应温度下使金属气体与玻璃基材的晶体多孔表面部分反应,以产生致密化的氧基材。该过程可在本文所述的各种金属热反应条件下使用较薄的(例如10-300纳米)玻璃层或金属氧化物层重复多次。
在使所述金属气体与所述二氧化硅玻璃基材反应之前,可在所述二氧化硅玻璃基材上提供一层或多层惰性阻挡层,以促进覆盖层图案化。例如而非限制性的,可在图案化步骤中使用石墨阻挡层。还考虑本发明的制造方法可结合还原剂掺杂步骤,其中使用气态还原剂对所述二氧化硅玻璃基材进行预处理,以使得所述还原剂渗入所述二氧化硅玻璃基材的表面,并促进所述金属气体和所述二氧化硅玻璃基材的反应。例如,为了较快并且较完全的局部还原,可在帕尔(Parr)容器中将所述二氧化硅玻璃基材暴露于加压的氢气和惰性载气。
为了从所述多孔硅中除去无定形硅,本发明的制造方法还可结合反应后酸蚀刻步骤,例如通过HF蚀刻或其它常规或待开发的酸蚀刻方案。考虑在许多情况中,所述反应后酸蚀刻步骤将产生晶体多孔硅,所述晶体多孔硅由X射线衍射光谱表征主要表现出优选的<111>晶体取向。
本发明的制造方法还可结合一个或多个反应后热处理步骤。例如而非限制性的,在超过所述反应温度的反应后温度下在惰性气氛中可对包括本发明的多孔硅层的基材进行处理。更具体而言,在Ar中并在725℃下,对在675℃下处理过2小时并在1M HCL中蚀刻过2小时的基材进行反应后热处理6小时。在大多数情况中,其中将所述惰性气氛加热至约650-750℃的反应温度,所述反应后温度将为高于700℃,例如725-750℃,并且将保持数小时。在高纯度熔凝二氧化硅的情况中,所述反应后处理通常保持约6小时以完全除去Mg2Si。对于碱土金属铝硼硅酸盐玻璃,所述碱土金属铝硼硅酸盐玻璃可被制造成不含附加的砷、锑、钡和卤化物,反应后处理通常保持超过约18小时,并且可以以中间6小时处理步骤间歇地执行。在其中金属气体与所述二氧化硅玻璃基材沿着所述二氧化硅玻璃基材的表面额外形成金属-非氧复合物的反应的情况中,所述反应后热处理可保持一段足以使所述金属-非氧复合物也蒸发的时间。
出于描述和定义本发明的目的,应注意,“尺寸性”基材或“尺寸性”结构是这样一种基材或结构,其中所述基材或结构的尺寸具有预定的实用性形状和大小,即为具体功用设计的尺寸和大小。尺寸性基材和结构可为完全功能性结构、中间结构、部分功能性结构、前体基材或结构、或用于形成中间、部分或完全功能性结构的晶种基材或结构。例如,尺寸性基材和结构可区别于粉末、晶粒、或其它类型的粗糙或精细颗粒物质,所述颗粒物质具有未定义、伪随机、或其它不确定的形状。尺寸性基材和结构还可与纳米结构或纳米颗粒区别开来。尺寸性基材和结构的例子包括但不限于,用于结构生长的晶种基材或片层、薄膜晶体管、光伏电池、温差电池、发光器件、波导、光子晶体、太阳能电池,和其它类似结构。另外,应注意,多孔硅是化学元素硅的一种形式,该形式在其微结构中具有纳米级尺寸的空穴分布,使其表面积/体积比较高,在一些情况中大于500米2/克。还应当注意,在本文中,“至少一种”组分、元素等不应认为选择性使用修饰语“一个”或“一种”限于单独的组分、元素等。
应当指出,本文所用的诸如“优选”、“常规”和“通常”之类的词语不是用来限制本发明要求保护的范围,也不表示某些特征对本发明要求保护的结构或者功能来说是重要的、关键的甚至是必不可少的。相反地,这些术语仅仅用来表示本发明实施方式的特定方面,或者强调可以或者不可以用于本发明特定实施方式的替代的或附加的特征。
描述和限定本发明,特别提出本文中使用的术语“约”表示可被认为是任意定量比较、数值、测量或其他表示法造成的常有的不确定性。还使用词语“基本上”表示数量的表示值可以与所述的参比值有一定的偏离程度,但是不会导致所讨论的主题的基本功能改变。
在结合具体实施方式详细描述了本发明的主题之后,应当指出,本文披露的各种细节不应理解为暗示着这些细节涉及属于本文所述各种实施方式的实质性组成的要素,即便在本文所附的每幅图中都示出了特定要素的情况下也是如此。相反,本文所附权利要求书应理解为唯一表达了本发明的广度和本文所述各项发明的相应范围。此外,在不背离所附权利要求书所限定的本发明范围的前提下,显然可以作出各种改变和变化。更具体来说,尽管本发明的一些方面在本文中被认为是优选的或者特别有益的,但应考虑到本发明不一定限于这些方面。

Claims (20)

1.一种制造含多孔硅层的尺寸性二氧化硅基基材或结构的方法,所述方法包括:
提供二氧化硅玻璃基材;
通过在加热的惰性气氛中使金属气体与所述二氧化硅玻璃基材反应,将氧从所述二氧化硅玻璃基材的原子元素组成中提取出来,以沿着所述二氧化硅玻璃基材的表面形成金属-氧复合物,其中将所述惰性气氛加热至足以促进所述氧提取的反应温度;
从所述二氧化硅玻璃基材的表面除去所述金属-氧复合物,以产生所述二氧化硅玻璃基材的晶体多孔硅表面部分;以及
在所述二氧化硅玻璃基材的晶体多孔硅表面部分上形成一层或多层附加层,以产生含所述多孔硅层的尺寸性二氧化硅基基材或结构。
2.如权利要求1所述的方法,其特征在于:
所述尺寸性二氧化硅基基材或结构包括含有半导体或晶体材料的覆盖层;以及
所述方法还包括将所述多孔硅层用作晶种层,用于所述覆盖层的外延生长或沉积。
3.如权利要求2所述的方法,其特征在于:
所述覆盖层包括单晶硅层、微晶硅层、多晶硅层、或无定形硅层;以及
所述方法还包括使所述覆盖层重结晶的步骤,该步骤通过在一定温度和持续时间下对所述覆盖层进行退火来进行,所述温度和持续时间足以促进结晶并增大所述覆盖层中的粒度。
4.如权利要求1所述的方法,其特征在于:
所述尺寸性二氧化硅基基材或结构是单晶绝缘体上硅结构;以及
所述方法还包括将所述多孔硅层用作晶种层,用于所述绝缘体上硅结构的外延制造。
5.如权利要求4所述的方法,其特征在于,所述含所述多孔硅层的二氧化硅玻璃基材形成于下方的二氧化硅玻璃基材和居于中间的分离层之上,设置所述中间分离层以抑制杂质从所述二氧化硅玻璃基材迁移至所述结构的剩余部分。
6.如权利要求1所述的方法,其特征在于:
所述二氧化硅玻璃基材包括N型或P型掺杂剂;以及
调整所述氧提取和所述金属-氧复合物除去步骤,以在所述二氧化硅玻璃基材的晶体多孔硅表面部分中留下显著量的掺杂剂。
7.如权利要求1所述的方法,其特征在于,向所述二氧化硅玻璃基材提供局部膜,用于控制所述二氧化硅玻璃基材的所得晶体多孔硅表面部分的厚度、孔隙率或晶体特征。
8.如权利要求1所述的方法,其特征在于,所述方法包括图案化步骤,其中在所述金属气体与所述二氧化硅玻璃基材反应之前在所述二氧化硅玻璃基材上提供一层或多层惰性阻挡层。
9.如权利要求1所述的方法,其特征在于,所述方法包括还原剂掺杂步骤,其中使用气态还原剂对所述二氧化硅玻璃基材进行预处理,以使得所述还原剂渗入所述二氧化硅玻璃基材的表面,并促进所述金属气体与所述二氧化硅玻璃基材的反应。
10.如权利要求1所述的方法,其特征在于,所述二氧化硅玻璃基材的特征在于热应变点,并且将所述惰性气氛加热至低于所述二氧化硅玻璃基材的热应变点的反应温度。
11.如权利要求1所述的方法,其特征在于,所述金属气体包含Mg,并且所述金属气体与所述二氧化硅玻璃基材的反应包括:
2Mg+SiO2→Si+2MgO。
12.如权利要求1所述的方法,其特征在于,提供一定量的所述金属气体,所述量满足化学计量反应条件。
13.如权利要求1所述的方法,其特征在于,所述金属气体与所述二氧化硅玻璃基材的反应产生反应副产物,并且所述方法包括一个或多个副产物去除步骤。
14.如权利要求1所述的方法,其特征在于,在所述金属气体与所述二氧化硅玻璃基材反应时,对所述基材施加微波或射频。
15.如权利要求1所述的方法,其特征在于,在加热的惰性气氛中进行所述金属气体与所述二氧化硅玻璃基材反应之前,对所述二氧化硅玻璃基材进行电子束辐照。
16.如权利要求1所述的方法,其特征在于:
所述金属气体与所述二氧化硅玻璃基材的反应沿着所述二氧化硅玻璃基材的表面额外地形成了金属-非氧复合物;以及
所述方法还包括反应后热处理,所述反应后热处理是在惰性气氛中在超过所述反应温度的反应后温度下保持一段时间,该时间足以使所述金属-非氧复合物蒸发。
17.如权利要求1所述的方法,其特征在于,所述方法还包括用于除去所述金属-氧复合物或无定形硅的反应后酸蚀刻步骤。
18.一种制造含多孔玻璃层的尺寸性玻璃基基材或结构的方法,所述方法包括:
提供尺寸性玻璃基材;
通过在加热的惰性气氛中使金属气体与所述玻璃基材反应,将氧从所述玻璃基材的原子元素组成中提取出来,以沿着所述玻璃基材的表面形成金属-氧复合物,其中将所述惰性气氛加热至足以促进所述氧提取的反应温度;以及
从所述玻璃基材的表面除去所述金属-氧复合物,以产生所述玻璃基材的晶体多孔表面部分。
19.如权利要求1所述的方法,其特征在于,通过以下方式使尺寸性二氧化硅基结构致密化:将附加玻璃层或金属氧化物层涂覆在所述二氧化硅玻璃基材的晶体多孔硅表面部分,并在所述反应温度下使金属气体与所述玻璃基材的晶体多孔表面部分反应,以产生致密化的氧基材。
20.一种制造尺寸性二氧化硅基结构的方法,所述结构包括多孔硅层和含半导体或晶体材料的覆盖层,所述方法包括:
提供二氧化硅玻璃基材;
通过在加热的惰性气氛中使金属气体与所述二氧化硅玻璃基材反应,将氧从所述二氧化硅玻璃基材的原子元素组成中提取出来,以沿着所述二氧化硅玻璃基材的表面形成金属-氧复合物,其中将所述惰性气氛加热至低于所述二氧化硅玻璃基材的热应变点但足以促进所述氧提取的反应温度;
通过反应后酸蚀刻从所述二氧化硅玻璃基材的表面除去所述金属-氧复合物,以产生所述二氧化硅玻璃基材的晶体多孔硅表面部分;
在惰性气氛中在超过所述反应温度的反应后温度下进行所述基材的反应后热处理;以及
通过将所述多孔硅层作为晶种层用于所述覆盖层的外延生长或沉积从而在所述二氧化硅玻璃基材的晶体多孔硅表面部分上形成所述覆盖层,以产生含所述多孔硅层的尺寸性二氧化硅基结构。
CN201180040775.6A 2010-08-24 2011-08-11 尺寸性二氧化硅基多孔硅结构及其制造方法 Expired - Fee Related CN103069055B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37637910P 2010-08-24 2010-08-24
US61/376,379 2010-08-24
US13/100,593 2011-05-04
US13/100,593 US8415555B2 (en) 2010-08-24 2011-05-04 Dimensional silica-based porous silicon structures and methods of fabrication
PCT/US2011/047367 WO2012027121A2 (en) 2010-08-24 2011-08-11 Dimensional silica-based porous silicon structures and methods of fabrication

Publications (2)

Publication Number Publication Date
CN103069055A true CN103069055A (zh) 2013-04-24
CN103069055B CN103069055B (zh) 2016-08-03

Family

ID=45697815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180040775.6A Expired - Fee Related CN103069055B (zh) 2010-08-24 2011-08-11 尺寸性二氧化硅基多孔硅结构及其制造方法

Country Status (8)

Country Link
US (2) US8415555B2 (zh)
EP (1) EP2609234A4 (zh)
JP (1) JP5878535B2 (zh)
KR (1) KR20130108531A (zh)
CN (1) CN103069055B (zh)
AU (1) AU2011293715A1 (zh)
TW (1) TWI560163B (zh)
WO (1) WO2012027121A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463702A (zh) * 2014-04-09 2017-02-22 康宁公司 用于锂离子电池阳极的方法和材料
CN111418095A (zh) * 2017-12-01 2020-07-14 大洲电子材料株式会社 包含氧化硅复合物的用于非水电解质二次电池的负极活性物质及其制备方法
CN115010380A (zh) * 2022-08-09 2022-09-06 中国华能集团清洁能源技术研究院有限公司 一种基于无序光子晶体的光伏玻璃的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629900B2 (en) 2011-05-04 2020-04-21 Corning Incorporated Porous silicon compositions and devices and methods thereof
KR101344738B1 (ko) * 2011-12-12 2013-12-26 한국과학기술연구원 고감도 투명 가스 센서 및 그 제조방법
US9285332B2 (en) 2011-12-12 2016-03-15 Korea Institute Of Science And Technology Low power consumption type gas sensor and method for manufacturing the same
KR101602418B1 (ko) * 2012-04-06 2016-03-10 코닝정밀소재 주식회사 광추출 효율이 향상된 유기 발광소자용 기판, 그 제조방법 및 이를 구비하는 유기 발광소자
US8921841B2 (en) * 2012-05-09 2014-12-30 Samsung Corning Precision Materials Co., Ltd. Porous glass substrate for displays and method of manufacturing the same
KR102544089B1 (ko) 2014-11-25 2023-06-15 코닝 인코포레이티드 리튬이온 배터리 애노드용 물질 및 방법
WO2016094271A1 (en) * 2014-12-10 2016-06-16 Applied Materials, Inc. System and method for all wrap around porous silicon formation
US10593592B2 (en) 2015-01-09 2020-03-17 Applied Materials, Inc. Laminate and core shell formation of silicide nanowire
EP3380436B1 (en) 2015-11-25 2023-07-26 Corning Incorporated Porous silicon alloy compositions, methods for making them and devices thereof
US11584673B2 (en) * 2017-07-31 2023-02-21 Corning Incorporated Laminate article having a non-glass core and glass envelope and methods thereof
WO2019151774A1 (ko) 2018-01-30 2019-08-08 주식회사 엘지화학 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056797A1 (en) * 2007-08-28 2009-03-05 Blue Square Energy Incorporated Photovoltaic Thin-Film Solar Cell and Method Of Making The Same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757511A (en) * 1971-05-17 1973-09-11 Motorola Inc Light emitting diode display for electronic timepiece
US6376859B1 (en) * 1998-07-29 2002-04-23 Texas Instruments Incorporated Variable porosity porous silicon isolation
KR100434537B1 (ko) * 1999-03-31 2004-06-05 삼성전자주식회사 다공질 실리콘 혹은 다공질 산화 실리콘을 이용한 두꺼운 희생층을 가진 다층 구조 웨이퍼 및 그 제조방법
EP1782474B1 (en) * 2004-08-18 2013-11-27 Corning Incorporated High strain glass/glass-ceramic containing semiconductor-on-insulator structures
US7615206B2 (en) * 2006-08-11 2009-11-10 Georgia Tech Research Corporation Methods of fabricating nanoscale-to-microscale structures
KR101375328B1 (ko) * 2007-07-27 2014-03-19 삼성에스디아이 주식회사 Si/C 복합물, 이를 포함하는 음극활물질 및 리튬전지
US8813522B2 (en) * 2008-10-14 2014-08-26 University Of Central Florida Research Foundation, Inc. Silicon photonic fiber and method of manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056797A1 (en) * 2007-08-28 2009-03-05 Blue Square Energy Incorporated Photovoltaic Thin-Film Solar Cell and Method Of Making The Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREAS WOLF等: "AUTODIFFUSED BORON EMITTER FOR N-TYPE MONOCRYSTALLINE SI THIN-FILM SOLAR CELLS", 《CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION》, 31 May 2006 (2006-05-31), pages 992 - 995, XP031007473 *
ERIK K. RICHMAN等: "Ordered Mesoporous Silicon through Magnesium Reduction of Polymer", 《NANO LETTERS》, vol. 8, no. 9, 15 August 2008 (2008-08-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463702A (zh) * 2014-04-09 2017-02-22 康宁公司 用于锂离子电池阳极的方法和材料
CN106463702B (zh) * 2014-04-09 2020-02-21 康宁公司 用于锂离子电池阳极的方法和材料
CN111418095A (zh) * 2017-12-01 2020-07-14 大洲电子材料株式会社 包含氧化硅复合物的用于非水电解质二次电池的负极活性物质及其制备方法
CN115010380A (zh) * 2022-08-09 2022-09-06 中国华能集团清洁能源技术研究院有限公司 一种基于无序光子晶体的光伏玻璃的制备方法

Also Published As

Publication number Publication date
US8415555B2 (en) 2013-04-09
US20120052656A1 (en) 2012-03-01
WO2012027121A2 (en) 2012-03-01
EP2609234A2 (en) 2013-07-03
AU2011293715A1 (en) 2013-01-31
EP2609234A4 (en) 2015-11-04
TW201217290A (en) 2012-05-01
KR20130108531A (ko) 2013-10-04
TWI560163B (en) 2016-12-01
US20130209781A1 (en) 2013-08-15
JP2013536151A (ja) 2013-09-19
JP5878535B2 (ja) 2016-03-08
WO2012027121A3 (en) 2012-08-09
CN103069055B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN103069055A (zh) 尺寸性二氧化硅基多孔硅结构及其制造方法
Hao et al. Atomic layer deposition of stable 2D materials
US7977220B2 (en) Substrates for silicon solar cells and methods of producing the same
Gopalakrishna et al. Effect of annealing on the properties of nanostructured CuO thin films for enhanced ethanol sensitivity
Kozhakhmetov et al. Scalable low-temperature synthesis of two-dimensional materials beyond graphene
JP2017514273A5 (zh)
JPH0776426B2 (ja) 酸化ケイ素膜の低温cvd法
WO2013130696A1 (en) Crystal to crystal oxygen extraction
WO2015150791A1 (en) Process for the production of two-dimensional nanomaterials
Liu et al. Fe (NO3) 3-assisted large-scale synthesis of Si3N4 nanobelts from quartz and graphite by carbothermal reduction–nitridation and their photoluminescence properties
US20130149549A1 (en) Metallic structures by metallothermal reduction
de Melo et al. Chemically driven isothermal closed space vapor transport of MoO 2: thin films, flakes and in situ tellurization
EP2102123B1 (en) Condensed materials
Wong et al. Patterned growth of nanocrystalline silicon thin films through magnesiothermic reduction of soda lime glass
KR102280763B1 (ko) 전이금속 디칼코게나이드 박막, 그 제조 방법 및 제조 장치
Acton Chemical Processes—Advances in Research and Application: 2013 Edition: ScholarlyBrief
Wu et al. Influence of phosphorous doping on silicon nanocrystal formation in silicon-rich silicon nitride films
Henmi et al. Controlled preparation of silicon and magnesium silicide on silica glass substrate through magnesiothermic reduction
Wang et al. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods
Matsubara et al. Porous silicon prepared from monolithic porous silica glass using a two‐step magnesiothermic reduction
Cao et al. Band gap and interface engineering of ZnO@ MoSe2heterojunction film and its light-matter coupling
WO2007120466A2 (en) Methods of reducing the bandgap energy of a metal oxide
Medina et al. Ge QDs in α-GeO x nano-films grown by two stage process based on Rf-magnetron sputtering
Mochalov et al. Sensibilization of PbS Materials by Plasma Annealing
Samavati et al. Efficient visible photoluminescence from self-assembled Ge QDs embedded in silica matrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160803

Termination date: 20180811

CF01 Termination of patent right due to non-payment of annual fee