CN102963938A - 一种尖晶石铁氧体/CNx纳米复合材料及其制备方法 - Google Patents

一种尖晶石铁氧体/CNx纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN102963938A
CN102963938A CN2012104735690A CN201210473569A CN102963938A CN 102963938 A CN102963938 A CN 102963938A CN 2012104735690 A CN2012104735690 A CN 2012104735690A CN 201210473569 A CN201210473569 A CN 201210473569A CN 102963938 A CN102963938 A CN 102963938A
Authority
CN
China
Prior art keywords
preparation
cnx
solution
composite material
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104735690A
Other languages
English (en)
Other versions
CN102963938B (zh
Inventor
朱路平
汪玲玲
靳海英
邴乃慈
陈钦
王利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Polytechnic University
Original Assignee
Shanghai Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Polytechnic University filed Critical Shanghai Polytechnic University
Priority to CN201210473569.0A priority Critical patent/CN102963938B/zh
Publication of CN102963938A publication Critical patent/CN102963938A/zh
Application granted granted Critical
Publication of CN102963938B publication Critical patent/CN102963938B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种尖晶石铁氧体/CNx纳米复合材料及其简单制备的方法。本发明提供的方法制备得到的尖晶石铁氧体/CNx纳米复合材料,尖晶石铁氧体纳米粒子在氮掺杂碳纳米管表面呈联珠状分布均匀,尺寸均一、晶型规整,所需的原材料成本低廉,制备过程碳纳米管无需前期功能化处理,无需氮气保护,在较低温度(200~250℃)下即可得到尖晶石铁氧体/CNx纳米复合材料,并且制备方法工艺简单,可大量制备,适于规模化生产。

Description

一种尖晶石铁氧体/CNx纳米复合材料及其制备方法
发明领域
本发明涉及一种尖晶石铁氧体/CNx纳米复合材料,更具体地说,涉及一种尖晶石铁氧体/CNx纳米复合材料及其制备方法。 
背景技术
碳材料是与人类文明进步息息相关的重要材料,各种不同形态的碳单质、含碳化合物以及新型碳材料(巴基球、碳纳米管、掺杂碳纳米管、石墨烯、石墨炔等)在人类发展中做出了巨大的贡献。近年来,以新型碳材料为基体的碳基复合材料因其在生物医药、化学化工及电子电器等领域中的广泛应用而引起了人们极大的兴趣。作为化学研究与材料制备的交叉学科,碳纳米管化学在纳米科学研究领域占据了不可替代的作用。 
碳纳米管独特的一维纳米结构、极高的长径比、可与金刚石媲美的硬(略)韧性、导电性、导热性,使其广泛应用于场致电子发射、高频宽带电磁波吸收及导热、储氢和催化等多个领域。而在某些复杂环境下,高性能碳纳米管复合材料更显出其无可比拟的优越性能。 
目前碳纳米管的合成主要有化学气相沉积、等离子体沉积、催化热解、催化还原方法和电弧法等。而使用最为广泛的制备方法是电弧法。此方法用脉冲电流在高温下进行电弧放电反应,电弧电流一般为70-200A,过低时电弧不稳定,过高时则会使无定形碳、石墨微粒等杂质增多,给其后的纯化处理带来困难。 此外,由于碳纳米管一般难溶于绝大多数的溶剂以及自身的化学惰性,限制了它在载体方面的应用。为消除这些限制,最常用的方法是用强氧化剂氧化碳纳米管,使碳管的表面生成羟基或羧基等含氧官能团。然而对碳管进行氧化处理会“剪断”或“剪开”碳管,从而改变其原有的结构,影响其原有的性能。 
掺杂碳纳米管(CNx)是一类具有管状结构的特殊碳材料,它不仅具有普通碳管优异的吸附性能、力学及热力学稳定性能,并且氮原子的存在使其在碳管表面引入了π电子云,在不需要额外的处理的情况下可以实现其它粒子在其表面的负载。 
发明内容
本发明所要解决的技术问题之一在于针对上述现有技术所存在的问题而提供一种尖晶石铁氧体/CNx纳米复合材料。 
本发明所要解决的技术问题之二在于提供上述尖晶石铁氧体/CNx纳米复合材料的制备方法。 
为实现上述发明目的,本发明所采用的技术方案是: 
一种尖晶石铁氧体/CNx纳米复合材料,所述复合材料由尖晶石铁氧体纳米颗粒均匀包覆和负载在掺杂碳纳米管(CNx)表面形成。 
上述尖晶石铁氧体/CNx纳米复合材料的制备方法,由以下步骤组成: 
1)氮掺杂碳纳米管(CNx)的制备 
以二乙胺和仲丁胺为碳源和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX); 
2)尖晶石铁氧体/CNx纳米复合材料的制备 
A)称取步骤1)制备的氮掺杂碳纳米管材料(CNX)于乙二醇中,超声使其 充分分散得到第一溶液; 
B)按照尖晶石型铁氧体通式MxM′yM″(1-x-y)Fe2O4,且0≤x≤1,0≤y≤1,x+y≤1中金属离子M、M′和M″的化学计量比分别称取含M、M′和M″的盐和三价可溶性铁盐,并溶解于步骤A)制备的第一溶液中,形成第二溶液; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在200-250℃下,保温8~12小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得尖晶石型铁氧体/CNx纳米复合材料。 
在本发明的一优选实施例中,所述步骤2)中的步骤B)步中,金属离子M为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,M′为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,M″为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,对应盐的酸根离子为Cl-、NO3 -、SO4 2-中的一种。 
在本发明的一优选实施例中,所述步骤2)中的步骤B)中,所述三价可溶性铁盐为FeCl3、Fe(NO3)3,Fe2(SO4)3中的一种或两种以上的混合物。 
在本发明的一优选实施例中,所述步骤2)中的步骤C)中,乙二胺加入量与步骤A)中的乙二醇加入量的体积比为0.05∶1~0.35∶1。 
本发明以此碳纳米管为载体,通过溶剂热法实现尖晶石铁氧体纳米颗粒在掺杂碳纳米管(CNx)表面的均匀包覆和负载,从而得到尖晶石铁氧体/CNx纳米复合材料,利用导电性较差、磁性能优越的铁氧体纳米粒子去调节复合材料的磁学性能与导电性能,从而达到改善阻抗匹配、增强吸波性能的目的。 
附图说明
图1为制备得到的尖晶石型锰铁氧体/CNx纳米复合材料的扫描电镜图。 
具体实施方式
下面通过具体实施例进一步说明本发明 
实施例1 
制备四氧化三铁/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备; 
以二乙胺和仲丁胺为碳源和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX); 
2)四氧化三铁/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)将FeCl3溶解于第一溶液中,形成第二溶液;其中,其中第二溶液中的三价铁离子的浓度为0.05mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.05∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在220℃下,保温12小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得 四氧化三铁/CNx纳米复合材料。 
实施例2 
制备尖晶石型锰铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备; 
以二乙胺和仲丁胺为碳源和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX); 
2)尖晶石型锰铁氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照MFe2O4中金属离子的化学计量比分别称取MnCl2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.4mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.35∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在250℃下,保温10小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得尖晶石型锰铁氧体/CNx纳米复合材料。 
实施例3、4、5 
实施例3、4、5中除了步骤2)中的步骤B)按照MFe2O4中金属离子的化学计量比分别称取ZnSO4和FeCl3,CoSO4和FeCl3,Ni(NO3)2和FeCl3,其他 步骤和条件都与实施例2相同,同样可以得到尖晶石型锌铁氧体/CNx纳米复合材料、钴铁氧体/CNx纳米复合材料、镍铁氧体/CNx纳米复合材料。 
实施例6 
制备尖晶石型锰镍铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备 
以二乙胺和仲丁胺为碳和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX)。 
2)尖晶石型锰镍铁氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照Mn0.5Ni0.3Fe2O4中金属离子的化学计量比分别称取MnCl2、Ni(NO3)2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.2mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.2∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在230℃下,保温12小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得Mn0.5Ni0.3Fe2O4/CNx纳米复合材料。 
实施例7 
制备尖晶石型锰锌铁氧体/CNx纳米复合材料 
本实施例中除了步骤2)中的步骤B)为:按照Mn0.4Zn0.6Fe2O4中金属离子的化学计量比分别称取MnCl2、Zn(NO3)2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.2mol/l;其他步骤和条件都与实施例6相同,可以得到Mn0.4Zn0.6Fe2O4/CNx纳米复合材料 
实施例8 
制备尖晶石型钴锰铁氧体/CNx纳米复合材料 
本实施例中除了步骤2)中的步骤B)为:按照Co0.3Mn0.6Fe2O4中金属离子的化学计量比分别称取Co(NO3)2、MnCl2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.2mol/l;其他步骤和条件都与实施例6相同,可以得到Co0.3Mn0.6Fe2O4/CNx纳米复合材料 
实施例9 
制备尖晶石型钴镍铁氧体/CNx纳米复合材料 
本实施例中除了步骤2)中的步骤B)为:按照Co0.3Ni0.4Fe2O4中金属离子的化学计量比分别称取Co(NO3)2、NiCl2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.2mol/l;其他步骤和条件都与实施例4相同,可以得到Co0.3Ni0.4Fe2O4/CNx纳米复合材料 
实施例10 
制备尖晶石型锌镍铁氧体/CNx纳米复合材料 
本实施例中除了步骤2)中的步骤B)为:按照Zn0.2Ni0.6Fe2O4中金属离子的化学计量比分别称取Zn(NO3)2、NiCl2和FeCl3,并溶解于第一溶液中,形成第二溶液;其中,三价铁离子的浓度为0.2mol/l;其他步骤和条件都与实施例4相同,可以得到Zn0.2Ni0.6Fe2O4/CNx纳米复合材料 
实施例11 
制备尖晶石型锰镍钴铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备 
以二乙胺和仲丁胺为碳和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX)。 
2)尖晶石型锰镍钴铁氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照Mn0.5Ni0.3Co0.2Fe2O4中金属离子的化学计量比分别称取MnSO4、NiCl2、CoSO4和Fe2(SO4)3并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.3mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.15∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在220℃下,保温11小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得Mn0.5Ni0.3Co0.2Fe2O4/CNx纳米复合材料。 
实施例12 
制备尖晶石型锰锌钴铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备 
以二乙胺和仲丁胺为碳和氮源,Fe/SBA-15分子筛为催化剂,经过973K高 温裂解得到氮掺杂碳纳米管材料(CNX)。 
2)尖晶石型锰锌钴铁氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照Mn0.3Zn0.2Co0.5Fe2O4中金属离子的化学计量比分别称取MnSO4、ZnCl2、CoSO4和Fe2(SO4)3并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.3mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.15∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在220℃下,保温11小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得Mn0.3Zn0.2Co0.5Fe2O4/CNx纳米复合材料。 
实施例13 
制备尖晶石型钴镍锌铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备 
以二乙胺和仲丁胺为碳和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX)。 
2)尖晶石型钴镍锌铁氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照Co0.2Ni0.4Zn0.4Fe2O4中金属离子的化学计量比分别称取CoSO4、NiCl2、ZnCl2、和Fe2(SO4)3并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.3mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.15∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在220℃下,保温11小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得Co0.2Ni0.4Zn0.4Fe2O4/CNx纳米复合材料。 
实施例14 
制备尖晶石型锌镍锰铁氧体/CNx纳米复合材料 
1)氮掺杂碳纳米管(CNx)的制备; 
以二乙胺和仲丁胺为碳和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX)。 
2)尖晶石型锌镍锰氧体/CNx纳米复合材料的制备; 
A)称取0.1g新制的CNx于40ml乙二醇中,超声30分钟使其充分分散得到第一溶液; 
B)按照Zn0.5Ni0.1Mn0.4Fe2O4中金属离子的化学计量比分别称取ZnCl2、NiCl2、MnSO4、和Fe2(SO4)3并溶解于第一溶液中,形成第二溶液;其中,第二溶液中的三价铁离子的浓度为0.3mol/l; 
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌 得到第三溶液,其中,乙二胺的加入量与步骤A)中的乙二醇加入量的体积比为0.15∶1; 
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在220℃下,保温11小时,得到沉淀; 
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得Zn0.5Ni0.1Mn0.4Fe2O4/CNx纳米复合材料。 
与现有技术相比,本发明提供的制备尖晶石铁氧体/CNx纳米复合材料的方法具有如下优点: 
1、本发明提供的制备方法碳纳米管无需预先功能化处理; 
2、本发明制备得到的尖晶石铁氧体/CNx纳米复合材料分散性好,尖晶石铁氧体在碳纳米管表面呈连珠状分布,尺寸规整;
3、本发明提供的制备方法所需的原材料成本低廉; 
4、本发明提供的制备方法不需要特殊的反应设备,热处理时不需要催化剂; 
5、本发明提供的整个制备过程除去碳纳米管制备过程外,均在空气条件下进行,无需氮气保护。 

Claims (5)

1.一种尖晶石铁氧体/CNx纳米复合材料,所述复合材料由尖晶石铁氧体纳米颗粒均匀包覆和负载在掺杂碳纳米管(CNx)表面形成。
2.一种权利要求1所述的尖晶石铁氧体/CNx纳米复合材料的方法,其特征在于,由以下步骤组成:
1)氮掺杂碳纳米管(CNx)的制备
以二乙胺和仲丁胺为碳源和氮源,Fe/SBA-15分子筛为催化剂,经过973K高温裂解得到氮掺杂碳纳米管材料(CNX);
2)尖晶石铁氧体/CNx纳米复合材料的制备
A)称取步骤1)制备的氮掺杂碳纳米管材料(CNX)于乙二醇中,超声使其充分分散得到第一溶液;
B)按照尖晶石型铁氧体通式MxM′yM″(1-x-y)Fe2O4,且0≤x≤1,0≤y≤1,x+y≤1中金属离子M、M′和M″的化学计量比分别称取含M、M′和M″的盐和三价可溶性铁盐,并溶解于步骤A)制备的第一溶液中,形成第二溶液;
C)在常温常压下,将乙二胺加入到步骤B)制备的第二溶液中,充分搅拌得到第三溶液;
D)将步骤C)制备的第三溶液置于密闭的反应容器中,在200-250℃下,保温8~12小时,得到沉淀;
E)将上述步骤D)得到的沉淀用无水乙醇、去离子水洗涤、干燥,即制得尖晶石型铁氧体/CNx纳米复合材料。
3.根据权利要求2所述的方法,其特征在于,所述步骤2)中的步骤B)步中,金属离子M为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,M′为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,M″为Mn2+、Zn2+、Ni2+、Co2+或Fe3+中的一种,对应盐的酸根离子为Cl-、NO3 -、SO4 2-中的一种。
4.根据权利要求2所述的方法,其特征在于,所述步骤2)中的步骤B)中,所述三价可溶性铁盐为FeCl3、Fe(NO3)3,Fe2(SO4)3中的一种或两种以上的混合物。
5.根据权利要求2所述的方法,其特征在于,所述步骤2)中的步骤C)中,乙二胺加入量与步骤A)中的乙二醇加入量的体积比为0.05∶1~0.35∶1。
CN201210473569.0A 2012-11-20 2012-11-20 一种尖晶石铁氧体/氮掺杂碳纳米管纳米复合材料 Expired - Fee Related CN102963938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210473569.0A CN102963938B (zh) 2012-11-20 2012-11-20 一种尖晶石铁氧体/氮掺杂碳纳米管纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210473569.0A CN102963938B (zh) 2012-11-20 2012-11-20 一种尖晶石铁氧体/氮掺杂碳纳米管纳米复合材料

Publications (2)

Publication Number Publication Date
CN102963938A true CN102963938A (zh) 2013-03-13
CN102963938B CN102963938B (zh) 2014-11-05

Family

ID=47794415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210473569.0A Expired - Fee Related CN102963938B (zh) 2012-11-20 2012-11-20 一种尖晶石铁氧体/氮掺杂碳纳米管纳米复合材料

Country Status (1)

Country Link
CN (1) CN102963938B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834360A (zh) * 2013-12-23 2014-06-04 横店集团东磁股份有限公司 一种镍铜锌铁氧体与碳纳米管复合吸波材料及其制备方法
CN104069885A (zh) * 2014-06-26 2014-10-01 上海第二工业大学 一种Fe-CNx纳米复合催化剂、制备方法及其应用
CN104148073A (zh) * 2014-08-14 2014-11-19 上海第二工业大学 铁氧化合物负载氮碳纳米管(FeOx/CNx)催化剂的制备方法及其用途
CN106041121A (zh) * 2016-06-30 2016-10-26 青岛科技大学 一种纳米碳材料负载纳米铁氧体空心球的制备方法
CN110272243A (zh) * 2019-06-21 2019-09-24 中国人民解放军火箭军工程大学 一种双层水泥基吸波材料及其制备方法
CN110280290A (zh) * 2019-07-08 2019-09-27 华南理工大学 一种具有高比表面积花状型氮掺杂碳-尖晶石型微球催化剂及其制备方法与应用
CN111423808A (zh) * 2020-05-27 2020-07-17 嵊州市量创新材料有限公司 一种防腐型聚苯胺-改性聚氨酯电磁屏蔽涂料及其制法
CN114644365A (zh) * 2022-02-16 2022-06-21 吉林大学 一种微波吸收材料rGO/SiC/CoFe2O4的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289314A (zh) * 2007-04-20 2008-10-22 中国科学院理化技术研究所 一种尖晶石型铁氧体纳米空心微球的制备方法
CN101481107A (zh) * 2009-01-23 2009-07-15 东华大学 镍锌铁氧体(Ni1-xZnxFe2O4)包覆碳纳米管磁性纳米复合材料的制备方法
CN101834044A (zh) * 2009-09-10 2010-09-15 深圳大学 一种锰锌铁氧体包覆的碳纳米管磁性材料的制备方法
CN102350282A (zh) * 2011-06-28 2012-02-15 东华大学 钴镍铁氧体/多壁碳纳米管磁性纳米复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289314A (zh) * 2007-04-20 2008-10-22 中国科学院理化技术研究所 一种尖晶石型铁氧体纳米空心微球的制备方法
CN101481107A (zh) * 2009-01-23 2009-07-15 东华大学 镍锌铁氧体(Ni1-xZnxFe2O4)包覆碳纳米管磁性纳米复合材料的制备方法
CN101834044A (zh) * 2009-09-10 2010-09-15 深圳大学 一种锰锌铁氧体包覆的碳纳米管磁性材料的制备方法
CN102350282A (zh) * 2011-06-28 2012-02-15 东华大学 钴镍铁氧体/多壁碳纳米管磁性纳米复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
靳海英等: "不同碳源对合成含氮竹节状碳纳米管形貌及结构的影响", 《上海第二工业大学学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834360A (zh) * 2013-12-23 2014-06-04 横店集团东磁股份有限公司 一种镍铜锌铁氧体与碳纳米管复合吸波材料及其制备方法
CN104069885A (zh) * 2014-06-26 2014-10-01 上海第二工业大学 一种Fe-CNx纳米复合催化剂、制备方法及其应用
CN104148073A (zh) * 2014-08-14 2014-11-19 上海第二工业大学 铁氧化合物负载氮碳纳米管(FeOx/CNx)催化剂的制备方法及其用途
CN106041121A (zh) * 2016-06-30 2016-10-26 青岛科技大学 一种纳米碳材料负载纳米铁氧体空心球的制备方法
CN110272243A (zh) * 2019-06-21 2019-09-24 中国人民解放军火箭军工程大学 一种双层水泥基吸波材料及其制备方法
CN110272243B (zh) * 2019-06-21 2021-11-05 中国人民解放军火箭军工程大学 一种双层水泥基吸波材料及其制备方法
CN110280290A (zh) * 2019-07-08 2019-09-27 华南理工大学 一种具有高比表面积花状型氮掺杂碳-尖晶石型微球催化剂及其制备方法与应用
CN110280290B (zh) * 2019-07-08 2021-10-26 华南理工大学 一种具有高比表面积花状型氮掺杂碳-尖晶石型微球催化剂及其制备方法与应用
CN111423808A (zh) * 2020-05-27 2020-07-17 嵊州市量创新材料有限公司 一种防腐型聚苯胺-改性聚氨酯电磁屏蔽涂料及其制法
CN114644365A (zh) * 2022-02-16 2022-06-21 吉林大学 一种微波吸收材料rGO/SiC/CoFe2O4的制备方法

Also Published As

Publication number Publication date
CN102963938B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN102963938B (zh) 一种尖晶石铁氧体/氮掺杂碳纳米管纳米复合材料
Xie et al. Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@ PDA hybrid nanocomposite
CN104722276B (zh) 一种瓜环/氧化石墨烯磁性复合材料及其制备方法
CN102745675A (zh) 一种尖晶石型磁性MFe2O4/石墨烯复合材料的制备方法
Tong et al. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition
CN105923623A (zh) 一种三维多级孔结构的石墨烯粉体的制备方法
Zhou et al. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber
CN110577820B (zh) 一种多孔结构Ni/NiO-C复合材料及其制备方法和应用
CN104016328B (zh) 一种含氮碳纳米管的制备方法
Mai et al. Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding
CN104617311A (zh) 一种氮钴掺杂介孔碳/石墨烯复合材料及其制备方法
CN104096562A (zh) 一种磁性碳质固体酸催化剂的制备方法
Rasheed et al. Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@ CN composite under the visible light
CN103447058A (zh) 一种氯元素修饰碳量子点的制备方法
Xu et al. Solvothermal synthesis, characterization and magnetic properties of α-Fe2O3 and Fe3O4 flower-like hollow microspheres
CN105271405A (zh) 一种基于碳酸氧铋或氧化铋纳米管的材料及其制备方法
CN104124022A (zh) 一种碳纳米管基磁性纳米复合材料及其制备方法
Yu et al. Efficient removal of uranium (VI) by nano-manganese oxide materials: a synthetic experimental and mechanism studies
Zhu et al. Glycerol-assisted tuning of the phase and morphology of iron oxide nanostructures for supercapacitor electrode materials
CN113333007A (zh) 一种可高效活化过硫酸盐的氮掺杂钴化铁/碳催化剂及其制备方法和应用
CN103450475A (zh) 核壳结构导电聚苯胺/Co3O4粉末的制备方法
CN103111257A (zh) 磁性介孔碳材料的制备方法
He et al. Microwave-assisted synthesis of amorphous cobalt nanoparticle decorated N-doped biochar for highly efficient degradation of sulfamethazine via peroxymonosulfate activation
CN104466133B (zh) 一种氮掺杂的石墨烯碳复合材料及其制备方法
CN106115796B (zh) 一种含磁性铁的石墨烯‑二氧化锰纳米材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105

Termination date: 20181120

CF01 Termination of patent right due to non-payment of annual fee