CN104069885A - 一种Fe-CNx纳米复合催化剂、制备方法及其应用 - Google Patents

一种Fe-CNx纳米复合催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN104069885A
CN104069885A CN201410289584.9A CN201410289584A CN104069885A CN 104069885 A CN104069885 A CN 104069885A CN 201410289584 A CN201410289584 A CN 201410289584A CN 104069885 A CN104069885 A CN 104069885A
Authority
CN
China
Prior art keywords
preparation
catalyst
composite catalyst
reaction
cnx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410289584.9A
Other languages
English (en)
Inventor
王利军
刘旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Polytechnic University
Original Assignee
Shanghai Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Polytechnic University filed Critical Shanghai Polytechnic University
Priority to CN201410289584.9A priority Critical patent/CN104069885A/zh
Publication of CN104069885A publication Critical patent/CN104069885A/zh
Pending legal-status Critical Current

Links

Abstract

本发明属于能源材料技术领域,具体为一种Fe-CNx纳米复合催化剂、制备方法及其应用。本发明中,将可溶性铁盐先浸渍到分子筛上;然后在管式炉中通入有机胺以微波加热处理,得到氮掺杂碳纳米管CNx;再于碳纳米管CNx上负载铁盐,最终得到Fe-CNx纳米复合催化剂。本发明的制备方法工艺简单,易于控制,原料来源广泛且廉价;得到的Fe-CNx纳米复合催化剂重复性好,可作为催化剂用于煤直接液化加氢催化反应,有效提高煤液化反应的加氢效果,从而提高煤液化的油产率和转化率。此外,催化剂应用于煤直接液化加氢反应时以微波加热,能迅速升高反应体系温度,使样品受热更加均匀,并缩短反应时间,降低反应能耗。

Description

一种Fe-CNx纳米复合催化剂、制备方法及其应用
技术领域
本发明属于能源材料领域,具体涉及一种Fe-CNx纳米复合催化剂、制备方法及其应用。 
背景技术
近年来,通过对碳纳米管进行氮掺杂,以提高碳纳米管的应用性能,成为碳纳米管合成和应用领域的研究热点之一。这种掺杂碳纳米材料除了具有传统碳材料的高比表面积、相对化学惰性,而且因其良好的分散性、独特的纳米管腔结构,在催化领域引起广泛关注。掺杂氮的碳纳米管表面的特殊官能团具有催化作用,可直接用作催化剂,但更多的是将掺杂氮的碳纳米管作为催化剂的载体,如用于烃类加氢反应、合成气转化等催化反应中。 
目前,制备氮掺杂碳纳米管材料通常采用原位掺杂法,原位掺杂法是在合成碳纳米管过程中,通过使用含氮前驱体作为碳源在电加热高温条件下实现对碳纳米管的氮掺杂。例如CN101244815B公开一种以液相有机前驱物为碳源和氮源在管式炉电加热下制备氮掺杂碳纳米管的方法。然而原位掺杂法存在电加热受热不均,氮掺杂原子含量低等问题。 
而催化剂作为煤直接液化过程的核心技术之一,其活性和选择性极大地影响煤液化的反应速率、转化率、油产率、气体产率以及氢耗,也是影响煤液化成本的关键因素。根据煤液化的特点,通常采用性价比较高的铁系催化剂,如神华集团和煤炭科学研究总院联合开发的“863高效催化剂”是硫酸亚铁和氨水沉淀合成的水合氧化铁FeOOH,其活性高,添加量少,煤炭转化率高,目前已实现了工业化,取得了良好的效果。但是铁系催化剂其本身加氢活性相对弱,对煤的深度转化存在一定限制,如能在加氢反应中添加氮掺杂碳纳米管复合纳米催化剂,则能有效提高铁系催化剂的加氢活性,降低催化剂的使用量,促进煤液化反应过程中的前沥青烯和沥青烯转化为油的效率,从而提高煤的转化率和油收率。 
在催化剂的加氢催化反应中,目前采用的是在常规电加热下用密闭高压反应釜进行加氢反应一定时间,分别取气、液、固分析。常规电加热是使物体的表面受热,经热传导使物体内部的温度逐渐升高,加热的动力是热流方向上的温度差,因而最终达到整体均匀加热所需的时间就很长。另外,常规电加热在加热过程中具有一定的滞后性,这也会使催化反应偏离设定反应条件,产生一定的误差。 
因此,开发一种简单、经济、绿色的制备新型Fe-CNx纳米复合催化剂的技术并作为催化剂应用于煤直接液化具有十分重要的意义。 
发明内容
针对现有技术的不足,本发明的目的在于提供一种Fe-CNx纳米复合催化剂、制备方法及其应用。 
本发明提供一种Fe-CNx纳米复合催化剂的制备方法,包括以下步骤: 
(1) 用可溶性铁盐水溶液浸渍中孔或大孔结构的分子筛,浸渍结束后进行研磨,得到粒径在300~500 μm之间的样品;其中:所述分子筛与可溶性铁盐的质量比为1:(1~3);
(2) 将步骤(1)中所得的样品在干燥箱中于100~150℃温度烘干;然后在马弗炉中以400~800℃温度焙烧2~8小时,自然冷却后,研磨,筛分得到粒径小于100目的含铁的分子筛催化剂;
(3) 将步骤(2)中所得含铁的分子筛催化剂置于管式炉中,以微波加热至800~1000℃后 ,恒温处理0.5~8小时;恒温处理的同时以一定流速通入惰性气体和有机胺混合气体,之后自然冷却,得到氮掺杂碳纳米管CNx
(4) 用可溶性铁盐水溶液浸渍步骤(3)中得到的氮掺杂碳纳米管CNx,在氮掺杂碳纳米管CNx上负载铁盐,再在烘箱中于100~110℃干燥12~24 h,然后在N2保护下于300~450℃焙烧2~5 h,自然冷却,最终得到Fe-CNx纳米复合催化剂。
上述步骤(1)中,所述的分子筛选自 NaY、SAPO-36、SAPO-11、SAPO-5或SBA-15分子筛中的任一种。 
上述步骤(1)和步骤(4)中,所述可溶性铁盐选自硝酸铁、氯化铁、硫酸亚铁或硫酸铁中的任一种。 
上述步骤(3)中,惰性气体选自氩气、氮气或氦气中的一种;所述有机胺选自二乙胺、六亚甲基四胺、三乙胺、乙二胺或二丙胺中的一种或几种。 
上述步骤(3)中,混合气体中还包括氨气。 
上述步骤(3)中,以微波加热方式升温到800~1000℃时的升温速率为0.5~30℃/分钟,所述混合气体的流速为10~30ml/min。。 
本发明还提供一种根据上述的制备方法得到的Fe-CNx纳米复合催化剂。 
本发明还进一步提供将Fe-CNx纳米复合催化剂于煤直接液化加氢反应中的应用,其应用方法具体步骤如下:向高压反应釜中加入煤粉、循环溶剂、硫粉、氢气和占煤粉重量0.3%~5%的Fe-CNx纳米复合催化剂,通过微波加热,在400℃~460℃温度, 15 MPa ~20 MPa压力下,恒温处理0.5~2 h;反应结束后快速冷却,取气样测其组成,液固相经抽提后分析煤转化率和液化油产率。 
本发明的有益效果如下
 (1) 在氮掺杂碳纳米管制备中,采用微波加热,其加热无滞后性,使得管式炉内样品受热更均匀,掺杂氮原子量较高。
(2) 氮掺杂的碳纳米管具有高度的分散性,对铁的分散以及生成活性中心更有利;同时,铁在氮掺杂碳纳米管内表面上的高效复合进一步提高了催化材料的加氢反应活性中心,使催化剂具有更高的加氢活性。 
(3) 氮掺杂碳纳米管具有更高的极性和表面碱性,在煤直接液化反应中,能有效避免油品分子过分裂化生成小分子副产品,使催化剂具有良好的加氢裂化选择性。 
(4) 本发明纳米复合催化剂具有高效吸收微波的性能,在催化剂的加氢催化反应中,用微波加热替代常规加热方式,可使得催化过程参数更容易控制并保证重复性,同时气可提高催化反应速率和加氢选择性,从而提高了目的产物的产率,进而提高了催化转化率。 
附图说明
图1是实施例1制备的氮掺杂碳纳米管CNx的扫描电镜图(SEM)。 
图2是实施例1制备的Fe-CNx纳米复合催化剂的SEM图。 
图3是实施例1制备的氮掺杂碳纳米管CNx的 XRD图。 
图4是实施例1制备的Fe-CNx纳米复合催化剂的XRD图。 
具体实施方式
下面通过具体实例来进一步说明本发明,但本发明并不受其限制。 
实施例1 
本实施例中,称取10 g Fe(NO3)3·9H2O溶于10g蒸馏水中,充分溶解后,浸渍到10g经过400℃焙烧10h的NaY分子筛上。120℃烘干12h后研细至150μm以下,放入马弗炉中550℃焙烧5 h,自然冷却得到Fe/NaY催化剂。将Fe/NaY催化剂样品装入石英管中,管式炉通过微波加热到800℃,同时以10ml/min的流速将氮气和二乙胺混合气体(体积比为97:3)通入到管式炉石英管中,恒温处理2h,自然冷却后,即得氮掺杂碳纳米管CNx。然后在得到的氮掺杂碳纳米管CNx上浸渍硝酸铁,之后在烘箱中于105℃干燥24 h,再在N2保护下于350℃焙烧4 h,自然冷却,最终得到Fe-CNx纳米复合催化剂。
向高压反应釜中加入25.00g煤粉,40.00g循环溶剂,0.30g硫粉,氢气初压为10MPa,并加入煤粉质量0.8%的上述所制备的催化剂。然后在微波加热下,升温至450℃,氢压为19 MPa,在此条件下处理1h,反应结束后快速冷却,取气样测其组分,液固相经抽提后分析煤转化率、液化油产率、气产率等。本实例加氢催化反应中,煤的转化率为87.96%,液化油产率为54.58%。 
Fe-CNx纳米复合催化剂的表征结果: 
本实施例所得氮掺杂碳纳米管CNx的扫描电镜图(SEM)和XRD图分别如图1和图3所示,从SEM图片看,合成的氮掺氮碳纳米管形貌较为连贯,呈管状结构,且表面较为光滑,粗细比较均匀,管径范围:40~60 nm之间。从XRD图中可以看出在2θ=26°左右有一个很强的衍射峰,说明制备的氮掺杂碳纳米管CNx产量高,结构较理想。
图2和图4分别是本实例制备的Fe-CNx纳米复合催化剂的SEM图和XRD图,可以看出CNx在负载Fe后碳纳米管的形貌有很大程度的变化,在管壁上或其附近附着颗粒物,这些颗粒物是负载到纳米管上的铁化合物;从XRD图中可以看出,负载Fe后碳纳米管在2θ=26°的衍射峰明显减弱,这是由于碳纳米管在负载Fe后部分被铁化合物包裹。铁的化合物未出现明显衍射峰,表明负载铁化合物未形成大颗粒晶化结构。 
实施例2 
本实施例中,基本上按照与实施例1相同的方法制备Fe-CNx纳米复合催化剂,不同之处在于采用三乙胺代替二乙胺作为有机胺。
加氢催化反应中采用微波加热,Fe-CNx纳米复合催化剂的加入量为煤粉质量的1.6%,在400℃和氢压15 MPa下恒温反应1h,除此之外,加氢催化反应中其他条件和方法与实施例1中保持一致。本实例加氢催化反应中,煤的转化率为87.57%,液化油产率为52.91%。 
实施例3 
本实施例中,基本上按照与实施例1相同的方法制备Fe-CNx纳米复合催化剂,不同之处在于将分子筛载体NaY换为SBA-15,热处理的800℃换为900℃。
加氢催化反应中采用微波加热,Fe-CNx纳米复合催化剂的加入量为煤粉质量的0.8%,在400℃和氢压15 MPa下恒温反应1h,除此之外,加氢催化反应中其他条件和方法与实施例1中保持一致。本实例加氢催化反应中,煤的转化率为86.18%,液化油产率为47.63%。 
实施例4 
本实施例中,基本上按照与实施例1相同的方法制备Fe-CNx纳米复合催化剂,不同之处在于将热处理的800℃换为1000℃。
加氢催化反应中采用微波加热,Fe-CNx纳米复合催化剂的加入量为煤粉质量的1.6%,在450℃和氢压19 MPa下恒温反应1h,除此之外,加氢催化反应中其他条件和方法与实施例1中保持一致。本实例加氢催化反应中,煤的转化率为89.66%,液化油产率为56.26%。 
实施例5 
本实施例中,基本上按照与实施例1相同的方法制备Fe-CNx纳米复合催化剂,不同之处在于将采用的Fe(NO3)3·9H2O换为FeCl3·6H2O。 
加氢催化反应中采用微波加热, Fe-CNx纳米复合催化剂的加入量为煤粉质量的1.6%,在450℃和氢压19 MPa下恒温反应0.5h,除此之外,加氢催化反应中其他条件和方法与实施例1中保持一致。本实例加氢催化反应中,煤的转化率为88.91%,液化油产率为56.14%。 
对比实施例 
本实施例中,基本上按照与实施例1相同的方法制备Fe-CNx纳米复合催化剂,不同之处在于将热处理采用的微波加热换为常规电加热。
加氢催化反应中采用常规电加热,Fe-CNx纳米复合催化剂的加入量为煤粉质量的1.6%,在450℃和氢压19 MPa下恒温反应1h,除此之外,加氢催化反应中其他条件和方法与实施例1中保持一致。本实例加氢催化反应中,煤的转化率为86.35%,液化油产率为50.92%。 
上述实施例1~5和对比实施例所制备的Fe-CNx复合催化剂的加氢催化反应分析结果如表1所示。 
表1 
实施例 煤的转化率/% 液化油产率/% 气产率/% 沥青产率/%
1 87.96 54.58 13.59 10.24
2 87.57 52.91 14.92 9.86
3 86.18 47.63 15.22 13.18
4 89.66 56.26 13.24 9.31
5 88.91 56.14 14.40 8.65
对比 86.35 50.92 13.50 11.82
从表1可以看出,不同条件下制备的复合材料,添加到加氢催化反应中,采用微波加热的实施例1、2、4、5中煤液化性能略高于采用常规电加热的对比实施例,而实施例3中的煤液化性能则略低于对比实施例,说明温度和压力对煤液化效率有很大影响,而达到相同效果微波加热所需温度和压力要比电加热低;从实施例4和对比实施例可以看出,相同温度压强下保温相同时间,微波加热的煤液化的转化率和油产率要明显优于电加热的,且其气产率也略低于电加热,说明在加氢催化反应中采用微波加热能有效提高煤液化反应的加氢效果,从而提高煤液化的油产率和转化率。

Claims (9)

1.一种Fe-CNx纳米复合催化剂的制备方法,其特征在于包括以下步骤:
(1) 用可溶性铁盐水溶液浸渍中孔或大孔结构的分子筛,浸渍结束后进行研磨,得到粒径在300~500 μm之间的样品;其中:所述分子筛与可溶性铁盐的质量比为1:(1~3);
(2) 将步骤(1)中所得的样品在干燥箱中于100~150℃温度烘干;然后在马弗炉中以400~800℃温度焙烧2~8小时,自然冷却后,研磨,筛分得到粒径小于100目的含铁的分子筛催化剂;
(3) 将步骤(2)中所得含铁的分子筛催化剂置于管式炉中,以微波加热至800~1000℃后,恒温处理0.5~8小时;恒温处理的同时以一定流速通入惰性气体和有机胺混合气体,之后自然冷却,得到氮掺杂碳纳米管CNx
(4) 用可溶性铁盐水溶液浸渍步骤(3)中得到的氮掺杂碳纳米管CNx,在氮掺杂碳纳米管CNx上负载铁盐,再在烘箱中于100~110℃干燥12~24 h,然后在N2保护下于300~450℃焙烧2~5 h,自然冷却,最终得到Fe-CNx纳米复合催化剂。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中,所述的分子筛选自 NaY、SAPO-36、SAPO-11、SAPO-5或SBA-15分子筛中的任一种。
3.如权利要求1所述的制备方法, 其特征在于:步骤(1)和步骤(4)中,所述可溶性铁盐选自硝酸铁、氯化铁、硫酸亚铁或硫酸铁中的任一种。
4.如权利要求1所述的制备方法,其特征在于:步骤(3)中,惰性气体选自氩气、氮气或氦气中的一种;所述有机胺选自二乙胺、六亚甲基四胺、三乙胺、乙二胺或二丙胺中的一种或几种。
5.如权利要求1所述的制备方法,其特征在于:步骤(3)中,混合气体中还包括氨气。
6.如权利要求1所述的制备方法,其特征在于:步骤(3)中,以微波加热方式升温到800~1000℃时的升温速率为0.5~30℃/分钟,混合气体的流速为10~30ml/min。
7.如权利要求1-6之一的制备方法得到的Fe-CNx纳米复合催化剂。
8.如权利要求7所述的Fe-CNx纳米复合催化剂于煤直接液化加氢反应中的应用。
9.如权利要求8所述的应用,其特征在于,应用方法的具体步骤如下:向高压反应釜中加入煤粉、循环溶剂、硫粉、氢气和占煤粉重量0.3%~5%的Fe-CNx纳米复合催化剂,通过微波加热,在400℃~460℃温度, 15 MPa ~20 MPa压力下,恒温处理0.5~2h;反应结束后快速冷却,取气样测其组成,液固相经抽提后分析煤转化率和液化油产率。
CN201410289584.9A 2014-06-26 2014-06-26 一种Fe-CNx纳米复合催化剂、制备方法及其应用 Pending CN104069885A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410289584.9A CN104069885A (zh) 2014-06-26 2014-06-26 一种Fe-CNx纳米复合催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410289584.9A CN104069885A (zh) 2014-06-26 2014-06-26 一种Fe-CNx纳米复合催化剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN104069885A true CN104069885A (zh) 2014-10-01

Family

ID=51591723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410289584.9A Pending CN104069885A (zh) 2014-06-26 2014-06-26 一种Fe-CNx纳米复合催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN104069885A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057001A (zh) * 2015-07-22 2015-11-18 上海应用技术学院 一种改性的多壁碳纳米管负载的铁系催化剂及制备方法及应用
CN108579778A (zh) * 2018-03-19 2018-09-28 煤炭科学技术研究院有限公司 一种碳纳米管为载体的加氢催化剂及其制备方法与应用
CN110137518A (zh) * 2019-06-04 2019-08-16 北方民族大学 一种自负载Fe-N-C氧还原催化剂及其制备方法
CN114086138A (zh) * 2021-11-19 2022-02-25 烟台大学 一种α-CNx/Fe纳米复合涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000727A2 (fr) * 2002-06-24 2003-12-31 Commissariat A L'energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone ou de nanotubes de carbone dopes a l'azote
CN102671687A (zh) * 2012-06-07 2012-09-19 上海第二工业大学 一种复合金属掺杂氮碳纳米管催化剂,其制备方法及其催化生物柴油的方法
CN102963938A (zh) * 2012-11-20 2013-03-13 上海第二工业大学 一种尖晶石铁氧体/CNx纳米复合材料及其制备方法
CN103406137A (zh) * 2013-08-09 2013-11-27 南京大学 用于费托合成的氮掺杂碳纳米管负载型催化剂
CN103480407A (zh) * 2013-09-27 2014-01-01 神华集团有限责任公司 铁系催化剂助剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000727A2 (fr) * 2002-06-24 2003-12-31 Commissariat A L'energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone ou de nanotubes de carbone dopes a l'azote
CN102671687A (zh) * 2012-06-07 2012-09-19 上海第二工业大学 一种复合金属掺杂氮碳纳米管催化剂,其制备方法及其催化生物柴油的方法
CN102963938A (zh) * 2012-11-20 2013-03-13 上海第二工业大学 一种尖晶石铁氧体/CNx纳米复合材料及其制备方法
CN103406137A (zh) * 2013-08-09 2013-11-27 南京大学 用于费托合成的氮掺杂碳纳米管负载型催化剂
CN103480407A (zh) * 2013-09-27 2014-01-01 神华集团有限责任公司 铁系催化剂助剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵建军: "《甲醇生产工艺》", 31 August 2008, 化学工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057001A (zh) * 2015-07-22 2015-11-18 上海应用技术学院 一种改性的多壁碳纳米管负载的铁系催化剂及制备方法及应用
CN108579778A (zh) * 2018-03-19 2018-09-28 煤炭科学技术研究院有限公司 一种碳纳米管为载体的加氢催化剂及其制备方法与应用
CN110137518A (zh) * 2019-06-04 2019-08-16 北方民族大学 一种自负载Fe-N-C氧还原催化剂及其制备方法
CN110137518B (zh) * 2019-06-04 2022-05-17 北方民族大学 一种自负载Fe-N-C氧还原催化剂及其制备方法
CN114086138A (zh) * 2021-11-19 2022-02-25 烟台大学 一种α-CNx/Fe纳米复合涂层的制备方法
CN114086138B (zh) * 2021-11-19 2024-03-15 烟台大学 一种α-CNx/Fe纳米复合涂层的制备方法

Similar Documents

Publication Publication Date Title
CN111617771B (zh) 复合金属材料催化剂的制备方法及在制备5-hmf应用
JP5426776B2 (ja) メソ多孔性炭素上に担持されたタングステンカーバイド触媒、その調製及び適用
Dai et al. Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols
Zhao et al. Fabrication of− SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis
CN105772708B (zh) 一种利用生物质废弃物制备氮掺杂碳纳米管包覆金属氧化物颗粒复合材料的方法
WO2017185928A1 (zh) 用于生产生物柴油的选择性加氢催化剂及其制备方法和应用
Cho et al. Synthesis of cobalt-impregnated carbon composite derived from a renewable resource: Characterization and catalytic performance evaluation
CN104069885A (zh) 一种Fe-CNx纳米复合催化剂、制备方法及其应用
CN109908903A (zh) 一种高比表面积木质素基活性炭为载体的镍基催化剂及其制备与应用
CN110773218A (zh) 一种氮掺杂生物碳负载金属镍催化剂及其应用
CN109759064A (zh) 一种Co@C/生物质催化剂及其制备方法和应用
CN103249482A (zh) 用于氢气生产的碳催化剂、制备催化剂的方法、和采用催化剂生产氢气的方法
CN104045074A (zh) 一种淀粉基多孔中空碳微球及其制备方法
CN107999081B (zh) 一种碳包覆结构纳米铁基费托合成催化剂及其制备方法和应用
CN111151303A (zh) 新型MIL-53(Fe)基催化剂去除水中抗生素应用
CN107456969A (zh) 一种单质钴负载纳米碳纤维催化剂的制备方法及其应用
CN111036260A (zh) 一种氮碳掺杂改性的Fe基催化剂及其制备方法与应用
Chen et al. One-pot synthesis of cobalt-coordinated N-doped carbon catalysts via co-synthesis of ionic liquids and cobalt porphyrins
Xu et al. Copper Nanoparticles on Ordered Mesoporous Carbon Nitride Support: a Superior Catalyst for Homo‐and Cross‐Coupling of Terminal Alkynes under Base‐Free Conditions
CN110627067B (zh) 一种高纯Fe5C2纳米颗粒的制备方法及在费托合成反应中的应用
CN111871448A (zh) 一种用于提高甲烷无氧芳构化反应性能的催化剂及其制备方法
CN105032475B (zh) 用于生物质热解制轻质芳烃的改性zsm‑5分子筛催化剂及应用
CN110876936B (zh) 烃类蒸汽预转化催化剂及其制备方法
Zhang et al. Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural
CN104084227B (zh) 一种煤直接液化催化添加剂、制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20141001