CN102842717B - 自组装纺锤体形纳米结构磷酸铁锂的制备方法 - Google Patents

自组装纺锤体形纳米结构磷酸铁锂的制备方法 Download PDF

Info

Publication number
CN102842717B
CN102842717B CN201210362581.4A CN201210362581A CN102842717B CN 102842717 B CN102842717 B CN 102842717B CN 201210362581 A CN201210362581 A CN 201210362581A CN 102842717 B CN102842717 B CN 102842717B
Authority
CN
China
Prior art keywords
iron phosphate
lithium iron
water
spindle
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210362581.4A
Other languages
English (en)
Other versions
CN102842717A (zh
Inventor
刘超
王滨
纪秀杰
张兴华
唐成春
胡龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201210362581.4A priority Critical patent/CN102842717B/zh
Publication of CN102842717A publication Critical patent/CN102842717A/zh
Application granted granted Critical
Publication of CN102842717B publication Critical patent/CN102842717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明为一种自组装纺锤体形纳米结构磷酸铁锂的制备方法,该方法通过回流法在LiOH溶液中实现糖的预碳化,并以此产物作为Li源和结构导向剂,实现磷酸铁锂的合成及自组装的控制,得到的产物是由约为平均粒径50纳米的磷酸铁锂纳米颗粒自组装而成的长轴为0.6~0.7微米,短轴为0.18~0.23微米的纳米结构纺锤体。本方法制得的自组装纺锤体形纳米结构磷酸铁锂,克服了已有自组装纳米结构磷酸铁锂制备成本高、设备要求高等特点,保证了锂离子的传输距离短,可以有效提高正极材料的利用率与充放电性能。

Description

自组装纺锤体形纳米结构磷酸铁锂的制备方法
技术领域
本发明的技术方案涉及锂离子电池正极材料,是以含锂的糖预碳化产物为锂源和结构导向剂制得自组装纺锤体形纳米结构磷酸铁锂的制备方法。
背景技术
磷酸铁锂(LiFePO4)是一种稍微扭曲的六方密堆积结构,在自然界中以磷铁锂矿的形式存在,具有橄榄石结构,属于正交晶系Pnmb空间群。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据的是四面体空隙,锂原子和铁原子占据的是八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边;1个PO4和FeO6共用一条边,与LiO6共用两条边。每个晶胞中有4个LiFePO4单元,其晶胞参数分别为 强的P-O共价键形成离域的三维立体化学键,使LiFePO4具有很强的热力学和动力学稳定性,其密度也较大(3.6g/cm3)。
自组装纺锤体形纳米结构磷酸铁锂是由纳米磷酸铁锂颗粒作为结构单元在空间上组装而成,它既有纳米级磷酸铁锂所具有的特点:高的比表面积,使反应界面可以提供更多的扩散通道;微小的颗粒使锂离子嵌入深度浅,扩散路径短;纳米化后的电极材料一定程度上抑制了一些不可逆相变的发生。同时,自组装纳米结构磷酸铁锂的微孔多,方便电解质的渗入,有利于电极反应的进行,获得高的比容量。
以前的研究多关注磷酸铁锂纳米粒子形貌的控制,自组装纳米结构磷酸铁锂的研究方兴未艾,其合成方法多集中于溶剂热和水热法,如Yang等以聚乙烯为表面活性剂,苯甲醇为溶剂,通过溶剂热法制备了由纳米片自组装而成的哑铃形磷酸铁锂(Hui Yang,XinglongWu,Minhua Cao,Yuguo Guo.Solvothermal synthesis of LiFePO4 hierarchically dumbbell-likemicrostructures by nanoplate self-assembly and their application as a cathode material inlithium-ion batteries.J.Phys. Chem. C. 2009,113(8):3345-3351)。Rangappa等以草酸亚铁,磷酸二氢铵,氢氧化锂为原料,抗坏血酸为添加剂,乙二醇为溶剂,己烷为共溶剂,油酸为表面活性剂通过溶剂热法,合成了花状显微结构的磷酸铁锂(Dinesh Rangappa,Koji Sone,Tetsuichi Kudo,Itaru Honma. Directed growth of nanoarchitectured LiFePO4 electrode bysolvothermal synthesis and their cathode properties. Journal of Power Sources,2010,195:6167-6171)。Liu等以SDS为超分子模板在乙醇-水体系合成了层状自组装纳米结构磷酸铁锂(Chao Liu,Dongxia Ma,Xiujie Ji,Shanshan Zhao,Song Li.Surfactant assisted synthesis oflamellar nanostructured LiFePO4 at 388K.Applied Surface Science,2011,257:4529-4531;国家发明专利ZL 201010250100.1)。Wang等以乙醇为溶剂,自制的纳米片状矩形磷酸铁铵为前驱体,通过溶剂热法合成了由纳米片状矩形自组装而成的花形磷酸铁锂(Qiang Wang,Weixin Zhang,Zeheng Yang,Shaoying Weng,Zhuojie Jin.Solvothermal synthesis ofhierarchical LiFePO4 microflowers as cathode materials for lithium ion batteries.Journal ofPower Sources.2011,196:10176-10182)。Qian等以乙酸锂,硝酸铁,磷酸二氢铵为原料,柠檬酸为添加剂,通过水热法制得由100nm的颗粒组合而成的3μm的球形磷酸铁锂。其高倍率充放电性能和循环稳定性满足大功率锂离子电源设备的需求(Jiangfeng Qian,MinZhou,Yuliang Cao,Xinping Ai,and Hanxi Yang.Template-free hydrothermal synthesis ofnanoembossed mesoporous LiFePO4 microspheres for high-performance Lithium-ion batteries.J.Phys.Chem.C 2010,114:3477-3482)。Xia等以硫酸亚铁、磷酸和氢氧化锂为原料,抗坏血酸为添加剂,通过水热法制得自组装纺锤体形纳米结构磷酸铁锂。作为电极材料,其表现出良好的电化学特性,0.1C首次放电比容量可达到163mA·h/g,5C放电比容量仍可达到111mA·h/g,且循环性能稳定。(Yang Xia,Wenkui Zhang,Hui Huang,Yongping Gan,Jian Tian,Xinyong Tao.Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architecturesfor high-performance lithium-ion batteries.Journal of Power Sources,2011,196(13):5651-5658)但溶剂热、水热等方法需要高压设备,其工业化对设备要求高,且添加剂较昂贵。
发明内容
本发明所要解决的技术问题是:一,提出一种制备自组装纺锤体形纳米结构磷酸铁锂的制备方法;二,通过回流法在LiOH溶液中实现糖的预碳化,并以此产物作为Li源和结构导向剂,实现磷酸铁锂的合成及自组装的控制。采用回流法制备自组装纺锤体形纳米结构磷酸铁锂,克服了已有自组装纳米结构磷酸铁锂制备成本高、设备要求高等特点。
本发明解决该技术问题所采用的技术方案是:
一种自组装纺锤体形纳米结构磷酸铁锂,该产物是由约为平均粒径50纳米的磷酸铁锂纳米颗粒自组装而成的长轴为0.6~0.7微米,短轴为0.18~0.23微米的纳米结构纺锤体。
所述自组装纺锤体形纳米结构磷酸铁锂的制备方法,其步骤是:
(1)将氢氧化锂溶解在水中,制得0.004~0.012摩尔氢氧化锂/毫升水溶液,将糖溶解在上述溶液中,制得糖浓度为0.2~1.2克/毫升的混合溶液,取5份,再加入30份乙二醇,配制成氢氧化锂-糖-水-乙二醇混合溶液,再将混合溶液转移到反应器中,在氮气气氛下,加热搅拌至回流温度,常压反应1~2小时,得到含锂的糖预碳化产物,待用;
(2)将磷源溶解在水中,制得0.004摩尔磷/毫升水溶液,取5份,再加入10~50份的乙二醇,配制成磷源-水-乙二醇混合溶液,待用;
(3)将硫酸亚铁盐溶解在水中,制得0.002摩尔硫酸亚铁/毫升水溶液,取10份,待用;
(4)在搅拌下依次把步骤(2),(3)配制的溶液快速加入到步骤(1)的反应器中,搅拌、常压回流反应12~24小时后,停止反应,冷却到室温;
(5)将上步所得产物在室温下原液静置0~24小时,水洗,再经抽滤,烘干,得到产物为自组装纺锤体形纳米结构磷酸铁锂。
上述组分的份数均为体积份数,且各步骤中所用的体积单位相同。
上面步骤(1)中所述的糖为葡萄糖、蔗糖或水溶性淀粉。
上面步骤(2)中所述的磷源为磷酸二氢铵、磷酸氢二铵或磷酸。
本发明的有益效果是:
1.本发明方法所得到的自组装纺锤体形纳米结构磷酸铁锂是由平均粒径50纳米的磷酸铁锂纳米颗粒自组装而成的长轴为0.6~0.7微米,短轴为0.18~0.23微米的纳米结构纺锤体,如图1a,b所示。这些纳米颗粒在糖的预碳化产物的作用下,自组装成磷酸铁锂纺锤体。疏松排列的磷酸铁锂纳米颗粒有利于电解液的浸入而充分利用活性物质,从而获得高的比容量;该纺锤体中的磷酸铁锂纳米颗粒保证了锂离子的传输距离短,可以有效提高正极材料的利用率与充放电性能。如图2所示,产物的XRD的衍射峰清晰、尖锐,说明得到的磷酸铁锂的结晶性很好,有利于提高电化学性能。
2.本发明方法中,乙二醇-水体系与糖的预碳化产物是制备自组装纺锤体形纳米结构磷酸铁锂的关键。
3.本发明方法在常压回流条件就合成出了结晶度好的自组装纺锤体形纳米结构磷酸铁锂,反应条件温和,非高压条件,设备简单,工艺安全。
4.本发明所采用的原料葡萄糖、蔗糖、水溶性淀粉、氢氧化锂、磷酸二氢铵、磷酸氢二铵、磷酸、硫酸亚铁等均属于普通化学试剂,廉价易得。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为实施例1中自组装纺锤体形纳米结构磷酸铁锂粉体的扫描电镜照片。
图2为实施例1中自组装纺锤体形纳米结构磷酸铁锂粉体的XRD谱图。
具体实施方式
实施例1
(1)将0.06mol氢氧化锂溶于5mL水中,将3g葡萄糖溶解在上述溶液中,再加入30mL乙二醇,配制成氢氧化锂-葡萄糖-水-乙二醇混合液。将混合溶液转移到反应器中,在氮气气氛下,加热搅拌至回流温度,常压反应2小时,得到含锂的糖预碳化产物,待用;
(2)将0.02mol磷酸溶解在5mL水中,再加入50mL乙二醇,配制成磷酸-水-乙二醇的混合溶液,待用;
(3)将0.02mol硫酸亚铁溶解在10mL水中,制得硫酸亚铁溶液,待用;
(4)在搅拌下依次把步骤(2),(3)配制的溶液快速加入到(1)的反应器中,搅拌、常压回流反应24小时后,停止反应,待冷却到室温;
(5)将上步所得产物在室温下原液静置24h,水洗3次,抽滤,60℃烘干4h,得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体3g。
经SEM测试观察到了磷酸铁锂为自组装纺锤体形。图1a为自组装纺锤体形纳米结构磷酸铁锂的照片,图1b为部分放大照片。从照片中可以看到自组装纺锤体形纳米结构磷酸铁锂是由平均粒径50纳米的磷酸铁锂颗粒自组装而成的长轴为0.6~0.7微米,短轴为0.18~0.23微米的纺锤体,如图1a,b所示。
经XRD测试(见图2),自组装纺锤体形纳米结构磷酸铁锂的衍射峰清晰、尖锐,说明该自组装纺锤体形纳米结构磷酸铁锂的结晶性好。
将得到的自组装纺锤体形纳米结构磷酸铁锂粉末在氮气保护下,在700℃处理6h。将LiFePO4、乙炔黑、60%聚四氟乙烯乳液按质量比7∶2∶1的比例混合,碾压成厚度为0.10~0.15毫米的片,并与铝箔压合在一起,于120℃真空干燥12小时,制得电池正极。以金属锂片为负极、1M的LiPF6溶液为电解液、cell gard 2300为隔膜,与上述正极组装成扣式电池,以0.2C、3C倍率进行充放电,并以3C充放电进行循环试验。充放电的电压范围为4.2~2.3V。0.2C和3C起始放电容量为155.1mAh/g和136.2mAh/g,3C循环100次后,放电容量为134.5mAh/g。
实施例2
(1)将0.06mol氢氧化锂溶于5mL水中,将3g葡萄糖溶解在上述溶液中,再加入30mL乙二醇,配制成氢氧化锂-葡萄糖-水-乙二醇混合溶液。将混合溶液转移到反应器中,在氮气气氛下,加热搅拌至回流温度,常压反应1小时,得到含锂的糖预碳化产物,待用;
(2)将0.02mol磷酸溶解在5mL水中,再加入10mL乙二醇,配制成磷酸-水-乙二醇的混合溶液,待用;
(3)将0.02mol硫酸亚铁溶解在10mL水中,制得硫酸亚铁溶液,待用;
(4)在搅拌下依次把步骤(2),(3)配制的溶液快速加入到步骤(1)的反应器中,搅拌、常压回流反应12小时后,停止反应,冷却到室温;
(5)将上步所得反应物在室温下原液静置0h,水洗3次,抽滤,60℃烘干4h,得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体2.97g。
实施例3-4
将实施例1中步骤(1)葡萄糖用量分别改为1g,6g,其他步骤同实施例1。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体3.02g,3.05g。
实施例5-6
将实施例2中步骤(1)葡萄糖用量分别改为1g,6g,其他步骤同实施例2。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体2.98g,3.03g。
实施例7-12
将实施例1-6中步骤(1)葡萄糖换为蔗糖,其他步骤同实施例1-6。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体3.01g,3g,3.02g,3.04g,2.99g,3.02g。晶态和结构同实施例1。
实施例13-18
将实施例1-6中步骤(1)葡萄糖换为水溶性淀粉,其他步骤同实施例1-6。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体2.99g,3g,3.01g,3.03g,3g,3.03g。晶态和结构同实施例1。
实施例19-36
将实施例1-18中步骤(1)氢氧化锂用量改为0.02mol,步骤(2)磷酸改为磷酸氢二铵,其他步骤同实施例1-18。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体2.98g,3g,3.01g,3.02g,3g,3.04g,3.01g,3g,3.02g,3.03g,3g,3.03g,2.99g,3.02g,3.01g,3.02g,3.01g,3.02g。晶态和结构同实施例1。
实施例37-54
将实施例1-18中步骤(1)氢氧化锂用量改为0.04mol,步骤(2)磷酸改为磷酸二氢铵,其他步骤同实施例1-18。得到产物为自组装纺锤体形纳米结构磷酸铁锂粉体3g,3.01g,3g,2.98g,3.02g,3.03g,3.04g,3.01g,3.02g,3.01g,3.02g,3.01g,2.99g,3.02g,3g,3.03g,3.02g,3g。晶态和结构同实施例1。
部分实施例的电化学性能见表1,从以下的数据可以看出,自组装纺锤体形纳米结构磷酸铁锂的0.2C、3C起始放电容量介于150.3~155.1mAh/g、130.6~136.2mAh/g;3C循环100次后比容量介于128.6~134.5mAh/g,表现出很好的电化学性能,这应该归功于自组装纺锤体形纳米结构磷酸铁锂粉体中所特有纳米通道和纳米级磷酸铁锂结构单元。
表1电化学性能

Claims (2)

1.一种自组装纺锤体形纳米结构磷酸铁锂的制备方法,其特征为包括以下步骤:
(1)将氢氧化锂溶解在水中,制得0.004~0.012摩尔氢氧化锂/毫升水溶液,将糖溶解在上述溶液中,制得糖浓度为0.2~1.2克/毫升的混合溶液,取5份,再加入30份乙二醇,配制成氢氧化锂-糖-水-乙二醇混合溶液,再将混合溶液转移到反应器中,在氮气气氛下,加热搅拌至回流温度,常压反应1~2小时,得到含锂的糖预碳化产物,待用;
(2)将磷源溶解在水中,制得0.004摩尔磷/毫升水溶液,取5份,再加入10~50份的乙二醇,配制成磷源-水-乙二醇混合溶液,待用;
(3)将硫酸亚铁盐溶解在水中,制得0.002摩尔硫酸亚铁/毫升水溶液,取10份,待用;
(4)在搅拌下依次把步骤(2),(3)配制的溶液快速加入到步骤(1)的反应器中,搅拌、常压回流反应12~24小时后,停止反应,冷却到室温;
(5)将上步所得产物在室温下原液静置0~24小时,水洗,再经抽滤,烘干,得到产物为自组装纺锤体形纳米结构磷酸铁锂;
上述组分的份数均为体积份数,且各步骤中所用的体积单位相同;
步骤(1)中所述的糖为葡萄糖、蔗糖或水溶性淀粉;
步骤(2)中所述的磷源为磷酸二氢铵、磷酸氢二铵或磷酸。
2.如权利要求1所述的自组装纺锤体形纳米结构磷酸铁锂的制备方法,其特征为最后制得的产物是由平均粒径50纳米的磷酸铁锂纳米颗粒自组装而成的长轴为0.6~0.7微米,短轴为0.18~0.23微米的纳米结构纺锤体。
CN201210362581.4A 2012-09-26 2012-09-26 自组装纺锤体形纳米结构磷酸铁锂的制备方法 Active CN102842717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210362581.4A CN102842717B (zh) 2012-09-26 2012-09-26 自组装纺锤体形纳米结构磷酸铁锂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210362581.4A CN102842717B (zh) 2012-09-26 2012-09-26 自组装纺锤体形纳米结构磷酸铁锂的制备方法

Publications (2)

Publication Number Publication Date
CN102842717A CN102842717A (zh) 2012-12-26
CN102842717B true CN102842717B (zh) 2014-09-17

Family

ID=47369903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210362581.4A Active CN102842717B (zh) 2012-09-26 2012-09-26 自组装纺锤体形纳米结构磷酸铁锂的制备方法

Country Status (1)

Country Link
CN (1) CN102842717B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410168B (zh) * 2016-12-07 2019-05-14 中南大学 纳米薄片堆叠的磷酸铁锂/石墨烯复合材料及其制备方法
CN111463415B (zh) * 2020-04-09 2021-09-14 中科南京绿色制造产业创新研究院 一种正极宿主材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101604749A (zh) * 2009-06-18 2009-12-16 复旦大学 提高磷酸亚铁锂电池正极材料导电性的方法
CN101891181A (zh) * 2010-08-11 2010-11-24 河北工业大学 一种纯相高结晶度磷酸铁锂的制备方法
CN101906661A (zh) * 2010-08-11 2010-12-08 河北工业大学 有序层状自组装纳米结构磷酸铁锂多晶粉体及其制备方法
CN102306780A (zh) * 2011-09-15 2012-01-04 长春理工大学 纺锤形磷酸铁锂纳米束及其制备方法
EP2476647A1 (en) * 2009-09-09 2012-07-18 Toda Kogyo Corporation Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
CN102583296A (zh) * 2011-01-06 2012-07-18 河南师范大学 一种液相制备纳米级磷酸铁锂的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101604749A (zh) * 2009-06-18 2009-12-16 复旦大学 提高磷酸亚铁锂电池正极材料导电性的方法
EP2476647A1 (en) * 2009-09-09 2012-07-18 Toda Kogyo Corporation Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
CN101891181A (zh) * 2010-08-11 2010-11-24 河北工业大学 一种纯相高结晶度磷酸铁锂的制备方法
CN101906661A (zh) * 2010-08-11 2010-12-08 河北工业大学 有序层状自组装纳米结构磷酸铁锂多晶粉体及其制备方法
CN102583296A (zh) * 2011-01-06 2012-07-18 河南师范大学 一种液相制备纳米级磷酸铁锂的方法
CN102306780A (zh) * 2011-09-15 2012-01-04 长春理工大学 纺锤形磷酸铁锂纳米束及其制备方法

Also Published As

Publication number Publication date
CN102842717A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
Gu et al. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes
Wang et al. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance
CN101162776B (zh) 适用于高倍率动力电池用的磷酸铁锂及其制备方法
Konarova et al. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling
Pan et al. Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode
Zhang et al. Porous Li3V2 (PO4) 3/C cathode with extremely high-rate capacity prepared by a sol–gel-combustion method for fast charging and discharging
Zhu et al. Synthesis of FePO4· xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method
Zhao et al. Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries
CN102427131A (zh) 锂离子电池正极材料金属镁掺杂的磷酸锰锂/碳制备方法
CN103199247B (zh) 一种具有多层次导电网络的锂离子电池复合正极材料的制备方法
Fan et al. Nonaqueous synthesis of nano-sized LiMnPO4@ C as a cathode material for high performance lithium ion batteries
Li et al. Preparation of NiO–Ni/natural graphite composite anode for lithium ion batteries
Tu et al. Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries
Zhang et al. Synthesis and electrochemical studies of carbon-modified LiNiPO4 as the cathode material of Li-ion batteries
CN106602038B (zh) 一种溶胶辅助溶剂热法制备粒棒混合形貌磷酸钒锂/碳复合正极材料及其制备方法
Cheng et al. Hydrothermal synthesis of LiNi0. 5Mn1. 5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries
CN102760880A (zh) 一种高功率磷酸铁锂电池材料及其制备方法
Liu et al. Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries
Zou et al. Spray drying-assisted synthesis of LiFePO4/C composite microspheres with high performance for lithium-ion batteries
Sun et al. Co/CoO@ NC nanocomposites as high-performance anodes for lithium-ion batteries
Li et al. Influence of synthesis method on the performance of the LiFePO4/C cathode material
CN105731411A (zh) 一种机械力化学活化改性磷酸铁锂正极材料的制备方法
Li et al. Influence of Li: Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method
CN103413918B (zh) 一种锂离子电池用正极材料磷酸钴锂的合成方法
CN102185136A (zh) 一种锂离子电池正极材料纳米磷酸亚铁锂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant