CN102782339A - 用于控制液压系统中的泵的技术 - Google Patents

用于控制液压系统中的泵的技术 Download PDF

Info

Publication number
CN102782339A
CN102782339A CN201080039253XA CN201080039253A CN102782339A CN 102782339 A CN102782339 A CN 102782339A CN 201080039253X A CN201080039253X A CN 201080039253XA CN 201080039253 A CN201080039253 A CN 201080039253A CN 102782339 A CN102782339 A CN 102782339A
Authority
CN
China
Prior art keywords
pump
given
motor
pumps
expected life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201080039253XA
Other languages
English (en)
Inventor
罗伯特·韦伯
W·G·克米尔
D·L·帕鲁金妮
M·G·昂萨格
约瑟夫·赫尔弗里奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Global Mining LLC
Original Assignee
Caterpillar Global Mining LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Global Mining LLC filed Critical Caterpillar Global Mining LLC
Publication of CN102782339A publication Critical patent/CN102782339A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2658Control of multiple pressure sources by control of the prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6323Electronic controllers using input signals representing a flow rate the flow rate being a pressure source flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6343Electronic controllers using input signals representing a temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Operation Control Of Excavators (AREA)
  • Details Of Aerials (AREA)

Abstract

液压系统包括向多个液压致动器提供承压流体的多个泵,其中一些泵比另一些泵执行更多的工作。该系统通过为多个泵中的每一个生成一使用值来进行控制,该使用值表示各泵的工作量。根据使用值为每个液压致动器分配一个泵。具有较低使用值的泵被分配给执行更多工作的液压致动器,以便均衡每个泵的使用。泵对液压致动器的分配随多个泵的使用值的变化而变化。当多个液压致动器中的某个液压致动器将要运行时,将液压流体从所分配的泵传送到多个液压致动器中的该液压致动器。

Description

用于控制液压系统中的泵的技术
相关申请的交叉引用
本申请主张2009年9月10日提交的美国在先申请第12/557,119号的权益,包括说明书、附图、权利要求和摘要,其全部内容通过引用结合于此。
技术领域
本发明涉及用于挖掘机的液压系统,尤其涉及此类液压系统中所使用的多个泵的控制。
背景技术
大型挖掘机,例如挖土机,具有在其上安装有挖掘机驾驶室的履带式牵引车驾驶室。吊杆通过能够使其上下移动的枢轴关节连接至驾驶室。吊杆具有远端,悬臂的一端枢轴连接至该远端,且铲斗枢轴附接至悬臂的另一端,铲斗自身也具有一远端。铲斗可以是蛤盒式的,具有像蚌壳那样打开和闭合的两部分。吊杆、悬臂和铲斗通过以缸和活塞组件形式的单独的液压致动器彼此相对移动。
大型挖掘机具有带有多个泵的液压系统,可以基于致动器的液压液体需求选择性地启动多个泵。当停用时,还在继续运行的固定排量泵通过打开一阀门将泵的输出流量直接输送至储液器来液压地″卸载″泵。可选择地,通过使可变排量泵减少行程来停止可变排量泵。然而,通过这些停止方法,泵仍然造成了寄生损失,因为即使当卸载时,泵仍被原动力驱动。
多泵系统还通常以固定的顺序启动和停止泵,使得在维持液压液体时,一个泵总是被利用着,当液压液体需求上升时,泵还是按照相同顺序被启动。类似地,当需求降低时,按照相反的顺序停用泵。因此,各个泵承受了不同的使用量且因而需要以不同的间隔进行维护和替换。
某些类型的挖掘机,诸如用于采矿操作中的挖掘机,是每天24小时连续运行的,因而必须要中断运行才能进行维护。因此,期望将挖掘机停机维修的次数降到最低。
发明内容
液压系统包括向液压致动器提供承压液体的多个泵。多个泵通过测量多个泵中的每个泵已经被使用的量的方法进行控制。例如,可以通过测量泵运行的时间量或通过测量泵执行的工作总量来确定给定泵的使用量。当泵通过电动机驱动时,例如从施加到电动机的电压和电流推导出泵的工作量。
确定用以运行液压致动器的液体需求且选择性地启动多个泵中的若干泵以供给足够的液体来满足此需求。按照从具有最低使用量的泵到具有最大使用量的泵的顺序选择性地启动泵。该启动倾向于运行被使用最少的泵,使得所有泵将具有近似相同的使用量且倾向于需要在大约相同时间维护和替换。
本发明的另一个方面涉及具有向多个液压致动器提供承压液体的多个泵的液压系统。通过此系统,为每个泵生成的一个表示该泵已被使用的量的使用值。对多个液压致动器中的每一个来说,根据多个泵的使用值为每一个液压致动器分配一个泵。具有较低使用值的泵被分配给工作量较多的液压致动器,以便均衡每一个泵的使用。对液压致动器的泵的分配改变了多个泵的使用值。当运行多个液压致动器中的给定液压致动器时,液压液体被从所分配的泵输送至给定液压致动器。
附图说明
图1是结合本发明的挖掘机的侧视图;
图2是用于挖掘机的具有通过电动机驱动的多个泵的液压系统的示意图;
图3是通过图2中的监管控制器执行的用以测量液压系统中的电动机和泵的磨损的软件程序的流程图;
图4是通过监管控制器执行的用以改变对多个液压致动器的不同泵的分配的软件程序;以及
图5和6是两张表格,描述了对挖掘机上液压功能的不同的泵的分配。
具体实施方式
先参考图1,挖掘机,诸如前动力挖掘机10,具有用于沿着地面移动挖掘机的履带组件12。驾驶室14以枢轴方式安装到履带式牵引车上,以便向左和向右旋转。吊杆16以枢轴方式安装到驾驶室14的前方且可以通过以第一双向液压缸活塞组件形式的吊杆液压致动器22升高或降低。悬臂18以枢轴方式附接至吊杆16的远离驾驶室14的末端且可以通过以第二双向液压缸活塞组件形式的悬臂液压致动器23相对于吊杆枢轴转动。悬臂18的远离吊杆的远端被附接至诸如铲斗20的作业工具,铲斗20从驾驶室14面朝前方,因而此类型的挖掘机被称为前动力挖掘机。铲斗20通过以第三双向液压缸活塞组件形式的转斗液压致动器(curl hydraulic actuator)24围绕悬臂18的末端枢转或″卷起″。铲斗20由可以通过夹钳液压致动器25(图2)像蚌壳一样打开和闭合的两部分构成。两个铲斗部分在挖掘操作期间被保持闭合在一起,当需要将材料倾倒入卡车中或倾倒到堆上时被分开。
参考图2,用于运行动力挖掘机的液压系统30包括将液体从储液器或罐71中抽出的一组四个泵31、32、33和34。每一个泵31、32、33和34具有连接至单独的主供给管45、46、47和48的供给出口。来自第一泵31的供给出口的承压液体被输送到第一主供给管45中,第二泵32输送到第二主供给管46、第三泵33输送到第三主供给管47以及第四泵34输送到第四主供给管48。泵31-34具有固定的排量,使得被泵送的液体的量与泵被驱动的速度直接成正比。四个泵31、32、33和34中的每一个分别由单独的电动机41、42、43和44驱动。各个电动机41、42、43和44由变速驱动器57、58、59和60运转,变速驱动器改变施加到各个电动机的交流电流的频率以便以期望的速度运行电动机。可以采用若干众所周知的变速驱动器中的任一种,诸如在美国专利第4,263,535号中所描述的一种,其说明书通过引用结合于此。每一组泵、电动机与变速驱动器构成一驱动器-电动机-泵组件(DMP)26、27、28和29。应理解,采用本发明的液压系统可以具有更多或较少数目的DMP。
正如众所周知的那样,每个泵31-34具有泵体排液管(case drain),从泵泄漏的液体通过泵体排液管液体流入到储液器71。那些泵体排液管中的每一个通过连接至各自的变速驱动器57、58、59和60的单独的流量计35、36、37和38连接至储液器回流管72。单独的温度传感器61、62、63和64分别被安装到电动机41、42、43和44中的每一个上,以感测温度并将信号送回至相关联的变速驱动器57、58、59和60。因此,除了控制相关联的电动机的速度外,每个变速驱动器还收集有关电动机温度和泵排放流量的数据。
DMP26、27、28和29,尤其是变速驱动器57、58、59和60,通过监管控制器50控制,监管控制器50是基于微型计算机的设备,响应来自动力挖掘机的操作员给出的控制信号和其他信号以控制液压致动器22、23、24和25按照期望的方式运行挖掘机。这些信号通过常规控制网络51被监管控制器50接收。监管控制器通过确定每个泵31、32、33和34所需生成的液压液体的量来响应那些信号并相应地控制电动机41、42、43和44以本领域众所周知的方式驱动各自的泵。
四个主供给管45、46、47和48汇入到分配歧管52,分配歧管52选择性地将液体流从每个泵引导至四个液压致动器22、23、24和25中的不同液压致动器。具体而言,歧管52具有第一致动器供给管66,用于将液体输送给用于吊杆液压致动器22的第一电磁控制阀80。第一控制阀80是三位四通阀,其将液体从第一致动器供给管66引导至吊杆液压致动器22的缸的其中一个室并将液体从缸的另一个室排放到通向储液器71的储液器回流管72。根据第一控制阀80的位置,第一液压致动器22在两个方向中的任一个方向上被驱动以藉此升高或降低吊杆16。类似地,从分配歧管52出来的第二、第三和第四致动器供给管67、68和69通过类似的第二、第三和第四控制阀81、82和83分别被连接至悬臂液压致动器23、转斗液压致动器24和夹钳液压致动器25。四个致动器控制阀80-83由来自监管控制器50的单独的信号独立控制。虽然本液压系统30在分配歧管52与液压致动器22-25之间采用控制阀80-83,但是控制阀能够通过将它们的功能合并入分配歧管中的额外的阀中以控制流入和从每一个缸室流出的流量而被省去。
本分配歧管52具有矩阵式分布的16个分配阀84-99。每一个分配阀将主供给管45、46、47或48中的一个连接至致动器供给管66、67、68或69中的一个。因此,当给定的分配阀84-99由来自监管控制器50的信号电操作时,相关联的主供给管与致动器供给管之间的通道是打开的,由此将来自连接至主供给管的泵的承压液体施加到连接至致动器供给管的控制阀80、81、82或83。例如,当开启分配阀85时,来自第一泵31的液体通过第一主供给管45,流入第二致动器供给管67并输送至第二控制阀81。通过选择性地操作分配阀84-99中的一个或多个,来自每个泵31-34的输出可以用于运行四个液压致动器22、23、24或25中的每一个。由此使得可将给定的泵分配给某一个液压致动器。应该理解,在特定的动力挖掘机上,可以存在更多或更少数目的泵和更多或更少数目的液压致动器;在这样的情形中,分配歧管52将被配置有相应不同数目的分配阀。例如,液压马达可以独立地驱动履带组件12的左履带和右履带以推进动力挖掘机。
还应该理解,来自两个或更多个泵的输出可以被合并以供给至同一个液压致动器22-25。例如,如果仅启动液压致动器23,来自多个泵的输出可以被合并,使得悬臂被驱动以用最大的速度和力挖掘土地。当运行悬臂的同时还需要运行另一个挖掘机功能,那么先前连接至悬臂功能的一个或多个泵被重新分配以通过改变液体穿过分配歧管52的方向将液体提供至该另一个挖掘机功能。此外如果DMP26-29中的某个发生故障,可以通过关停相关联的变速驱动器并通过关闭分配歧管52中与相应的主供给管相连的所有阀来断开与相关联的泵的连接从而将该DMP禁用。在此情形中,来自其余泵的液体通过分配歧管提供给各液压致动器以维持运行。然而,如果在给定的时间点并不需要特定泵的输出,则关闭其变速驱动器,使得电动机以及泵都不运行。
对非常大型的动力挖掘机来说,悬臂液压致动器23和转斗液压致动器24在挖掘操作中受到相对大的力。而且,悬臂和转斗液压致动器23和24倾向于比其他液压致动器运行更长时间。与铲斗20相关联的夹钳液压致动器25通常明显较小且消耗很少的液压液体。在前动力挖掘机中,给定的泵通常用于将液体供给至其中一个液压致动器,因而电动机-泵组合执行不同程度的工作。换句话说,由于用于悬臂和铲斗转斗功能的泵和电动机组合比液压系统中的其他泵和电动机执行远远更多的工作,因此这些工作强度大的部件倾向于比其他电动机和泵需要更多的维护和更频繁的更换。因此,不同的电动机/泵组合需要在不同的时间进行维修,而在维修期间整个动力挖掘机都必须停止工作。所产生的停机时间使动力挖掘机的总体生产率和运行成本受到不利影响。
本发明通过动态地改变对液压致动器的DMP分配,使得每个电动机/泵组合承受基本上相同的使用量和工作量,从而克服了这类前动力系统中存在的问题。因此,所有DMP将需要在大约相同的时间点进行维护和可能的更换。因而,各DMP的维护和更换间隔是同步的,使得维护间隔、平均维修时间以及平均故障间隔时间被优化并为整个液压系统提供更长的平均故障间隔时间。这减少了挖掘机使用寿命内停止工作的次数,从而提高生产率。
为了确定各DMP的使用量,监管控制器50收集有关它们的电动机和泵的运行的数据,诸如施加到电动机的电流和电压、电动机温度、速度、扭矩、总运行时间和泵排放流量。累积的数据用于确定由每个DMP 26、27、28和29所执行的相对工作量。为此,监管控制器50执行不同的软件程序来收集和分析泵和电动机数据以估算那些部件的剩余预期寿命和它们已经提供的使用总量。术语DMP用于指电动机/泵组合的性能以及其内的单个电动机和泵的性能。
参考图3,由监管控制器50基于时间中断来执行DMP寿命程序100。此软件程序从步骤102开始,执行一个查找,以判断动力挖掘机10的至少一个致动器22-25当前是否正在运行。程序的执行在此步骤循环,直至其中一个液压致动器22-25开始运行,此时程序前进至步骤104。在此时,监管控制器50获得表示每个变速驱动器57-60施加至其相关联的电动机41-44的电流和电压大小的数据。正如众所周知的,每个变速驱动器包含用于测量电压和电流大小并将这些测量结果转化成用于传输到监管控制器50的数字数据的电路。接着,在步骤106,使用所记录的电数据以计算在预定的测量周期每个电动机所消耗的平均RMS(均方根)功率。在步骤108,将新计算出的RMS功率值与电动机制造商规定的每个相应的电动机的额定值进行比较,以确定操作是否超过此电动机的额定功率。如果超过了,在步骤110对每个电动机的超过其额定功率值的大小进行累计以推导出表示电动机的总的过度使用的值。那些过度使用值在步骤112中被用于计算每个电动机41-44的预期寿命。例如,超出额定功率的时间越久、总的超出用量越大,则电动机的寿命与电动机制造商规定的名义预期寿命相比减少的越多。名义预期寿命是基于额定功率不被超过而确定的。可采用依经验推导出的用于特定类型的电动机的关系式,根据超出额定功率的实际持续时间和超出额定功率的总用量值来计算电动机预期寿命的减少量。超出额定功率运行的持续时间是基于电动机电值的采样周期。预期电动机寿命的减少量和名义预期寿命被用于预测每一电动机41-43的预期寿命。接着,将此信息存储在监管控制器50内的表格中。
之后,在步骤114,DMP寿命程序100进入步骤116的部分,以估计每个泵31-34的当前预期寿命。监管控制器50首先记录电动机41-43的速度和扭矩,此信息通过变速驱动器57-60所施加的电压和电流水平推导出。可选地,可以通过在连接电动机和泵的驱动轴上附接传感器来测量速度和扭矩数据。监管控制器50还获得从泵体排液管排出的液体流量。该流量通过连接至变速驱动器57、58、59和60的电路的流量计35、36、37和38感测,并由变速驱动器57、58、59和60将泵体排放流量数据转送至监管控制器。接着在步骤118,每个泵31-34的供给出口处的液体流量和压力的值由各自的速度和扭矩值推导出。具体而言,流量是速度和固定泵排量的乘积。扭矩与泵供给出口压力直接相关。可选地,液体流量和压力可以通过每个泵31-34的供给出口处的传感器直接测量。
在步骤120处,将供给出口液体流量、泵压力和泵体排放流量的值与泵制造商提供的数据进行比较以确定每个泵在寿命周期上的当前时刻。具体而言,随着泵的老化,泵的泄漏会增加,该泄漏由泵体排放管的流量所表示。换句话说,泵越旧,泵体排放流量越大,然而任何时间点的实际泵体排放流量也是关于泵在供给出口处所产生的液体流量和压力的函数。即,泵体排放流量随泵所产生的流量和压力的增加而增加。一般的泵制造商将不同压力下的预期泵体排放流量与泵的寿命周期的不同时刻的流量进行了关联。在步骤122,通过将实际液体流量、压力和泵体排放流量与制造商规定数据进行比较,监管控制器50能够确定每个泵31-34的剩余寿命。此确定结果被存储在监管控制器50的存储器内,以显示给泵操作者和维修人员,以及用于确定泵寿命周期的趋势来估计泵何时需要维护和替换。
参考图4,监管控制器50还执行软件DMP分配程序130。该程序基于每个DMP 26-29的累积使用量将每个泵31-34的输出分配给液压致动器22-25中的一个。如前所述,悬臂液压致动器23和铲斗转斗液压致动器24比吊杆液压致动器22和铲斗夹钳液压致动器25操作更频繁且需要来自液压系统更大的力。因此,液体为悬臂和铲斗转斗液压致动器供给液体的DMP比其他DMP的工作强度更大。DMP分配程序130确定每个电动机/泵组合已经执行的工作的总量并调整DMP26-29对各个液压致动器22-25的分配以近似均衡所执行的工作。这使得所有电动机/泵组合承受基本上相同的磨损量,从而它们会在近似相同的时间进行维护和最终更换。
DMP分配程序130从步骤132开始,查找判断液压系统30当前是否运行至少一个致动器,如果是,那么程序前进至步骤134。此时,在监管控制器50的存储器中以表格记录四个DMP 26、27、28和29对不同液压致动器22、23、24和25的当前分配。图5描绘了一个示例性的表格,在表格中,为每种液压功能指定了其中一个DMP。该表格也被监管控制器50用来确定应该打开和关闭分配歧管52中的哪些分配阀84-99来将每一个泵的液体引导至指定的液压致动器。对于本示例性表格来说,监管控制器50将打开分配阀96以将来自第四泵34的液体引导至吊杆供给管66,且打开分配阀85以将来自第一泵31的液体引导至悬臂供给管67。类似地,打开分配阀94以将来自第三泵33的液体引导至转斗供给管68以及打开分配阀91以将来自第二泵32的液体引导至夹钳供给管69。
回到图4中的DMP分配程序130,在步骤136中确定当每个DMP26-29被分配给每一个液压致动器时,该DMP已经运行的总时间量。监管控制器50通过软件为每个DMP设置一个单独的定时器,每当该DMP运行时,定时器工作。这提供每个电动机41-44和每个泵31-34已经运行的总时间的累积记录。
在步骤138,由监管控制器50读取各变速驱动器57、58、59和60施加到相关联的电动机41、42、43和44的电压和电流大小。每个变速驱动器57、58、59和60分别存储由附接至相关联的电动机41、42、43和44的温度传感器61、62、63或64所产生的信号而生成的数字化温度值。在步骤104,还从变速驱动器读取温度值且将其存储在监管控制器50的存储器内。
在步骤142,为每个电动机41-44读取的电值被用于确定各自的DMP所执行的工作量。具体而言,将特定电动机的电流和电压电平值相乘来产生表示在测量间隔时间内所消耗的电功率的值。所消耗的输入电功率并不是都转化成驱动泵的机械能,原因是电动机发热所损失的能量。所测得的各电动机的温度被用于计算该电动机发热所消耗的电功率的量,即热能损失。因此,由相关联的泵31-34所提供的机械能是通过将所消耗的电功率的量减去热能损失计算得出。然后,在测量间隔内对所得到的机械能值进行累计以推导出泵所执行的工作量。接着,将新的工作量与先前计算的类似的工作量的总和相加以提供自泵安装后已经执行的工作总量的测量值。对每个泵31-34各自进行此工作量的计算且将所得到的工作总量存储在监管控制器50中。在步骤144,按照每个DMP已经执行的工作总量对DMP 26-29排名。
如前所述,供给悬臂液压致动器23和转斗液压致动器24的DMP持续比供给吊杆液压致动器22和夹钳液压致动器25的DMP执行更多工作量。因而,控制流至悬臂液压致动器和转斗液压致动器的液体的流量的DMP相应地执行更多工作量。DMP分配程序130的目的是均衡电动机/马达组合执行的工作总量,使得它们经受基本上相同的磨损量,从而会在大约相同的时间维护和最终更换。这样做降低了动力挖掘机10必须退出运行的频率。
在分配歧管52的标准配置中,一个单独的泵31-34被连接至并将液体输送至一个不同的液压致动器22-25。哪一个泵与哪一个液压致动器相连是根据基于每个DMP所执行的工作总量的DMP排名动态确定的。将DMP对液压致动器的分配以表格形式记录在监管控制器50的存储器中,并且图5描绘了那些分配的示例性集合。因此在步骤146,检查DMP工作排名以确保具有最低工作总量的DMP被分配给悬臂液压致动器23和转斗液压致动器24。假设在进入步骤146时,DMP对液压致动器的分配如图5所示,第二DMP 27现具有最大的工作总量,而第四DMP 29具有最低的工作总量。在此情形中,如图6所示,监管控制器50会将第二DMP 27重新分配给铲斗夹钳液压致动器25,将第四DMP 29重新分配给悬臂液压致动器25。由于DMP对液压致动器分配的重新排列,监管控制器50将改变分配阀86-97的打开和关闭配置以将每个DMP中的泵31-34连接至分配表格中所指定的液压致动器22-25。
对于不同的液压致动器经受基本上相同力的机器来说,DMP的分配可以基于运行时间。例如,具有最低工作总量的DMP被分配给最频繁运行的液压致动器。类似地,具有最高工作总量的DMP被分配给最不频繁运行的液压致动器。在本发明控制技术的另一种变化中,当液压致动器运行时,将具有最低工作总量的未启用的DMP分配给该致动器以为其提供液体。
在另一种情形中,给定的液压致动器可能会根据作用在致动器上力对液压液体提出不断变化的需求。仅一个DMP可能不足以满足所有的需求水平。因此,在更高的需求水平下,多个泵被使用以将液体提供至给定的液压致动器。这里按照从具有最低工作总量的DMP到具有最高工作总量的DMP的顺序将DMP分配至给定的液压致动器。之后,当液压致动器对液压液体的需求降低时,按相反的顺序取消DMP的分配。具体而言,具有最高工作总量的DMP先被断开,而具有最低工作总量的DMP保持连接,直至不再需要液体。
前面的描述主要涉及本发明的优选实施方案。虽然已经关注本发明范围内的各种可选择方案,但预期本领域技术人员根据本发明实施方式充分公开的内容还可能实现其它的可选择方案。因此,本发明的范围应该由权利要求确定而不是受上面的公开内容限制。

Claims (23)

1.一种在具有一液压致动器的液压系统中控制多个泵的使用的方法,所述方法包括:
测量所述多个泵中的每一个已经被使用的量;
确定运行所述液压致动器的液体需求量;
选择性地启动所述多个泵中的每一个以提供足够的液体以满足所述液体需求量,其中所述多个泵按照从具有最低使用量的泵到具有最高使用量的泵的顺序启动。
2.如权利要求1所述的方法,其特征在于,每个泵由一单独的电动机驱动,其中测量所述多个泵中的每一个已经被使用的量包括:
测量施加至每个泵的电动机的电流和电压;
测量每个泵的电动机的温度;
响应于所述温度、电流和电压来获得由每个泵所执行的工作量。
3.如权利要求1所述的方法,其特征在于,测量所述多个泵中的每一个已经被使用的量包括测量每个泵已经执行的总工作量。
4.如权利要求1所述的方法,其特征在于,还包括确定所述多个泵中一给定泵的预期寿命。
5.如权利要求4所述的方法,其特征在于,确定一给定泵的预期寿命包括测量来自所述给定泵的泵体排放口的液体流量。 
6.如权利要求4所述的方法,其特征在于,确定一给定泵的预期寿命包括确定所述给定泵的供给出口处的液体流量和压力。
7.如权利要求4所述的方法,其特征在于,确定一给定泵的预期寿命包括测量来自所述给定泵的泵体排放口的排出液体流量;确定所述给定泵的供给出口处的液体流量和压力;以及响应于所述排出液体流量、供给出口处的液体流量和所述压力获得所述预期寿命。
8.如权利要求1所述的方法,其特征在于,每个泵由一单独的电动机驱动,且还包括确定一给定电动机的预期寿命。
9.如权利要求8所述的方法,其特征在于,确定一给定电动机的预期寿命包括测量所述给定电动机所消耗的功率以生成一功率测量结果;以及响应于超过给定电动机的额定功率的功率测量结果获得一预期寿命值。
10.一种在具有多个液压致动器的液压系统中控制多个泵的使用的方法,所述方法包括:
为所述多个泵中的每一个生成一使用值以表示该相应的泵已经被使用的量;
响应于所述多个泵的使用值,为所述多个液压致动器中的每一个指定一个选自所述多个泵的分配的泵;以及
当所述多个液压致动器中的某一个液压致动器将要运行时,将液压液体从所述分配的泵传送至所述多个液压致动器中的该液压致动器。
11.如权利要求10所述的方法,其特征在于,所述多个液压致动器中的每 一个按一给定量工作;具有相对低使用值的泵被分配给按相对多的给定量工作的液压致动器;具有相对高使用值的泵被分配给按相对少的给定量工作的液压致动器。
12.如权利要求10所述的方法,其特征在于,响应于所述多个泵中的每一个已经被使用的给定量的变化,为所述多个液压致动器中的至少一些改变分配的泵。
13.如权利要求10所述的方法,其特征在于,生成一使用值包括测量各个泵运行的时间量。
14.如权利要求10所述的方法,其特征在于,生成一使用值包括测量各个泵执行的工作量。
15.如权利要求10所述的方法,其特征在于,每一个泵由相关联的电动机驱动,且为各个泵生成一使用值包括测量由相关联的电动机所施加的能量。
16.如权利要求15所述的方法,其特征在于,测量由相关联的电动机所施加的能量包括测量提供至该电动机的电压和电流。
17.如权利要求16所述的方法,其特征在于,还包括测量每个电动机的温度;所述测量由相关联的电动机所施加的能量还包括响应于所述电压和电流计算一电功率值,以及从所述电功率值中减去一与在所述相关联的电动机中产生热能所消耗的功率相关的值。
18.如权利要求10所述的方法,其特征在于,还包括确定所述多个泵中的一给定泵的预期寿命。 
19.如权利要求18所述的方法,其特征在于,确定一给定泵的预期寿命包括测量来自所述给定泵的泵体排放口的液体流量。
20.如权利要求18所述的方法,其特征在于,确定一给定泵的预期寿命包括确定所述给定泵的供给出口处的液体流量和压力。
21.如权利要求18所述的方法,其特征在于,确定一给定泵的预期寿命包括测量来自所述给定泵的泵体排放口排出液体流量;确定所述给定泵的供给出口处的出口液体流量和压力;以及响应于所述排出液体流量、所述出口液体流量和所述压力获得所述预期寿命。
22.如权利要求10所述的方法,其特征在于,每个泵由一单独的电动机驱动,以及还包括确定一给定电动机的预期寿命。
23.如权利要求22所述的方法,其特征在于,确定一给定电动机的预期寿命包括测量所述给定电动机所消耗的功率以生成一功率测量结果;以及响应于超过给定电动机的额定功率的功率测量结果获得一预期寿命值。 
CN201080039253XA 2009-09-10 2010-09-09 用于控制液压系统中的泵的技术 Pending CN102782339A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/557,119 2009-09-10
US12/557,119 US20110056192A1 (en) 2009-09-10 2009-09-10 Technique for controlling pumps in a hydraulic system
PCT/US2010/048257 WO2011031851A2 (en) 2009-09-10 2010-09-09 Technique for controlling pumps in a hydraulic system

Publications (1)

Publication Number Publication Date
CN102782339A true CN102782339A (zh) 2012-11-14

Family

ID=43646589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080039253XA Pending CN102782339A (zh) 2009-09-10 2010-09-09 用于控制液压系统中的泵的技术

Country Status (10)

Country Link
US (1) US20110056192A1 (zh)
CN (1) CN102782339A (zh)
AU (1) AU2010292234A1 (zh)
BR (1) BR112012003547A2 (zh)
CA (1) CA2770482A1 (zh)
CL (1) CL2012000399A1 (zh)
IN (1) IN2012DN00738A (zh)
PE (2) PE20121374A1 (zh)
WO (1) WO2011031851A2 (zh)
ZA (1) ZA201201743B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111350711A (zh) * 2018-12-20 2020-06-30 西门子歌美飒可再生能源公司 液压泵装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032724B2 (en) * 2010-06-21 2015-05-19 Husco International Inc. Command based method for allocating fluid flow from a plurality of pumps to multiple hydraulic functions
WO2012125792A2 (en) * 2011-03-15 2012-09-20 Husco International, Inc. Multiple function hydraulic system with a variable displacement pump and a hydrostatic pump-motor
CA2834240C (en) 2011-04-29 2017-08-15 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
WO2013063262A1 (en) 2011-10-25 2013-05-02 Hydrotech, Inc Pump monitoring device
US9234587B2 (en) 2012-05-23 2016-01-12 Caterpillar Global Mining Llc Multi-capacity cylinder
JP5968189B2 (ja) * 2012-10-26 2016-08-10 住友重機械工業株式会社 ショベル管理装置及びショベル管理方法
EP2955284B1 (en) * 2013-02-08 2019-05-08 Doosan Infracore Co., Ltd. Apparatus and method for controlling oil hydraulic pump for excavator
KR101534697B1 (ko) * 2013-05-09 2015-07-07 현대자동차 주식회사 오일 공급 시스템
US9937990B2 (en) 2014-08-01 2018-04-10 Circor Pumps North America, Llc Intelligent sea water cooling system
JP6474702B2 (ja) * 2015-09-07 2019-02-27 日立建機株式会社 作業機械の駆動装置
WO2017208243A1 (en) * 2016-05-31 2017-12-07 Clinicare Ltd. Breast pump or other medical devices with dynamically adaptive pump configuration providing error detection and distinctive suction profile
CN106661871B (zh) 2016-07-29 2021-06-18 株式会社小松制作所 控制系统、作业机械及控制方法
US10125629B2 (en) * 2016-07-29 2018-11-13 United Technologies Corporation Systems and methods for assessing the health of a first apparatus by monitoring a dependent second apparatus
JP6145229B1 (ja) 2016-08-26 2017-06-07 株式会社小松製作所 制御システム、作業機械、及び制御方法
DE102016217541A1 (de) 2016-09-14 2018-03-15 Robert Bosch Gmbh Hydraulisches Antriebssystem mit mehreren Zulaufleitungen
US10466135B2 (en) 2016-11-08 2019-11-05 Iot Diagnostics Llc Pump efficiency of a fluid pump
WO2018178861A1 (en) * 2017-03-27 2018-10-04 Mohammad Ebrahimi Hydraulic leak detection system
CN110439882B (zh) * 2018-05-03 2020-07-28 杭州诺云科技有限公司 一种集中液压站节能优化方法及系统
DE102018111652A1 (de) * 2018-05-15 2019-11-21 STAHLWILLE Eduard Wille GmbH & Co. KG Werkzeug und Verfahren zum Betätigen eines Werkzeuges
DE202018106686U1 (de) * 2018-11-23 2020-02-26 Aradex Ag Antriebssystem
WO2020215033A1 (en) * 2019-04-19 2020-10-22 Baker Hughes Oilfield Operations Llc Regenerated power accumulator for rod lift drive
CN112268028B (zh) * 2020-10-19 2023-01-06 山推工程机械股份有限公司 一种压路机行走系统及行走控制方法
KR102288976B1 (ko) * 2021-05-06 2021-08-11 주식회사 평강비아이엠 전기적 효율성이 개선된 전기유압시스템
EP4098889B1 (en) * 2021-06-02 2023-09-20 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A failure detection apparatus for a hydraulic system
WO2023239659A1 (en) * 2022-06-06 2023-12-14 Husco International, Inc. Hydraulic control systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190442A (en) * 1991-09-06 1993-03-02 Jorritsma Johannes N Electronic pumpcontrol system
KR960041737A (ko) * 1995-05-17 1996-12-19 김회수 자동급수 가압장치의 펌프 사용율 조정회로
US5859373A (en) * 1996-04-19 1999-01-12 Mannesmann Aktiengesellschaft Apparatus and process for determining the instantaneous and continuous loads on a lifting mechanism
JP2000170687A (ja) * 1998-12-08 2000-06-20 Teral Kyokuto Inc 給水装置の並列運転開始及び解除時の制御方法
KR100300305B1 (ko) * 1998-08-17 2001-10-27 류해성 가압급수펌프장치와그제어시스템및제어방법
JP2003013866A (ja) * 2001-06-28 2003-01-15 Toshiba Corp ポンプ台数制御装置
EP1298511A1 (en) * 2001-09-27 2003-04-02 Reliance Electric Technologies, LLC Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US20040263342A1 (en) * 2003-06-30 2004-12-30 Matlock Milton Gregory System for monitoring motors
US20050262838A1 (en) * 2004-05-21 2005-12-01 Masato Kageyama Hydraulic machine, system for monitoring health of hydraulic machine, and method thereof
WO2008009950A1 (en) * 2006-07-21 2008-01-24 Artemis Intelligent Power Limited Fluid power distribution and control system
JP2009167618A (ja) * 2008-01-11 2009-07-30 Caterpillar Japan Ltd 油圧ショベルの油圧回路

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425574A (en) * 1967-01-25 1969-02-04 Bucyrus Erie Co Hydraulic power unit for a doubleacting cylinder
DE2331617A1 (de) * 1973-06-22 1975-01-16 Bosch Gmbh Robert Regeleinrichtung fuer hydropumpen
US4050478A (en) * 1975-04-23 1977-09-27 International Harvester Company Combined fixed and variable displacement pump system
US4230022A (en) * 1976-10-04 1980-10-28 Caterpillar Tractor Co. Hydraulic rock breaker circuit for an excavator
WO1982001396A1 (en) * 1980-10-09 1982-04-29 Izumi Eiki Method and apparatus for controlling a hydraulic power system
DE3104196C2 (de) * 1981-02-06 1988-07-28 Bayerische Motoren Werke AG, 8000 München Anzeigevorrichtung für Kraftfahrzeuge
DE3611553C1 (de) * 1986-04-07 1987-07-23 Orenstein & Koppel Ag Anordnung zum Betrieb eines dieselhydraulischen Antriebes
JPH076530B2 (ja) * 1986-09-27 1995-01-30 日立建機株式会社 油圧ショベルの油圧回路
US5048293A (en) * 1988-12-29 1991-09-17 Hitachi Construction Machinery Co., Ltd. Pump controlling apparatus for construction machine
JPH07103593B2 (ja) * 1990-06-06 1995-11-08 株式会社小松製作所 積み込み作業車両の制御装置及び方法
US5167121A (en) * 1991-06-25 1992-12-01 University Of British Columbia Proportional hydraulic control
KR950008533B1 (ko) * 1991-11-30 1995-07-31 삼성중공업주식회사 유압펌프의 토출유량 제어장치
US5563351A (en) * 1994-03-31 1996-10-08 Caterpillar Inc. Method and apparatus for determining pump wear
JP2892939B2 (ja) * 1994-06-28 1999-05-17 日立建機株式会社 油圧掘削機の油圧回路装置
IT1280604B1 (it) * 1995-11-02 1998-01-23 Sme Elettronica Spa Gruppo di potenza per l'alimentazione di attuatori idraulici
JP3183815B2 (ja) * 1995-12-27 2001-07-09 日立建機株式会社 油圧ショベルの油圧回路
DE59611324D1 (de) * 1996-01-10 2006-04-06 Eaton Fluid Power Gmbh Verlustarmer Antrieb für einen hydraulischen Aktuator
US5722190A (en) * 1996-03-15 1998-03-03 The Gradall Company Priority biased load sense hydraulic system for hydraulic excavators
KR0185493B1 (ko) * 1996-03-30 1999-04-01 토니헬샴 중장비용 유량 합류장치
RU2123596C1 (ru) * 1996-10-14 1998-12-20 Научно-исследовательский институт высоких напряжений при Томском политехническом университете Электроимпульсный способ бурения скважин и буровая установка
ATE207668T1 (de) * 1996-12-20 2001-11-15 Ponte Manuel Dos Santos Da Hybridgeneratorvorrichtung
JPH1113091A (ja) * 1997-06-23 1999-01-19 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP3335106B2 (ja) * 1997-07-16 2002-10-15 株式会社小松製作所 機械のメンテナンス時期判定方法および装置
JP3413092B2 (ja) * 1998-01-08 2003-06-03 日立建機株式会社 油圧作業機のポンプ故障警告装置
WO2000000748A1 (en) * 1998-06-27 2000-01-06 Lars Bruun Mobile working machine
JP4111286B2 (ja) * 1998-06-30 2008-07-02 コベルコ建機株式会社 建設機械の走行制御方法及び同装置
JP2000027236A (ja) * 1998-07-07 2000-01-25 Komatsu Ltd 建設機械のデータ記憶装置およびデータ処理装置
US7308322B1 (en) * 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
JP3877901B2 (ja) * 1999-03-31 2007-02-07 コベルコ建機株式会社 ショベル
US6282891B1 (en) * 1999-10-19 2001-09-04 Caterpillar Inc. Method and system for controlling fluid flow in an electrohydraulic system having multiple hydraulic circuits
US6326763B1 (en) * 1999-12-20 2001-12-04 General Electric Company System for controlling power flow in a power bus generally powered from reformer-based fuel cells
WO2001074699A1 (de) * 2000-03-31 2001-10-11 Inventio Ag Einrichtung und verfahren zur reduktion der netzanschlussleistung von aufzugsanlagen
US7252165B1 (en) * 2000-04-26 2007-08-07 Bowling Green State University Hybrid electric vehicle
JP3862256B2 (ja) * 2000-05-19 2006-12-27 株式会社小松製作所 油圧駆動装置付きハイブリッド機械
US6683389B2 (en) * 2000-06-30 2004-01-27 Capstone Turbine Corporation Hybrid electric vehicle DC power generation system
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle
US6422001B1 (en) * 2000-10-10 2002-07-23 Bae Systems Controls Inc. Regeneration control of particulate filter, particularly in a hybrid electric vehicle
JP4520649B2 (ja) * 2001-02-06 2010-08-11 株式会社小松製作所 ハイブリッド式建設機械
JP4512283B2 (ja) * 2001-03-12 2010-07-28 株式会社小松製作所 ハイブリッド式建設機械
ATE280053T1 (de) * 2001-03-14 2004-11-15 Conception & Dev Michelin Sa Fahrzeug mit super-kondensator zur bremsenergie- rückgewinnung
US6612246B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy locomotive system and method
US7448328B2 (en) * 2001-03-27 2008-11-11 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US7430967B2 (en) * 2001-03-27 2008-10-07 General Electric Company Multimode hybrid energy railway vehicle system and method
US6591758B2 (en) * 2001-03-27 2003-07-15 General Electric Company Hybrid energy locomotive electrical power storage system
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US7571683B2 (en) * 2001-03-27 2009-08-11 General Electric Company Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein
US6591697B2 (en) * 2001-04-11 2003-07-15 Oakley Henyan Method for determining pump flow rates using motor torque measurements
JP4137431B2 (ja) * 2001-11-09 2008-08-20 ナブテスコ株式会社 油圧回路
JP3874344B2 (ja) * 2002-01-17 2007-01-31 株式会社小松製作所 ハイブリッド電源システム
ATE405133T1 (de) * 2002-02-11 2008-08-15 Dartmouth College Systeme und verfahren zum ändern einer eis-objekt grenzfläche
EP1363386B1 (en) * 2002-05-13 2005-01-05 Luxon Energy Devices Corporation High current pulse generator
JP2004011168A (ja) * 2002-06-04 2004-01-15 Komatsu Ltd 建設機械
JP4082935B2 (ja) * 2002-06-05 2008-04-30 株式会社小松製作所 ハイブリッド式建設機械
WO2003106828A2 (en) * 2002-06-18 2003-12-24 Ingersoll-Rand Energy Systems Corporation Microturbine engine system
JP4072898B2 (ja) * 2002-11-21 2008-04-09 株式会社小松製作所 ハイブリッド式建設機械の機器配置構造
JP3992612B2 (ja) * 2002-12-26 2007-10-17 株式会社クボタ バックホウの油圧回路構造
DE10307190A1 (de) * 2003-02-20 2004-09-16 O & K Orenstein & Koppel Gmbh Verfahren zur Steuerung eines Hydrauliksystems einer mobilen Arbeitsmaschine
US7078877B2 (en) * 2003-08-18 2006-07-18 General Electric Company Vehicle energy storage system control methods and method for determining battery cycle life projection for heavy duty hybrid vehicle applications
US7258183B2 (en) * 2003-09-24 2007-08-21 Ford Global Technologies, Llc Stabilized electric distribution system for use with a vehicle having electric assist
US6876098B1 (en) * 2003-09-25 2005-04-05 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods of operating a series hybrid vehicle
US7401464B2 (en) * 2003-11-14 2008-07-22 Caterpillar Inc. Energy regeneration system for machines
US20050139399A1 (en) * 2003-12-30 2005-06-30 Hydrogenics Corporation Hybrid electric propulsion system, hybrid electric power pack and method of optimizing duty cycle
US7251934B2 (en) * 2004-03-27 2007-08-07 Cnh America Llc Work vehicle hydraulic system
JP4675320B2 (ja) * 2004-04-08 2011-04-20 株式会社小松製作所 作業機械の油圧駆動装置
US7398012B2 (en) * 2004-05-12 2008-07-08 Siemens Energy & Automation, Inc. Method for powering mining equipment
US7378808B2 (en) * 2004-05-25 2008-05-27 Caterpillar Inc. Electric drive system having DC bus voltage control
US7531916B2 (en) * 2004-05-26 2009-05-12 Altergy Systems, Inc. Protection circuits for hybrid power systems
CA2568067C (en) * 2004-05-27 2010-05-25 Siemens Energy & Automation, Inc. System and method for cooling the power electronics of a mining machine
US7190133B2 (en) * 2004-06-28 2007-03-13 General Electric Company Energy storage system and method for hybrid propulsion
SE527434C8 (sv) * 2004-07-28 2006-03-28 Volvo Constr Equip Holding Se Hydraulisksystem och arbetsmaskin innefattande ett sådant system
US20060061922A1 (en) * 2004-09-22 2006-03-23 Cellex Power Products, Inc. Hybrid power supply system having energy storage device protection circuit
US7146808B2 (en) * 2004-10-29 2006-12-12 Caterpillar Inc Hydraulic system having priority based flow control
KR101144396B1 (ko) * 2004-12-16 2012-05-11 두산인프라코어 주식회사 굴삭기의 선회복합작업용 유압제어장치
KR101155717B1 (ko) * 2004-12-22 2012-06-12 두산인프라코어 주식회사 굴삭기의 붐-선회 복합동작 유압제어장치
US7309929B2 (en) * 2005-04-25 2007-12-18 Railpower Technologies Corporation Locomotive engine start method
WO2006124746A2 (en) * 2005-05-16 2006-11-23 Miller Davis J System and method for power pump performance monitoring and analysis
GB2441258B (en) * 2005-05-18 2010-01-27 Komatsu Mfg Co Ltd Hydraulic control device for construction machinery
US7444944B2 (en) * 2005-06-15 2008-11-04 General Electric Company Multiple engine hybrid locomotive
US7628236B1 (en) * 2005-08-01 2009-12-08 Brown Albert W Manually operated electrical control and installation scheme for electric hybrid vehicles
US7950481B2 (en) * 2005-09-29 2011-05-31 Caterpillar Inc. Electric powertrain for machine
US7560904B2 (en) * 2005-10-03 2009-07-14 Lear Corporation Method and system of managing power distribution in switch based circuits
EP2041854B1 (en) * 2005-10-19 2016-08-17 The Raymond Corporation Power source mounted on a lift truck
SE531309C2 (sv) * 2006-01-16 2009-02-17 Volvo Constr Equip Ab Styrsystem för en arbetsmaskin och förfarande för styrning av en hydraulcylinder hos en arbetsmaskin
US7444809B2 (en) * 2006-01-30 2008-11-04 Caterpillar Inc. Hydraulic regeneration system
JP2008032175A (ja) * 2006-07-31 2008-02-14 Shin Caterpillar Mitsubishi Ltd 流体圧回路
US8022663B2 (en) * 2007-05-21 2011-09-20 Nmhg Oregon, Llc Energy recapture for an industrial vehicle
US7748279B2 (en) * 2007-09-28 2010-07-06 Caterpillar Inc Hydraulics management for bounded implements
US8203310B2 (en) * 2008-10-20 2012-06-19 The Raymond Corporation Energy storage module for load leveling in lift truck or other electrical vehicle
US8174225B2 (en) * 2009-05-15 2012-05-08 Siemens Industry, Inc. Limiting peak electrical power drawn by mining excavators

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190442A (en) * 1991-09-06 1993-03-02 Jorritsma Johannes N Electronic pumpcontrol system
KR960041737A (ko) * 1995-05-17 1996-12-19 김회수 자동급수 가압장치의 펌프 사용율 조정회로
US5859373A (en) * 1996-04-19 1999-01-12 Mannesmann Aktiengesellschaft Apparatus and process for determining the instantaneous and continuous loads on a lifting mechanism
KR100300305B1 (ko) * 1998-08-17 2001-10-27 류해성 가압급수펌프장치와그제어시스템및제어방법
JP2000170687A (ja) * 1998-12-08 2000-06-20 Teral Kyokuto Inc 給水装置の並列運転開始及び解除時の制御方法
JP2003013866A (ja) * 2001-06-28 2003-01-15 Toshiba Corp ポンプ台数制御装置
EP1298511A1 (en) * 2001-09-27 2003-04-02 Reliance Electric Technologies, LLC Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US20040263342A1 (en) * 2003-06-30 2004-12-30 Matlock Milton Gregory System for monitoring motors
US20050262838A1 (en) * 2004-05-21 2005-12-01 Masato Kageyama Hydraulic machine, system for monitoring health of hydraulic machine, and method thereof
WO2008009950A1 (en) * 2006-07-21 2008-01-24 Artemis Intelligent Power Limited Fluid power distribution and control system
JP2009167618A (ja) * 2008-01-11 2009-07-30 Caterpillar Japan Ltd 油圧ショベルの油圧回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111350711A (zh) * 2018-12-20 2020-06-30 西门子歌美飒可再生能源公司 液压泵装置
CN111350711B (zh) * 2018-12-20 2022-09-06 西门子歌美飒可再生能源公司 液压泵装置

Also Published As

Publication number Publication date
CA2770482A1 (en) 2011-03-17
PE20121374A1 (es) 2012-10-27
PE20121310A1 (es) 2012-10-07
WO2011031851A3 (en) 2011-07-21
IN2012DN00738A (zh) 2015-06-19
ZA201201743B (en) 2012-11-28
US20110056192A1 (en) 2011-03-10
WO2011031851A2 (en) 2011-03-17
CL2012000399A1 (es) 2012-07-06
AU2010292234A1 (en) 2012-03-01
BR112012003547A2 (pt) 2017-09-12

Similar Documents

Publication Publication Date Title
CN102782339A (zh) 用于控制液压系统中的泵的技术
CN103299001B (zh) 用于重型设备的液压系统
CN102383456B (zh) 基于命令分配来自多个泵的流体流量给多个液压功能部件的方法
EP1985869B1 (en) Hydraulically driven industrial machine
CN101802417B (zh) 执行适应性流动控制的致动器控制系统
CN101037869B (zh) 混合动力建筑机械
EP2752586B1 (en) Hydraulic drive device for construction machine
CN104105888B (zh) 工程机械
CN1896385B (zh) 用于液压挖掘机的液压控制设备
CN102933857B (zh) 工程机械的液压驱动装置
CN108138817B (zh) 作业机械的液压油能量回生装置
CN103717914B (zh) 用于施工机械的液压控制系统
CN103380303B (zh) 作业机械的液压驱动装置
EP2503067B1 (en) Hydraulic pump control device and control method for construction machinery
CA2945219C (en) Device for recovering hydraulic energy in an implement and a corresponding implement
CN101900141A (zh) 作业机械的控制装置及作业机械
CN102762797B (zh) 工程机械的液压控制装置
JPH1054371A (ja) 作業機械の油圧ポンプ故障診断装置
JP2019020132A (ja) エンジンの耐久試験装置
CN105829614A (zh) 工程机械的闭回路液压系统
KR102288976B1 (ko) 전기적 효율성이 개선된 전기유압시스템
CN217382464U (zh) 分区双油路集中润滑系统
CN107191441A (zh) 液压系统、液压系统的控制方法以及工程机械
EP4379151A1 (en) Hydraulic drive system and construction machine
CN117071684A (zh) 液压供油控制系统、方法、控制装置和挖掘机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121114