CN102749039A - 形状测量设备 - Google Patents

形状测量设备 Download PDF

Info

Publication number
CN102749039A
CN102749039A CN2012101130037A CN201210113003A CN102749039A CN 102749039 A CN102749039 A CN 102749039A CN 2012101130037 A CN2012101130037 A CN 2012101130037A CN 201210113003 A CN201210113003 A CN 201210113003A CN 102749039 A CN102749039 A CN 102749039A
Authority
CN
China
Prior art keywords
image
plane
imaging
forming component
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101130037A
Other languages
English (en)
Other versions
CN102749039B (zh
Inventor
根本贤太郎
山县正意
岩本正
町田信美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45939096&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102749039(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of CN102749039A publication Critical patent/CN102749039A/zh
Application granted granted Critical
Publication of CN102749039B publication Critical patent/CN102749039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Abstract

本发明公开了一种形状测量设备,包括:光照射单元,其将线状光照射到工件上;成像元件,其使由所述工件反射的反射光成像;以及成像透镜,其将由所述工件反射的反射光的像形成在所述成像元件的成像平面上,并且,所述光照射单元的光照射平面、包括所述成像透镜的主点的主平面、以及所述成像元件的成像平面满足沙姆普弗鲁克原理。所述形状测量设备还包括:像获取区域选择单元,其将所述成像元件的成像平面划分为多个区域,并响应于测量精度和测量范围的大小中的至少一个,从所述多个区域中选择用于在测量中使用的区域作为像获取区域。

Description

形状测量设备
对相关申请的交叉引用
此申请基于并要求2011年4月18日提交的在先日本专利申请No.2011-091736的优先权权益,通过引用将其全部内容合并在此。
技术领域
本发明涉及一种形状测量设备。
背景技术
迄今为止,已经已知这样一种形状测量设备,其以非接触方式通过探测器(probe)扫描称为待测量对象的工件的表面,并测量工件的表面的形状(例如,参见PCT国际申请公布No.JP-T-2009-534969的日文翻译)。
探测器通过包括诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)的成像元件、成像透镜、线(line)激光器等而构成,并且通过使用沙姆普弗鲁克(Scheimpflug)原理来执行测量。
如图6中所示,沙姆普弗鲁克原理是指:在通过分别延伸成像元件的成像平面、包括成像透镜的主点的主平面、以及线激光照射到工件上的照射平面而获得的平面被布置为在一点彼此相交的情况下,成像元件的成像平面完全变成聚焦状态。
在使用如上所述的沙姆普弗鲁克原理的探测器中,测量精度(分辨能力)和测量范围为权衡关系。也就是说,在由成像元件测量放置在线激光器的照射平面上的工件的情况下,使用的成像透镜的成像范围则由其光放大倍率决定。
因此,如图7中所示,在测量宽范围的情况下,使用低放大倍率的成像透镜,并且,在以高精度测量窄范围的情况下,使用高放大倍率的成像透镜。
顺便提及,迄今为止,在上述探测器中,已经采用了这样的配置:其中线激光器和成像透镜在制造过程中被固定至有关探测器,并且一旦被固定则无法被替换。因此,探测器的测量精度和测量范围已经由固定的成像透镜的光放大倍率和成像元件的尺寸唯一地决定。
因此,在与期望被执行测量的工件的尺寸匹配中,已经必须切换具有适当测量范围(或测量精度)的探测器,并且,已经必须准备测量范围(测量精度)的规范不同的多种类型的探测器。
为了仅仅因为期望的测量范围(测量精度)不同而准备多种类型的探测器,已经产生了巨大成本,另外,已经必须在每次更换探测器时执行校准操作等,从而导致安装工时的增加。
发明内容
本发明的目的是提供一种形状测量设备,其包括能够调节并改变测量范围和测量精度的探测器。
根据本发明的一个方面,提供了一种形状测量设备,包括:
光照射单元,其将线状(linear)光照射到工件上;
成像元件,其使从光照射单元照射的光的反射光成像,反射光由工件反射;以及
成像透镜,其将由工件反射的反射光的像形成在成像元件的成像平面上,并且,
光照射单元的光照射平面、包括成像透镜的主点的主平面、以及成像元件的成像平面满足沙姆普弗鲁克原理,并且
形状测量设备还包括:
像获取区域选择单元,其将成像元件的成像平面划分为多个区域,并响应于测量精度和测量范围的大小中的至少一个,从多个区域中选择用于在测量中使用的区域作为像获取区域。
附图说明
从下面给出的详细描述以及附图和表中,本发明的以上和其它目的、优点和特征将变得更加充分地被理解,其中,附图和表格仅仅通过图示而给出,从而并非意图定义对本发明的限制,并且其中:
图1是本发明的形状测量设备的总配置图;
图2是用于说明形状测量设备的光探测器的配置的视图;
图3A和3B是用于说明形状测量设备的操作的视图;
图4是用于说明成像单元的视图;
图5是示出光探测器的控制配置的框图;
图6是用于说明沙姆普弗鲁克原理的视图;以及
图7是用于说明测量精度与测量范围之间的关系的视图。
具体实施方式
参考附图对本发明的实施例进行描述。然而,本发明的范围不限于所图示的示例。
首先,对配置进行描述。
如图1中所示,形状测量设备100通过包括控制设备101、操作单元102、主机系统103和设备主体单元104而构成。
控制设备101控制设备主体单元104的驱动,并从设备主体单元104捕获必要的测量坐标值等。
操作单元102用于允许用户通过控制设备101手动操作设备主体单元104。
主机系统103通过包括以下单元而构成:显示单元103a,显示各种画面;操作单元103b,接收来自用户的操作指示(designation);打印机单元,用于在纸张上执行打印;等等。
显示单元103a例如由液晶显示器(LCD)构成,并且根据来自操作单元103b的操作信号在屏幕上显示各种设置画面、各个功能的操作状态等。操作单元103b例如由具有各种键的键盘构成,并且响应于手指等的操作将操作信号输出至控制设备101。
例如,在用户执行针对任意指示测量精度、测量范围的大小(幅度)等的指示操作的情况下,如上所述的主机系统103用作指示部件。
此外,主机系统103包括以下功能:编辑/执行用于指示控制设备101中的测量过程的部分程序;执行用于对通过控制设备101捕获的测量坐标值等应用几何形状的计算;以及记录/发送该部分程序。
设备主体单元104具有装配在振动去除板上的表面平板,并且包括在表面平板之上在X、Y和Z方向上驱动的光探测器P等。
光探测器P以非接触方式扫描工件的表面,并测量工件的表面形状。
光探测器P通过使用沙姆普弗鲁克原理执行测量,并且,成像单元30的成像元件31(稍后描述)的成像平面完全变成聚焦状态。
如图2中所示,光探测器P通过将控制单元10、光照射单元20、成像单元30等包括在壳体1中而构成。
光照射单元20通过包括光源、准直透镜、棒(rod)透镜(它们全部未示出)等而构成,并将线状光照射到工件上。
具体地,从光源发射的具有预定波长的激光束通过准直透镜而变为平行束,并通过棒透镜而转换为线状光,并且此后作为线状光而照射在工件上。注意,还可以使用柱透镜代替棒透镜。
然后,当这样的线状激光束从光照射单元20照射到工件上时,激光束的反射光沿着工件表面的不规则形状而变形,并且沿着特定横截面切割工件时的轮廓被照亮(light up)。
成像单元30被布置在相对于从光照射单元20照射到工件上的光的照射方向成预定角度的方向上,并从该预定角度接收沿着这样的工件表面的形状反射的光。
如图3A中所示,成像单元30以预定角度使工件成像,从而,如图3B中所示,沿着工件的表面形状行进的激光束的反射光的像被成像。
具体地,如图4中所示,成像单元30通过包括成像透镜31、成像元件32等而构成。
注意,图4是示出成像透镜31与成像元件32之间的光学位置关系的概念视图。图4中的虚线表示成像元件32的成像平面,而长短交替的破折线表示包括成像透镜31的主点的主平面。此外,双点划线表示将激光束照射到工件上的光照射单元20的照射平面。
成像透镜31在成像元件32的成像平面上形成来自工件的反射光的像。
作为成像透镜31,可使用具有任意光放大倍率的透镜;然而,具有较低放大倍率的成像透镜是优选的,因为可以将较宽范围作为可测量范围。
成像元件32包括使工件通过成像透镜31的像(即,来自工件的反射光)成像的图像传感器(未示出)。
图像传感器通过包括例如单独地布置在彼此垂直的两个方向上的、以1024像素×1280像素的矩阵方式的CMOS光接收元件而构成。
图像传感器具有所谓的旋转(rolling)快门功能,以只允许布置在一或多行(或列)中的光接收元件同时接收光,并在列方向上(或在行方向上)顺序地每(per)行(或每列)地执行这样的光接收。
关于成像元件32,通过控制单元10(稍后描述)的控制,选择其成像平面的一部分作为像获取区域,并且仅仅读出和使用相关像获取区域的像素。
如图5中所示,控制单元10通过包括中央处理单元(CPU)11、随机访问存储器(RAM)12、存储单元13等而构成,并且执行对光照射单元20和成像单元30的操作的集中式控制。
CPU 11例如根据存储单元13中存储的各种处理程序,执行各种控制处理。
RAM 12形成将接受CPU 11进行算术操作处理的数据存储在其中的工作存储区。
例如,存储单元13存储可由CPU 11执行的系统程序、可由相关系统程序执行的各种处理程序、用于在执行各种处理程序的事件中使用的数据、接受CPU 11进行算术操作处理的各种处理结果的数据,等等。注意,以可由计算机读取的程序代码的形式将程序存储在存储单元13中。
具体地,在存储单元13中,例如,存储像获取区域选择程序131等。
像获取区域选择程序131例如是这样的程序,其允许CPU 11将成像元件32的成像平面划分为多个区域、并响应于测量精度和/或测量范围的大小来从多个划分区域中选择用于在测量中使用的区域作为像获取区域。
具体地,如图4中所示,CPU 11将成像元件32的成像平面(有效成像区域)划分为多个区域,并响应于划分的预设编号而识别所划分的区域。因此,也为每个所划分的区域设置测量范围。
图4示出将成像元件32的成像平面划分为三个区域S1、S2和S3的状态。在此情况下,将测量范围划分为与区域S1对应的测量区域H1、与区域S2对应的测量区域H2、以及与区域S3对应的测量区域H3。注意,基于沙姆普弗鲁克光学系统的特性,以S1>S2>S3(H1>H2>H3)的顺序,高精度测量是可能的。
于是,当用户通过使用主机系统103执行用于指示的指示操作时,CPU 11执行像获取区域选择程序131,并响应于指示操作从三个区域S1、S2和S3中选择像获取区域。
例如,在指示测量精度为“高”的情况下,选择区域S1作为像获取区域。
此外,在指示测量精度为“高”并且指示测量范围为“宽”的情况下,选择区域S2作为像获取区域。
另外,在指示测量范围为“宽”的情况下,选择区域S3作为像获取区域。
具体地,响应于用户的指示,CPU 11选择将要测量测量范围的测量精度,并选择将要测量的测量范围的大小。
CPU 11执行如上所述的像获取区域选择程序131,由此用作像获取区域选择部件。
接下来,对功能进行描述。
在此实施例中,如上所述,例如,在期望以高精度执行测量的情况下,通过使用成像元件32的成像平面中的区域S1,在具有高的光放大倍率的这种范围中执行测量,从而,高精度测量是可能的。
此外,例如,在期望在宽的测量范围中执行测量的情况下,通过使用成像元件32的成像平面中的区域S3,在具有低的光放大倍率的这种范围中执行测量,从而,宽范围测量是可能的。
如上所述,即使不更换成像透镜31(光探测器P),也可以在适当的测量范围中(或者以适当的测量精度)执行测量。
此外,在成像元件32中,在执行如上所述的仅使用成像元件32的成像平面的一个区域的这种局部读出的情况下,与读出所有像素的情况相比,可以提高帧率(rate),从而,可以实现高速扫描。
因此,可以通过使用公知可用的成像元件来实现高速扫描。
如上所述,根据此实施例,当用户指示测量精度和/或测量范围的大小时,控制单元10将成像元件32的成像平面划分为多个区域(S1至S3),并响应于所指示的测量精度和/或测量范围的大小,选择用于在测量中使用的像获取区域。
因此,可以在不替换成像透镜31的情况下调节/改变测量范围和测量精度。
因此,不需要准备测量范围和测量精度的规范不同的多种类型的光探测器,并降低了成本。此外,不需要执行对光探测器等的更换工作,从而,可以实现安装工时的降低。此外,可以维持迄今为止已经实现的高速扫描。
因此,可以提高形状测量设备的可用性。
注意,在上述实施例中,已经说明了这样的配置,其中将成像元件32的成像平面划分为三个区域S1至S3,并且识别所划分的区域;然而,划分的数量不限于此,并且仅需要是两个或更多。此外,可以将成像平面划分为多个区域,使得所述区域可以彼此重叠。
此外,在上述实施例中,已经说明了这样的配置,其中用户指示测量精度和测量范围;然而,可以装配用于响应于工件的形状而自动决定测量精度和测量范围的功能。在此情况下,例如,基于预先读取的CAD数据而识别工件的不规则性等,并且决定测量精度和测量范围。
根据本发明的优选实施例,提供了一种形状测量设备,包括:
光照射单元,其将线状光照射到工件上;
成像元件,其使从光照射单元照射的光的反射光成像,反射光由工件反射;以及
成像透镜,其在成像元件的成像平面上形成由工件反射的反射光的像,并且
光照射单元的光照射平面、包括成像透镜的主点的主平面、以及成像元件的成像平面满足沙姆普弗鲁克原理,并且
形状测量设备还包括:
像获取区域选择单元,其将成像元件的成像平面划分为多个区域,并响应于测量精度和测量范围的大小中的至少一个,从多个区域中选择用于在测量中使用的区域作为像获取区域。
优选地,形状测量设备还包括:
指示单元,其指示测量精度和测量范围的大小中的至少一个。
这次公开的实施例在所有方面都应当被认为是说明性的、而非限制性的。本发明的范围并非由以上描述示出,而是由权利要求书示出,并且意在包括权利要求的等同体以及权利要求的范围内的所有修改。

Claims (2)

1.一种形状测量设备,包括:
光照射单元,其将线状光照射到工件上;
成像元件,其使从所述光照射单元照射的光的反射光成像,所述反射光由所述工件反射;以及
成像透镜,其将由所述工件反射的反射光的像形成在所述成像元件的成像平面上,其中
所述光照射单元的光照射平面、包括所述成像透镜的主点的主平面、以及所述成像元件的成像平面满足沙姆普弗鲁克原理,其中
所述形状测量设备还包括:
像获取区域选择单元,其将所述成像元件的成像平面划分为多个区域,并响应于测量精度和测量范围的大小中的至少一个,从所述多个区域中选择用于在测量中使用的区域作为像获取区域。
2.如权利要求1所述的形状测量设备,还包括:
指示单元,其指示所述测量精度和所述测量范围的大小中的至少一个。
CN201210113003.7A 2011-04-18 2012-04-17 形状测量设备 Active CN102749039B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091731A JP2012225700A (ja) 2011-04-18 2011-04-18 形状測定装置
JP2011-091731 2011-04-18

Publications (2)

Publication Number Publication Date
CN102749039A true CN102749039A (zh) 2012-10-24
CN102749039B CN102749039B (zh) 2015-03-25

Family

ID=45939096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210113003.7A Active CN102749039B (zh) 2011-04-18 2012-04-17 形状测量设备

Country Status (4)

Country Link
US (1) US8553234B2 (zh)
EP (1) EP2515071B1 (zh)
JP (1) JP2012225700A (zh)
CN (1) CN102749039B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034276A (zh) * 2013-03-08 2014-09-10 株式会社三丰 形状测量设备
CN104457609A (zh) * 2013-09-18 2015-03-25 株式会社三丰 坐标测量设备
CN107422335A (zh) * 2017-06-26 2017-12-01 苏州优函信息科技有限公司 线光源地形探测沙姆激光雷达
CN113483692A (zh) * 2021-06-23 2021-10-08 苏州中科全象智能科技有限公司 一种孔检测光学系统
CN113739714A (zh) * 2021-08-19 2021-12-03 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163690A (ja) 2013-02-21 2014-09-08 Mitsutoyo Corp 形状測定装置
JP6287153B2 (ja) * 2013-12-12 2018-03-07 株式会社ニコン センサユニット、形状測定装置、及び構造物製造システム
US9584730B2 (en) * 2014-02-03 2017-02-28 Cognex Corporation Apparatus, systems, and methods for a multi-position image sensor
JP2015148570A (ja) 2014-02-07 2015-08-20 株式会社ミツトヨ 光学式プローブ、取付カバー、および形状測定装置
EP3522522B1 (en) 2014-03-03 2020-04-29 Photoneo S.R.O Methods and apparatus for superpixel modulation
US9686517B2 (en) * 2014-12-15 2017-06-20 Test Research, Inc. Optical system and image compensating method of optical apparatus
CN104655051B (zh) * 2014-12-29 2019-11-05 四川大学 一种高速结构光三维面形垂直测量方法
WO2017103781A1 (en) * 2015-12-13 2017-06-22 Photoneo S.R.O. Methods and apparatus for superpixel modulation with ambient light suppression
CN108519063B (zh) * 2018-03-27 2019-12-13 杭州电子科技大学 双量程复合的激光测头装置及其表面测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302948A1 (de) * 1983-01-29 1983-07-07 Wolfgang 3400 Göttingen Brunk Beruehrungslose optische abstandsmessung
CN1831483A (zh) * 2005-03-11 2006-09-13 三丰株式会社 光电式编码器
JP2008145160A (ja) * 2006-12-07 2008-06-26 Keyence Corp 光学式変位センサ及びその調整方法
EP2141448A1 (en) * 2008-07-04 2010-01-06 Sick IVP AB Calibration of a profile measuring system
JP2010019714A (ja) * 2008-07-11 2010-01-28 Anritsu Corp 変位測定装置、それを用いたシール部材形状測定装置及びそれらに用いられる変位検出装置
CN101652626A (zh) * 2007-04-05 2010-02-17 株式会社尼康 形状测定装置及形状测定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8826224D0 (en) * 1988-11-09 1988-12-14 Gersan Anstalt Sensing shape of object
US5061062A (en) * 1990-07-02 1991-10-29 General Electric Company Focus spot size controller for a variable depth range camera
JPH09321943A (ja) * 1996-05-27 1997-12-12 Minolta Co Ltd 画像入力装置
US6858826B2 (en) 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
JP4111592B2 (ja) 1998-06-18 2008-07-02 コニカミノルタセンシング株式会社 3次元入力装置
US6441908B1 (en) * 1999-08-06 2002-08-27 Metron Systems, Inc. Profiling of a component having reduced sensitivity to anomalous off-axis reflections
JP2001285701A (ja) * 2000-03-30 2001-10-12 Mitsubishi Electric Corp 車載カメラ装置
US7400414B2 (en) 2005-10-31 2008-07-15 Mitutoyo Corporation Hand-size structured-light three-dimensional metrology imaging system and method
WO2007125081A1 (en) 2006-04-27 2007-11-08 Metris N.V. Optical scanning probe
US7616328B2 (en) * 2006-11-07 2009-11-10 Rudolph Technologies, Inc. Method and system for providing a high definition triangulation system
JP5072336B2 (ja) * 2006-12-07 2012-11-14 株式会社キーエンス 光学式変位センサ及び光学式変位計
US9170097B2 (en) * 2008-04-01 2015-10-27 Perceptron, Inc. Hybrid system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302948A1 (de) * 1983-01-29 1983-07-07 Wolfgang 3400 Göttingen Brunk Beruehrungslose optische abstandsmessung
CN1831483A (zh) * 2005-03-11 2006-09-13 三丰株式会社 光电式编码器
JP2008145160A (ja) * 2006-12-07 2008-06-26 Keyence Corp 光学式変位センサ及びその調整方法
CN101652626A (zh) * 2007-04-05 2010-02-17 株式会社尼康 形状测定装置及形状测定方法
EP2141448A1 (en) * 2008-07-04 2010-01-06 Sick IVP AB Calibration of a profile measuring system
JP2010019714A (ja) * 2008-07-11 2010-01-28 Anritsu Corp 変位測定装置、それを用いたシール部材形状測定装置及びそれらに用いられる変位検出装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034276A (zh) * 2013-03-08 2014-09-10 株式会社三丰 形状测量设备
CN104034276B (zh) * 2013-03-08 2018-08-28 株式会社三丰 形状测量设备
CN104457609A (zh) * 2013-09-18 2015-03-25 株式会社三丰 坐标测量设备
CN104457609B (zh) * 2013-09-18 2021-03-09 株式会社三丰 坐标测量设备
CN107422335A (zh) * 2017-06-26 2017-12-01 苏州优函信息科技有限公司 线光源地形探测沙姆激光雷达
CN113483692A (zh) * 2021-06-23 2021-10-08 苏州中科全象智能科技有限公司 一种孔检测光学系统
CN113483692B (zh) * 2021-06-23 2023-08-29 苏州中科全象智能科技有限公司 一种孔检测光学系统
CN113739714A (zh) * 2021-08-19 2021-12-03 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法
CN113739714B (zh) * 2021-08-19 2023-01-10 成都飞机工业(集团)有限责任公司 一种飞机蒙皮装配间隙双线激光测量装置及方法

Also Published As

Publication number Publication date
EP2515071B1 (en) 2014-09-17
EP2515071A1 (en) 2012-10-24
CN102749039B (zh) 2015-03-25
US20120262726A1 (en) 2012-10-18
US8553234B2 (en) 2013-10-08
JP2012225700A (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
CN102749039A (zh) 形状测量设备
CN102749040A (zh) 形状测量设备
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
US10120163B2 (en) Auto-focus method for a coordinate-measuring apparatus
WO2012083968A1 (en) Motion blur compensation
IL138414A (en) Apparatus and method for optically measuring an object surface contour
JP3055836B2 (ja) レンズメ−タ
JP5074319B2 (ja) 画像計測装置及びコンピュータプログラム
CN113375583A (zh) 光路系统、单目三维图像采集系统及三维应变检测系统
CN107544135B (zh) 具有测距功能的内视镜及测距方法
JPH10311779A (ja) レンズ特性測定装置
JP2009109315A (ja) 光計測装置及び走査光学系
JP2012237613A (ja) 形状計測装置及び形状計測方法
CN107017179A (zh) 具有位置测量装置的x‑y工作台
JP2007183181A (ja) 3次元形状測定装置
JP4683270B2 (ja) レンズメータ
JP2005172610A (ja) 3次元測定装置
JP6287153B2 (ja) センサユニット、形状測定装置、及び構造物製造システム
JP2020180916A (ja) 光学式変位計
JP2007286147A (ja) 赤外顕微鏡
JP2009258135A (ja) 3次元測定装置
CN113892012A (zh) 用于高速测量表面起伏的装置
JPS6034699B2 (ja) 硬さ試験機
JP5350082B2 (ja) 形状測定装置の精度判別装置
JP2019012006A (ja) 光学測定装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant