CN102728398B - 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法 - Google Patents

一种有序介孔非贵金属-氮-石墨化碳材料的制备方法 Download PDF

Info

Publication number
CN102728398B
CN102728398B CN2012102004027A CN201210200402A CN102728398B CN 102728398 B CN102728398 B CN 102728398B CN 2012102004027 A CN2012102004027 A CN 2012102004027A CN 201210200402 A CN201210200402 A CN 201210200402A CN 102728398 B CN102728398 B CN 102728398B
Authority
CN
China
Prior art keywords
packing material
nitrogen
metal
phen
graphitized carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012102004027A
Other languages
English (en)
Other versions
CN102728398A (zh
Inventor
单永奎
孔莹莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN2012102004027A priority Critical patent/CN102728398B/zh
Publication of CN102728398A publication Critical patent/CN102728398A/zh
Application granted granted Critical
Publication of CN102728398B publication Critical patent/CN102728398B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种有序介孔金属-氮-石墨化碳材料的制备方法,该方法以介孔氧化硅SBA-15为硬模板,小分子化合物邻菲罗啉和金属醋酸盐为前驱物,通过高温焙烧纳米浇筑硬模板制备有序介孔非贵金属-氮-石墨化碳材料。本发明所得材料总体具有高氮密度和较高金属含量的同时保持较高的比表面积和良好的分散性。其所得材料与传统燃料电池阴极材料相比,催化性能好,成本低,稳定性好,避免了直接甲醇燃料电池的交叉效应,有良好的商业前景。

Description

一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
技术领域
本发明涉及介孔材料合成技术和燃料电池电催化剂领域,具体地说是一种小有机分子和简单金属醋酸盐为前驱物,介孔氧化硅为硬模板,高温焙烧纳米浇筑制备有序介孔非贵金属-氮-石墨化碳材料方法。
背景技术
为了解决经济发展与能源短缺及环境污染之间日益加剧的矛盾,发展清洁、高效、可持续发展的新能源动力技术已成为十分紧迫的任务。燃料电池就是这样一种在21世纪最有竞争力的全新的高效、清洁发电方式。质子交换膜燃料电池是其中一种低碳、环保及在便携式电源、汽车等交通工具动力或分散型电站方面均有广泛应用前景的新能源动力。
目前,碳载铂及铂合金催化剂是性能最好、使用最广泛的低温燃料电池氧还原催化剂,但Pt基电催化剂,资源稀缺、价格高昂,成为低温燃料电池中的主要成本来源(约为56%)。为降低电催化剂成本,普遍采用的途径有两种,一种是通过调控Pt金属的结构形貌,与廉价过渡金属形成合金或沉积Pt于不同载体以增加Pt的单位体积活性,降低Pt的使用量。显然,仅减少Pt的使用量不是解决这一问题的根本途径。另一种是开发非贵金属催化剂。多年来各国研究者一直努力寻找廉价的非贵金属催化剂以取代目前使用的Pt基电催化剂。因此,开发低价、高效的非贵金属氧还原催化剂已成为低温燃料电池发展的迫切任务。
金属-氮-碳材料被认为是目前最具应用前景的非贵金属电催化剂。大量研究表明,金属-氮-碳的催化活性与材料本身的比表面积和氮种类和密度直接相关,金属种类和含量也对促进含氮活性位的生成有重要作用。当前金属-氮-碳材料最常用的制备方法是将前驱物负载在碳黑、氧化物或活性炭等高比表面积载体上然后进行热解的负载热分解方法。这种方法的优点是可使制备的金属-氮-碳材料分散在高比表面载体上,克服直接热解前驱物制备金属-氮-碳材料比表面积小的缺点。然而,载体的存在不可避免地使金属-氮-碳物质局限于材料表面,限制具有催化活性金属-氮-碳材料的负载量,减少材料总体氮密度,降低金属的最佳使用量(最佳量一般仅有2-5%);而且多种前驱物的不均匀负载可能直接导致生成活性位数量的减少,金属-氮-碳沉积分散不均匀也将间接造成可接近活性位的减少。这些因素可能严重影响负载热分解制备金属-氮-碳材料的活性位数量和材料的总体催化活性。因此克服负载热解制备方法中存在的这些问题,将极有可能成为获得更高催化活性非贵金属电催化剂的有效途径。 
“造孔”是提高材料催化活性的常用方法。通过直接制备多孔性金属-氮-碳材料,有可能克服负载热解制备金属-氮-碳时存在的一些缺点,使材料总体具有高氮密度和较高金属含量的同时保持较高的比表面积和良好的分散性,成为制备提高金属-氮-碳材料电催化活性的新途径。
发明内容
本发明的目的是针对现有技术的不足而提供的一种高效、经济、具有对氧还原电催化活性高和稳定性好的催化材料即有序介孔非贵金属-氮-石墨化碳材料;该材料对燃料电池的阴极氧还原呈现了优越的催化活性、催化稳定性和耐甲醇特性,具有潜在的商业应用前景。
实现本发明目的的具体技术方案是:
一种有序介孔非贵金属-氮-石墨化材料的制备方法,特点是该方法以介孔氧化硅SBA-15为硬模板,小分子化合物邻菲罗啉和金属醋酸盐为前驱物,通过高温焙烧纳米浇筑硬模板制备有序介孔非贵金属-氮-石墨化碳材料,具体包括以下步骤:
a、填充材料的合成
将邻菲罗啉加入到乙醇中,在搅拌下加入金属醋酸盐,搅拌溶解后,加入介孔氧化硅SBA-15,室温下持续搅拌至干;然后,在60℃下恒温干燥,得金属络合物填入SBA-15介孔孔道填充材料;其中:邻菲罗啉与乙醇的质量比为0.001~0.1:1;邻菲罗啉与金属离子的物质量之比为1:0.5~4;邻菲罗啉与介孔氧化硅SBA-15的质量比为5~0.1:1;
b、填充材料的高温焙烧
将所得填充材料置于石英管中,在500~1000℃下及40ml/min纯氮气氛围中加热,保持2~6个小时使填充材料碳化,得到黑色粉末;
c、去除介孔氧化硅模板
将所得黑色粉末用过量的25%的氢氟酸溶液搅拌5~30h,用去离子水洗涤,干燥,得到所述有序介孔非贵金属-氮-石墨化碳材料。
所述金属醋酸盐为醋酸钴、醋酸铜、醋酸亚铁、醋酸锌或醋酸锰。
本发明与现有技术相比,具有以下显著优点:
⑴、本发明制备的材料与传统的碳载铂及铂合金催化剂相比,原料经济易得。
⑵、本发明制备的材料总体具有高氮密度和较高金属含量的同时保持较高的比表面积和良好的分散性。
⑶、邻菲罗啉具有类石墨结构,有利于得到导电性良好的石墨化碳和有利于氮进入石墨骨架。
⑷、本发明制备的材料在燃料电池氧电催化还原过程中有很好的催化活性、优越的催化稳定性和耐甲醇特性。
本发明所得材料若应用于直接甲醇燃料电池,对氧还原有选择性,避免了氧化甲醇而产生的交叉效应。把等量的Pt-C材料,非贵金属-氮-碳材料做催化剂,负载到玻碳工作电极上,分别以0.1M KOH溶液,0.1M KOH+3M CH3OH作电解液,测试其循环伏安曲线。在0.1M KOH溶液中,非贵金属-氮-碳材料对氧还原的电位在-0.2v左右。在0.1M KOH+3M CH3OH溶液中,氧还原电位也在-0.2v左右,且没有出现对甲醇的氧化峰。与裸玻碳电极对氧还原电位在-0.44v相比,其显示了非常高的催化活性和选择性。并且循环测试2500次后,其相应电流和电位均无明显变化,表现了很好的稳定性。
附图说明
图1为本发明流程图;
图2为本发明所得材料不同温度的大角和小角衍射图;其中:图A为大角衍射图;图B为小角衍射图;
图3为本发明所得材料的透射电镜图;
图4为本发明所得材料等温吸附脱附曲线和孔径分布图;其中:图A为等温吸附脱附曲线图;图B孔径分布图;
图5为本发明所得材料电化学循环伏安图;其中:图A为0.1M KOH电解液中,裸玻碳电极的循环伏安曲线图;图B为0.1M KOH电解液中,覆盖非贵金属-氮-碳材料的玻碳电极的循环伏安曲线图;图C为0.1M KOH+3M CH3OH电解液中,覆盖非贵金属-氮-碳材料的玻碳电极的循环伏安曲线图;
图6为本发明所得材料不同扫速下的循环伏安图; 
图7为本发明所得材料0.1M KOH电解液中,覆盖非贵金属-氮-碳材料的玻碳电极的循环2500次之后的伏安曲线图。
具体实施方式
    以下通过实施例对本发明作进一步说明:
实施例1
a、填充材料的合成
5g邻菲罗啉加入60ml乙醇中,在搅拌下加入1.57g乙酸钴,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在500℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c.去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例2
a、填充材料的合成
0.5g邻菲罗啉加入30ml乙醇中,在搅拌下加入0.196g乙酸钴,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在700℃高纯氮气(40ml/min)氛围中加热,保持2个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用30mL的25%的氢氟酸溶液搅拌一定时间20h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例3
a、填充材料的合成
1g邻菲罗啉加入60ml乙醇中,在搅拌下加入1.26g乙酸钴,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
 b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在550℃高纯氮气(40ml/min)氛围中加热,保持5个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用40mL的25%的氢氟酸溶液搅拌24h,用去离子水洗涤,干燥,得到的就是有序介孔非贵金属-氮-石墨化碳材料。
实施例4
a、填充材料的合成
0.1g邻菲罗啉加入60ml乙醇中,在搅拌下加入0.018g乙酸锌,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在1000℃高纯氮气(40ml/min)氛围中加热,保持2个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用30mL的25%的氢氟酸溶液搅拌5h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例5
a、填充材料的合成
2g邻菲罗啉加入60ml乙醇中,在搅拌下加入11g乙酸锌,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在700℃高纯氮气(40ml/min)氛围中加热,保持4个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用40mL的25%的氢氟酸溶液搅拌12h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例6
a、填充材料的合成
1.44g邻菲罗啉加入30ml乙醇中,在搅拌下加入1.86g乙酸锌,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧:
干燥的填充材料放在石英管中,在800℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用60mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例7
a、填充材料的合成
0.6g邻菲罗啉加入60ml乙醇中,在搅拌下加入0.66g乙酸铜,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在800℃高纯氮气(40ml/min)氛围中加热,保持5个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌24h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例8
a、填充材料的合成
1.44g邻菲罗啉加入60ml乙醇中,在搅拌下加入1.97g乙酸铜,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在750℃高纯氮气(40ml/min)氛围中加热,保持3个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用60mL的25%的氢氟酸溶液搅拌12h,用去离子水洗涤,干燥,得到的就是有序介孔非贵金属-氮-石墨化碳材料。
实施例9
a、填充材料的合成
3g邻菲罗啉加入60ml乙醇中,在搅拌下加入4.3g乙酸亚铁,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在1000℃高纯氮气(40ml/min)氛围中加热,保持2个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用60mL的25%的氢氟酸溶液搅拌12h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例10
a、填充材料的合成
0.3g邻菲罗啉加入60ml乙醇中,在搅拌下加入0.04g乙酸亚铁,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在550℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用40mL的25%的氢氟酸溶液搅拌6h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例11
a、填充材料的合成
0.3g邻菲罗啉加入60ml乙醇中,在搅拌下加入0.04g乙酸锰,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在650℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例12
a、0.3g邻菲罗啉加入60ml乙醇中,在搅拌下加入0. 08g乙酸锰,搅拌溶解后,加入1g介孔氧化硅SBA-15;室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在750℃高纯氮气(40ml/min)氛围中加热,保持4个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用40mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例13
a、填充材料的合成
0.3g邻菲罗啉加入40ml乙醇中,在搅拌下加入0.05g乙酸锰和0.05g乙酸铜的混合物,搅拌溶解后,加入1g介孔氧化硅SBA-15。室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在900℃高纯氮气(40ml/min)氛围中加热,保持2个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用40mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例14
a、填充材料的合成
1.56g邻菲罗啉加入60ml乙醇中,在搅拌下加入1.32g乙酸锰,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在800℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例15
a、填充材料的合成
0.6g邻菲罗啉加入50ml乙醇中,在搅拌下加入0.3g乙酸锌和0.3g乙酸亚铁的混合物,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在850℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌20h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例16
a、填充材料的合成
0.6g邻菲罗啉加入60ml乙醇中,在搅拌下加入0.4g乙酸锰和0.4g乙酸亚铁的混合物,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在500℃纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用50mL的25%的氢氟酸溶液搅拌12h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例17
a、填充材料的合成
5g邻菲罗啉加入60ml乙醇中,在搅拌下加入1.57g乙酸钴,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在550℃高纯氮气(40ml/min)氛围中加热,保持6个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用60mL的25%的氢氟酸溶液搅拌10h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。
实施例18
a、填充材料的合成
1.44g邻菲罗啉加入60ml乙醇中,在搅拌下加入1g乙酸钴和1g乙酸亚铁的混合物,搅拌溶解后,加入1g介孔氧化硅SBA-15,室温下持续搅拌至干。然后,在60℃下恒温干燥。
b、填充材料的高温焙烧
干燥的填充材料放在石英管中,在800℃高纯氮气(40ml/min)氛围中加热,保持2个小时,黑色粉末就是碳化的填充材料。
c、去除介孔氧化硅模板
碳化的填充材料用60mL的25%的氢氟酸溶液搅拌6h,用去离子水洗涤,干燥,得到有序介孔非贵金属-氮-石墨化碳材料。

Claims (2)

1.一种有序介孔非贵金属-氮-石墨化材料的制备方法,其特征在于该方法以介孔氧化硅SBA-15为硬模板,小分子化合物邻菲罗啉和金属醋酸盐为前驱物,通过高温焙烧纳米浇筑硬模板制备有序介孔非贵金属-氮-石墨化碳材料,具体包括以下步骤:
a、填充材料的合成
将邻菲罗啉加入到乙醇中,在搅拌下加入金属醋酸盐,搅拌溶解后,加入介孔氧化硅SBA-15,室温下持续搅拌至干;然后,在60℃下恒温干燥,得金属络合物填入SBA-15介孔孔道填充材料;其中:邻菲罗啉与乙醇的质量比为0.001~0.1:1;邻菲罗啉与金属离子的物质量之比为1:0.5~4;邻菲罗啉与介孔氧化硅SBA-15的质量比为5~0.1:1;
b、填充材料的高温焙烧
将所得填充材料置于石英管中,在500~1000℃下及40ml/min纯氮气氛围中加热,保持2~6个小时使填充材料碳化,得到黑色粉末;
c、去除介孔氧化硅模板
将所得黑色粉末用过量的25%的氢氟酸溶液搅拌5~30h,用去离子水洗涤,干燥,得到所述有序介孔非贵金属-氮-石墨化碳材料。
2.根据权利要求1所述的制备方法,其特征在于所述金属醋酸盐为醋酸钴、醋酸铜、醋酸亚铁、醋酸锌或醋酸锰。
CN2012102004027A 2012-06-18 2012-06-18 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法 Expired - Fee Related CN102728398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102004027A CN102728398B (zh) 2012-06-18 2012-06-18 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102004027A CN102728398B (zh) 2012-06-18 2012-06-18 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法

Publications (2)

Publication Number Publication Date
CN102728398A CN102728398A (zh) 2012-10-17
CN102728398B true CN102728398B (zh) 2013-12-25

Family

ID=46985110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102004027A Expired - Fee Related CN102728398B (zh) 2012-06-18 2012-06-18 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法

Country Status (1)

Country Link
CN (1) CN102728398B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252248A (zh) * 2013-04-24 2013-08-21 华东师范大学 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN103316679A (zh) * 2013-07-05 2013-09-25 华东师范大学 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN103566960B (zh) * 2013-10-30 2016-06-08 东华大学 一种燃料电池催化剂及其制备和应用
CN104258892B (zh) * 2014-09-02 2017-04-12 中国科学院上海硅酸盐研究所 N掺杂的介孔/大孔多级孔碳氧还原催化剂材料及其制备方法
CN104269566B (zh) * 2014-09-22 2016-11-30 南开大学 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
CN104399462B (zh) * 2014-10-11 2016-08-24 南京大学 一种铜-石墨纳米复合物及其制备方法和应用
CN104362325A (zh) * 2014-11-21 2015-02-18 湖南文理学院 一种制备碳包覆钛酸锂负极材料的制备方法
CN106391094B (zh) * 2016-08-30 2018-10-30 上海大学 介孔碳-氧化硅负载纳米MoO3与纳米金属颗粒的复合材料的制备方法
KR20180073133A (ko) * 2016-12-22 2018-07-02 현대자동차주식회사 연료전지용 하이브리드 촉매 및 그 제조 방법
CN111744527B (zh) * 2020-06-24 2021-04-20 中国石油大学(华东) 一种基于介孔二氧化硅分子筛的高性能碳基电催化氧还原材料及其制备方法
CN114464823A (zh) * 2022-01-21 2022-05-10 先进能源产业研究院(广州)有限公司 一种氧还原反应催化剂及其制备方法
CN115400749B (zh) * 2022-09-21 2024-03-15 山东大学 一种低温催化分解氮氧化物的单原子锰基催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107147A (zh) * 2010-12-23 2011-06-29 西北师范大学 二氧化钛-碳复合材料及其制备和应用
CN102120186A (zh) * 2010-11-22 2011-07-13 南京大学 在石墨烯上负载铂纳米颗粒的制备方法
CN102302939A (zh) * 2011-07-05 2012-01-04 上海大学 一种无金属氮掺杂石墨化多孔碳基氧还原催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120186A (zh) * 2010-11-22 2011-07-13 南京大学 在石墨烯上负载铂纳米颗粒的制备方法
CN102107147A (zh) * 2010-12-23 2011-06-29 西北师范大学 二氧化钛-碳复合材料及其制备和应用
CN102302939A (zh) * 2011-07-05 2012-01-04 上海大学 一种无金属氮掺杂石墨化多孔碳基氧还原催化剂的制备方法

Also Published As

Publication number Publication date
CN102728398A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN102728398B (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
Yue et al. Surface engineering of hierarchical Ni (OH) 2 nanosheet@ nanowire configuration toward superior urea electrolysis
CN103566961B (zh) 无金属掺杂氮功能化介孔碳催化剂及其制备和应用
CN110752380A (zh) 一种ZIF-8衍生的中空Fe/Cu-N-C型氧还原催化剂及其制备方法和应用
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN112234213B (zh) 一种过渡金属及硫氮共掺杂的大孔碳电催化剂的制备方法与应用
CN105680060A (zh) 一种氮、硫或氯掺杂三维多孔石墨烯催化剂的制备及应用
CN108336374B (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN104624190A (zh) 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN111799477A (zh) 一种负载钴的多孔碳复合石墨烯电催化剂的制备方法与应用
CN108923050A (zh) 一种高催化性能的核壳碳纳米结构电催化剂及其制备方法
CN106345501A (zh) 一种基于磁性离子液体修饰碳纳米管复合材料制备磷化铁的方法及其产品和应用
CN103316679A (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN106410214A (zh) 一种高比表面积的NiS2催化剂的制备方法
CN105449230A (zh) 一种LaCoO3/N-rGO复合物及其制备和应用方法
CN106744790A (zh) 一种生物碳电极材料及其制备方法
CN113201759B (zh) 一种三维多孔碳支撑的硫化铋/氧化铋复合催化剂及其制备方法和应用
CN112820886B (zh) 一种三维分级多孔非金属碳基材料及其制备方法和应用
CN103252248A (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN102810678A (zh) 一种直接甲醇燃料电池催化剂及其制备方法
CN103007958A (zh) 一种膨胀石墨载铂-钴催化剂及其应用
CN110265670B (zh) 一种主客体策略合成氮、其他杂原子双掺碳基双效催化剂的方法
CN108565469A (zh) 一种钴-氮掺杂碳复合材料及其制备方法
CN107892301A (zh) 一种磷掺杂介孔碳材料及其微波制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131225

Termination date: 20160618

CF01 Termination of patent right due to non-payment of annual fee