CN102709385B - Production method for full back electrode solar cells - Google Patents

Production method for full back electrode solar cells Download PDF

Info

Publication number
CN102709385B
CN102709385B CN 201210141633 CN201210141633A CN102709385B CN 102709385 B CN102709385 B CN 102709385B CN 201210141633 CN201210141633 CN 201210141633 CN 201210141633 A CN201210141633 A CN 201210141633A CN 102709385 B CN102709385 B CN 102709385B
Authority
CN
China
Prior art keywords
layer
step
texturing
producing
back
Prior art date
Application number
CN 201210141633
Other languages
Chinese (zh)
Other versions
CN102709385A (en
Inventor
张学玲
Original Assignee
常州天合光能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州天合光能有限公司 filed Critical 常州天合光能有限公司
Priority to CN 201210141633 priority Critical patent/CN102709385B/en
Publication of CN102709385A publication Critical patent/CN102709385A/en
Application granted granted Critical
Publication of CN102709385B publication Critical patent/CN102709385B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明涉及一种全背电极太阳能电池的生产方法,具有如下步骤:1.单面硼扩散,在N型硅片背面形成P+层;2.在P+层上沉积制绒掩膜层;3.单面制绒;4.磷扩散在硅片受光面制备前表面场;5.去掉制绒掩膜层及PSG;6.热氧化生长SiO2掩膜层;7.在硅片背面的背面场区域进行开槽,槽深H要大于等于PN结结深+背面场的深度;8.在开槽区域底部印刷高度小于槽深H减去PN结深的含磷的掺杂剂;9.高温扩散,在槽底部形成N+层;10.去掉PSG及SiO2掩膜层;11.正反面制作钝化膜;12.丝网印刷金属电极;13.烧结。 The present invention relates to a method for producing an all back contact solar having the steps of: single-sided diffusion of boron, the P + layer is formed in the N-type wafer backside; 2 texturing deposition mask layer on the P + layer; 3. one surface texturing; 4. phosphorus diffusion in silicon wafer front surface field receiving surface preparation; 5 removing the mask layer and the texturing PSG;. 6 thermally grown SiO2 mask layer;. 7 back surface field region at the back surface of the silicon wafer grooving, the groove depth H is greater than + junction depth equal to the depth of the PN junction of the back surface field; 8 in the slot area of ​​the bottom print height is less than the groove depth H is subtracted PN junction depth of the dopant phosphorous; 9 high temperature diffusion. , N + layer is formed at the bottom of the tank; the SiO2 mask 10 is removed and the PSG layer;.. a passivation film 11 sides;. metal screen printed electrode 12; 13 sintered. 本发明的有益效果是:利用P+与N+区域的高度差就是基体N区域,大大提升了电池效率且降低了生产成本,适合规模化生产。 Advantageous effects of the present invention are: the use of P + and N + is the difference between the height of the base region of the N region, greatly enhance the efficiency and reduce battery production costs, suitable for large-scale production.

Description

全背电极太阳能电池的生产方法 Full back electrode of the solar cell production process

技术领域 FIELD

[0001] 本发明涉及一种全背电极太阳能电池的生产方法。 [0001] The present invention relates to a method for producing an all back contact solar cell.

背景技术 Background technique

[0002] 美国SunPower公司推出的全背电极电池,采用N型娃片,将电极全部设计在电池背面,以最大限度地提升电池正面的吸光面积,其量产的转换效率已经达到约23%,实验室最高效率达到24.2%,但是SunPower的电池制备工艺步骤复杂,成本高,一直成为大规模量产推广的瓶颈。 [0002] US SunPower Corporation launched a full back electrode cell, N-type baby sheet, the electrodes all the design on the back of the battery, the light absorbing area to maximize battery positive, the mass production efficiency has reached approximately 23%, highest laboratory efficiency reached 24.2%, but SunPower cell preparation step is complicated and costly, it has become a bottleneck for mass production promotion.

发明内容 SUMMARY

[0003] 本发明所要解决的技术问题是:提供一种全背电极太阳能电池的生产方法,简化工艺步骤,降低生产成本。 [0003] The present invention solves the technical problem are: to provide a method of producing a full back electrode of the solar cell, to simplify the process steps and reduce the production cost.

[0004] 本发明解决其技术问题所采用的技术方案是:一种全背电极太阳能电池的生产方法,具有如下步骤: [0004] aspect of the present invention to solve the technical problem is: A method for producing a full back electrode of the solar cell, comprising the following steps:

[0005] 1.单面硼扩散,在N型硅片背面形成P+层; [0005] 1. one surface diffusion of boron, the P + layer is formed in the N-type silicon wafer back surface;

[0006] 2.在背面的P+层上沉积制绒掩膜层; [0006] 2. Deposition texturing mask layer on the back surface of the P + layer;

[0007] 3.单面制绒; [0007] 3. Simplex texturing;

[0008] 4.磷扩散在硅片受光面制备前表面场; [0008] 4. The light receiving surface of the silicon wafer phosphorus diffusion front surface field prepared;

[0009] 5.去掉制绒掩膜层及PSG ; [0009] 5. Remove the texturing and the PSG mask layer;

[0010] 6.热氧化生长Si02掩膜层; [0010] 6. A thermally grown Si02 mask layer;

[0011] 7.在硅片背面的背面场区域进行开槽,槽深H要大于等于PN结结深+背面场的深度; [0011] 7. notching back surface field region at the back surface of the wafer, the groove depth H is greater than a junction depth equal to the depth of PN junction + back surface field;

[0012] 8.在开槽区域底部印刷高度小于槽深H减去PN结深的含磷的掺杂剂; [0012] 8. dopant slotted zone is less than the groove depth of the bottom of the print height H minus the depth of the PN junction of phosphorous;

[0013] 9.高温扩散,在槽底部形成N+层; [0013] 9. A high temperature diffusion, the N + layer is formed at the bottom of the groove;

[0014] 10.去掉PSG及Si02掩膜层; [0014] 10. The PSG and Si02 mask layer is removed;

[0015] 11.正反面制作钝化膜; [0015] 11. The front and back of a passivation film;

[0016] 12.丝网印刷金属电极; [0016] 12. The screen-printing a metal electrode;

[0017] 13.烧结。 [0017] 13. A sintered.

[0018] 进一步限定,步骤I中,通过将两片面对面硅片叠放在一起,实现单面硼扩散,方块电阻为10-100ohm/Sq。 [0018] is further defined, in step I, by stacking together two wafers face to face, one side to achieve a boron diffusion sheet resistance 10-100ohm / Sq.

[0019] 进一步限定,步骤2中,制绒掩膜层为SiNx或Si02,制绒掩膜层厚度为20_300nm。 [0019] is further defined, in step 2, the texturing is SiNx or Si02 mask layer, the mask layer having a thickness of textured 20_300nm.

[0020] 进一步限定,步骤4中,磷扩散在硅片受光面制备前表面场,方块电阻为30_200ohm/Sq。 [0020] is further defined, in step 4, the diffusion of phosphorus in the wafer front surface field receiving surface preparation, sheet resistance 30_200ohm / Sq.

[0021 ] 进一步限定,步骤6中,热氧化生长Si02掩膜层,厚度为30_300nm,同时将P+层表面浓度进一步降低,结深进一步变深。 [0021] is further defined, in step 6, the mask layer thermally grown Si02, having a thickness of 30_300nm, and will further reduce the surface concentration of the P + layer, deep junction depth is further increased.

[0022] 进一步限定,步骤7中,用激光对背面场区域进行开槽,并用刻蚀液对开槽区域进行刻蚀,形成槽深H。 [0022] is further defined, in step 7, a back surface field region by laser grooving, and etched with an etching solution of the slotted zone, formed groove depth H.

[0023] 进一步限定,步骤7中,用KOH刻蚀液对开槽区域进行刻蚀。 [0023] is further defined, in step 7, the slotted zone is etched with KOH etchant.

[0024] 进一步限定,步骤8中,在刻蚀区域底部丝网印刷或喷墨打印印刷掺杂剂。 [0024] is further defined, in step 8, the etching area at the bottom of screen printing or ink jet printing printing dopant.

[0025] 本发明的有益效果是:利用P+与N+区域的高度差形成基体N区域,大大提升了电池效率且降低了生产成本,适合规模化生产。 [0025] Advantageous effects of the present invention are: the use of P + and N + region formed in the level difference N base region, greatly enhance the efficiency and reduce battery production costs, suitable for large-scale production.

附图说明 BRIEF DESCRIPTION

[0026] 下面结合附图和实施例对本发明进一步说明。 Figures and examples further illustrate the present invention [0026] The following binding.

[0027] 图1是本发明的步骤I的结构示意图; [0027] FIG. 1 is a schematic view of the step I of the present invention;

[0028] 图2是本发明的步骤2的结构示意图; [0028] FIG. 2 is a structural diagram of the step 2 of the present invention;

[0029] 图3是本发明的步骤3的结构示意图; [0029] FIG. 3 is a structural diagram of the step 3 of the present invention;

[0030] 图4是本发明的步骤4的结构示意图; [0030] FIG. 4 is a structural schematic view of the step 4 of the invention;

[0031] 图5是本发明的步骤5的结构示意图; [0031] FIG. 5 is a schematic structural diagram of the present invention, step 5;

[0032] 图6是本发明的步骤6的结构示意图; [0032] FIG. 6 is a structural diagram of the present invention, step 6;

[0033] 图7是本发明的步骤7的结构示意图; [0033] FIG. 7 is a schematic structural diagram of a seventh step of the present invention;

[0034] 图8是本发明的步骤8的结构示意图; [0034] FIG. 8 is a structural diagram of the present invention, the step 8;

[0035] 图9是本发明的步骤9的结构示意图; [0035] FIG. 9 is a schematic structural diagram of the present invention, the step 9;

[0036] 图10是本发明的步骤10的结构示意图; [0036] FIG. 10 is a structural diagram of step 10 of the present invention;

[0037] 图11是本发明的步骤11的结构示意图; [0037] FIG. 11 is a schematic structural diagram of step 11 of the present invention;

[0038] 图12是本发明的步骤12的结构示意图; [0038] FIG. 12 is a schematic structural diagram of step 12 of the present invention;

[0039] 图13是本发明的步骤13的结构示意图; [0039] FIG. 13 is a structural diagram of step 13 of the present invention;

[0040] 图14是本发明的步骤14的结构示意图; [0040] FIG. 14 is a structural diagram of step 14 of the present invention;

[0041] 图中,1.硅片,2.P+层,3.制绒掩膜层,4.前表面场,5.Si02掩膜层,6.N+层,7.钝化膜,8.金属电极,9.掺杂剂。 [0041] FIG, 1. Silicon, 2.P + layer 3. Texturing mask layer 4 front surface field, 5.Si02 mask layer, 6.N + layer, 7 passivation film 8. a metal electrode 9. dopants.

具体实施方式 Detailed ways

[0042] 如图1至14所示,一种全背电极太阳能电池的生产方法,具有如下步骤: [0042] As shown in FIG 1 to 14, producing a fully back electrode of the solar cell, comprising the following steps:

[0043] 1.硅片I抛光,腐蚀厚度为2-10um ; [0043] I 1. The silicon wafer polishing, etching thickness 2-10um;

[0044] 2.硅片I面对面进行单面硼扩散,在硅片I背面形成用于构成PN结的P+层2,方块电阻为10-100ohm/Sq ; [0044] 2. The silicon single-sided I face boron diffusion, the silicon wafer back surface I is formed for constituting a PN junction of the P + layer 2, the sheet resistance 10-100ohm / Sq;

[0045] 3.在背面的P+层2上沉积SiNx或Si02或其他制绒掩膜层3,制绒掩膜层3厚度为20-300nm,可以阻挡下一步制绒液对P+层2的腐蚀,不会破坏PN结; [0045] 3. The deposition of Si02 or SiNx, or other texturing mask layer on the back surface of the P + layer 23, the thickness of the mask layer 3 texturing 20-300 nm, can stop the etching solution for texturing the next P + layer 2 , will not damage the PN junction;

[0046] 4.单面制绒,制绒腐蚀层厚度为2_15um ; [0046] 4. The single-sided textured, a texturing layer thickness of the corrosion 2_15um;

[0047] 5.磷扩散制备前表面场4,方块电阻为30-200ohm/Sq ; [0047] The preparation of the phosphorus diffusion front surface field 4, sheet resistance 30-200ohm / Sq;

[0048] 6.去掉SiNx或Si02或其他制绒掩膜层3及PSG (硅磷玻璃); [0048] 6. removed Si02 or SiNx, or other textured mask layer 3 and the PSG (phosphorous silicon glass);

[0049] 7.热氧化生长Si02掩膜层5,厚度为30_300nm,同时将P+层2表面浓度进一步降低,结深进一步变深; [0049] 7. A thermally grown Si02 mask layer 5, a thickness of 30_300nm, while the surface concentration of the P + layer 2 is further reduced, to further deepen the junction depth;

[0050] 8.用激光对背面场区域进行开槽; [0050] 8. The notching of the back surface field regions by a laser;

[0051] 9.用KOH或其他刻蚀方式对开槽区域进行刻蚀,刻蚀深度要大于等于PN结结深+背面场的深度,优选至少4um,此高度差也就是介于P+与N+之间的基体N区域; [0051] 9. The etching performed with KOH or other etching methods on slotted zone, the etching depth is greater than or equal to + junction depth of the PN junction depth of field of the back surface, preferably at least 4um, this height difference is between P + and N + between the N base region;

[0052] 10.在刻蚀槽内丝网印刷或喷墨打印或其他方式印刷高度小于刻蚀槽深减去PN结深的含磷的掺杂剂9,在下一步高温扩散时就只在槽的底部形成磷扩散层,槽壁部分仍是基体,相当于P+和N+之间的基体N区域,这样可以避免反复生长掩膜层形成P+与N+区之间的基体N区域,大大降低成本; [0052] 10. The etching bath screen printing or inkjet printing or otherwise printed by subtracting a height less than the groove depth etched deeper PN junction phosphorous dopants 9, the next step in the high temperature diffusion on grooves only forming a bottom phosphorus diffusion layer, a groove wall portion is still matrix, corresponding to P + and the base N region between + N, to avoid repeating a growth mask layer P + and N + substrate N region between zones, greatly reducing the cost;

[0053] 11.高温扩散,在刻蚀槽内形成η+层6 ; [0053] 11. A high temperature diffusion, η + layer 6 is formed in an etching bath;

[0054] 12.去掉PSG及Si02掩膜层5 ; [0054] 12. remove the PSG mask layer 5 and Si02;

[0055] 13.正反面沉积或热氧化生长钝化膜7,背面的钝化膜7为Al2O3和SiNx的叠成钝化膜; [0055] 13. The positive and negative thermal oxide growth or deposition of the passivation film 7, the back surface of the passivation film 7 of SiNx and Al2O3 passivation film is folded;

[0056] 14.丝网印刷金属电极8并烧结。 [0056] 14. A screen printing and sintering the metal electrodes 8.

Claims (7)

1.一种全背电极太阳能电池的生产方法,其特征是:具有如下步骤: 1.单面硼扩散,在N型硅片⑴背面形成P+层(2); A method of producing a full back electrode of the solar cell, which is characterized in: comprising the following steps: 1. sided boron diffusion, the N-type silicon wafer back surface ⑴ a P + layer (2);
2.在背面的P+层(2)上沉积制绒掩膜层(3); 2. texturing the P + layer mask layer is deposited on the back surface (2) (3);
3.单面制绒; 3. Simplex texturing;
4.磷扩散在硅片(I)受光面制备前表面场(4); 4. phosphorus diffusion in silicon wafer (I) prepared by the front surface field surface (4);
5.去掉制绒掩膜层(3)及PSG ; 5. Remove the texturing mask layer (3) and the PSG;
6.热氧化生长S12掩膜层(5); 6. The thermal oxide growth S12 masking layer (5);
7.在硅片(I)背面的背面场区域进行开槽,槽深H要大于等于PN结结深+背面场的深度; 8.在开槽区域底部印刷高度小于槽深H减去PN结深的含磷的掺杂剂(9); 9.高温扩散,在槽底部形成N+层(6); 10.去掉PSG及S12掩膜层(5); 11.正反面制作钝化膜(7); 12.丝网印刷金属电极⑶; 13.烧结; 步骤7中,用激光对背面场区域进行开槽,并用刻蚀液对开槽区域进行刻蚀,形成槽深H0 2.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤I中,通过将两片面对面硅片(I)叠放在一起,实现单面硼扩散,方块电阻为lO-lOOohm/Sq。 7. grooving silicon in (I) of the back surface of the back surface field region, the groove depth H is greater than + junction depth equal to the depth of the PN junction of the back surface field; 8. subtracting a height less than the groove depth H in the PN junction region of the bottom grooved printing deep phosphorous dopant (9); 9. a high temperature diffusion, the N + layer (6) at the bottom of the groove; 10. S12 and removing the PSG mask layer (5); a passivation film 11. the front and back surfaces (7 ); 12. the screen printed metal electrode ⑶; 13. sintering; in step 7, the back surface field region is notched with a laser, and etched with an etching solution of the slotted zone, the groove depth is formed according to claim H0 2. the method of producing the whole of the back electrode of the solar cell 1, characterized in that: in step I, the two wafers face (I) by stacking together to achieve one surface boron diffusion, sheet resistance lO-lOOohm / Sq . 3.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤2中,制绒掩膜层(3)为SiNx或S12,制绒掩膜层(3)厚度为20-300nm。 3. The method of producing the whole of the back electrode of the solar cell according to claim 1, characterized in that: in Step 2, the texturing mask layer (3) is a SiNx or S12, the texturing mask layer (3) having a thickness of 20 -300nm. 4.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤4中,磷扩散在娃片(I)受光面制备前表面场(4),方块电阻为30-200ohm/Sq。 4. The method for producing the whole of the back electrode of the solar cell according to claim 1, wherein: the step 4, the baby phosphorus diffusion sheet (I) was prepared by surface front surface field (4), sheet resistance 30-200ohm / Sq. 5.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤6中,热氧化生长S12掩膜层(5),厚度为30-300nm,同时将P+层(2)表面浓度进一步降低,结深进一步变深。 5. The method of producing the whole of the back electrode of the solar cell according to claim 1, characterized in that: in Step 6, thermal oxide growth S12 masking layer (5), having a thickness of 30-300 nm, while the P + layer (2) to further reduce the surface concentration, the junction depth becomes more deeper. 6.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤7中,用KOH刻蚀液对开槽区域进行刻蚀。 6. A method for producing a full back electrode of the solar cell according to claim 1, wherein: step 7, the slotted zone is etched with KOH etchant. 7.根据权利要求1所述的全背电极太阳能电池的生产方法,其特征是:步骤8中,在刻蚀区域底部丝网印刷或喷墨打印印刷掺杂剂(9)。 7. A method for producing a full back electrode of the solar cell according to claim 1, wherein: the step 8, the etching area at the bottom of screen printing or ink jet printing printing dopant (9).
CN 201210141633 2012-05-08 2012-05-08 Production method for full back electrode solar cells CN102709385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210141633 CN102709385B (en) 2012-05-08 2012-05-08 Production method for full back electrode solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210141633 CN102709385B (en) 2012-05-08 2012-05-08 Production method for full back electrode solar cells

Publications (2)

Publication Number Publication Date
CN102709385A CN102709385A (en) 2012-10-03
CN102709385B true CN102709385B (en) 2015-03-11

Family

ID=46902029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210141633 CN102709385B (en) 2012-05-08 2012-05-08 Production method for full back electrode solar cells

Country Status (1)

Country Link
CN (1) CN102709385B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985780B (en) * 2013-02-08 2016-08-31 上海凯世通半导体股份有限公司 The solar cell manufacturing method
CN104465798A (en) * 2013-09-24 2015-03-25 李岱殷 Solar cell structure and forming method thereof
CN103618025B (en) * 2013-11-06 2016-08-17 电子科技大学 A method of preparing a solar cell of crystalline silicon backjunction
CN105097987B (en) * 2014-05-16 2018-08-24 上海凯世通半导体股份有限公司 Back-contact cell and its manufacturing method and a solar cell module
CN104485390A (en) * 2014-12-24 2015-04-01 常州天合光能有限公司 Production method of all back-contact solar cell
CN105185858B (en) * 2015-08-06 2017-07-11 黄河水电光伏产业技术有限公司 Back-contact solar cell and its preparation method based on p-type silicon substrate
CN106252449B (en) * 2016-08-26 2017-09-26 泰州中来光电科技有限公司 Locally doping the front surface field and back-contact cell preparation and assembly, the system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088159A (en) * 2004-09-07 2007-12-12 日出能源公司 Process and fabrication methods for emitter wrap through back contact solar cells
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
CN102208493A (en) * 2011-05-20 2011-10-05 上海采日光伏技术有限公司 Manufacturing method of full back electrode solar cell
CN202134564U (en) * 2011-06-07 2012-02-01 合肥海润光伏科技有限公司 Novel N-type silicon heterojunction battery with IBC structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
CN101088159A (en) * 2004-09-07 2007-12-12 日出能源公司 Process and fabrication methods for emitter wrap through back contact solar cells
CN102208493A (en) * 2011-05-20 2011-10-05 上海采日光伏技术有限公司 Manufacturing method of full back electrode solar cell
CN202134564U (en) * 2011-06-07 2012-02-01 合肥海润光伏科技有限公司 Novel N-type silicon heterojunction battery with IBC structure

Also Published As

Publication number Publication date
CN102709385A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US9054237B2 (en) Interdigitated back contact silicon solar cells fabrication using diffusion barriers
JP5019397B2 (en) Solar cell and a method for manufacturing the same
JP5226255B2 (en) Method of manufacturing a solar cell
EP2471109B1 (en) Solar cell and method for manufacturing such a solar cell
JP4657068B2 (en) Method of manufacturing a back junction solar cell
JP2008010746A (en) Solar battery and method for manufacture thereof
CN101764179A (en) Manufacture method of selective front surface field N-type solar cell
JP2012525702A (en) Sided solar cell having overlaid backside grid
CN102208486B (en) Preparation method of MWT (Metal Wrap Through) solar cell
JP5379767B2 (en) Solar cell and a method of manufacturing the same
CN101681952B (en) Method for the production of a solar cell and solar cell produced using said method
CN101540350B (en) Process for preparing back point-contact crystalline-silicon solar cells
CN101777603A (en) Method for manufacturing back contact solar energy batteries
Cao et al. Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency
CN101800266B (en) Preparation method of selective emitting electrode crystal silicon solar battery
WO2010126038A1 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
WO2016112757A1 (en) N-type double-sided battery and manufacturing method therefor
CN103026494A (en) Silicon solar cell having boron diffusion layer and method for manufacturing same
Dullweber et al. Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept—A review
CN102169923A (en) Method for passivating P-type doping layer of N-type silicon solar cell and cell structure
KR20130112877A (en) Method for producing a solar cell having a textured front face and corresponding solar cell
CN102110743B (en) Method for manufacturing selective emitter solar cell from local laser melting phosphorosilicate glass
CN101599514A (en) Textured mono-crystalline silicon solar battery, preparation method and preparation system thereof
CN104350607B (en) Solar cell and a method for producing
JP2007103572A (en) Method of forming embedded electrode of solar battery, and manufacturing method of solar battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CP01