CN102709230A - 一种形成半导体通孔的方法 - Google Patents

一种形成半导体通孔的方法 Download PDF

Info

Publication number
CN102709230A
CN102709230A CN2012101588350A CN201210158835A CN102709230A CN 102709230 A CN102709230 A CN 102709230A CN 2012101588350 A CN2012101588350 A CN 2012101588350A CN 201210158835 A CN201210158835 A CN 201210158835A CN 102709230 A CN102709230 A CN 102709230A
Authority
CN
China
Prior art keywords
hole
critical size
hard mask
process requirements
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101588350A
Other languages
English (en)
Other versions
CN102709230B (zh
Inventor
周军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201210158835.0A priority Critical patent/CN102709230B/zh
Publication of CN102709230A publication Critical patent/CN102709230A/zh
Priority to US13/707,485 priority patent/US20130316470A1/en
Application granted granted Critical
Publication of CN102709230B publication Critical patent/CN102709230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明涉及半导体集成电路的制造领域,尤其涉及一种形成半导体通孔的方法。本发明提出一种形成半导体通孔的方法,通过量测对比硬掩膜上对应通孔位置的关键尺寸与工艺需求的关键尺寸大小,并根据该量测结果采用保型沉积硬掩膜或刻蚀工艺来调整硬掩膜上对应通孔位置的关键尺寸,以使其符合工艺需求,不仅降低了工艺成本,还提高了生产能力。

Description

一种形成半导体通孔的方法
技术领域
本发明涉及半导体集成电路的制造领域,尤其涉及一种形成半导体通孔的方法。
背景技术
在现今的半导体工艺中,一个集成电路(integrated circuit,简称IC)往往包括了上百万个电子器件,而随着工艺的发展以及不断提升的应用要求,集成电路正在向微细化、多层化、平坦化和薄型化发展,尤其在超大规模的集成电路中,仅仅几毫米见方的硅片上往往集成了上万甚至百万个晶体管。
在超大规模集成电路中,其主要器件是金属-氧化物-半导体场效应晶体管(metal oxide semiconductor field effect transistor,简称MOS晶体管)。自从MOS晶体管被发明应用以来,其几何尺寸一直在不断缩小,目前其特征尺寸已进入22nm范围。在此尺寸下,各种实际的和基本的限制及技术挑战开始出现,如3D硅通孔封装技术,其透过以垂直导通来整合晶圆堆栈的方式,以达到芯片间的电气互连,该技术让元件整合的方式进入到利用穿孔信道的区域数组式互连(Area-array-like Interconnects)的新阶段,让不同的芯片或晶圆能够堆栈在一起,实现更快的速度、更少的噪声和更强的功能,这将促使电子产品能实现创新性的应用。
而随着器件尺寸的进一步缩小,其制造工艺要求也经受着重大挑战。其中,在MOS晶体管器件和电路制备中,随着器件尺寸缩小,如何在衬底上形成更小的通孔以进行各个电路以及各层电路之间的连接不断冲击着现有半导体制备技术。
在常规技术中,人们一直以来都是采用紫外(UV)曝光机光刻将图案转移到硬掩膜上,然后通过对硬掩膜的刻蚀来得到一定内径的通孔。但是随着器件尺寸的缩小,常规紫外曝光机已无法满足现在极小直径的通孔的硬掩膜图像的精确要求,直接进行光刻和一步刻蚀来得到所需要内径的通孔越来越困难,而能满足工艺需求的极紫外(EUV)曝光机价格却又及其昂贵,大大增加了半导体制备工艺的投入,造成制造商生产成本的不断增加。
采用原子层沉积工艺(Atomic layer deposition,简称ALD)形成新增的硬掩膜层也能满足工艺需求,但其成本非常高且生产能力则相对很低,而且原子层沉积工艺为非常新的技术,需要购置新的机台,进一步的增加了生产成本。
发明内容
本发明公开了一种形成半导体通孔的方法,其中,包括以下步骤: 
步骤S1:在一硅衬底的上表面上制备一与通孔对应的图形化硬掩膜,量测通孔对应位置图形化硬掩膜上的关键尺寸;若所述关键尺寸大于工艺需求关键尺寸,则进行步骤S2;若所述关键尺寸小于于工艺需求关键尺寸,则进行步骤S4;若所述关键尺寸等于工艺需求关键尺寸,则进行步骤S5;
步骤S2:沉积硬掩膜薄膜保型覆盖所述底层图形化硬掩膜;
步骤S3:量测通孔对应位置硬掩膜上的关键尺寸;若所述关键尺寸大于工艺需求,则重复步骤S2;若所述关键尺寸小于工艺需求的关键尺寸,则进行步骤S4;若所述关键尺寸等于工艺需求的关键尺寸,则进行步骤S5;
步骤S4:采用刻蚀工艺刻蚀去除多余的硬掩膜,使得通孔图形的关键尺寸等于工艺需求的关键尺寸;
步骤S5:以具有符合工艺需求关键尺寸通孔图形的硬掩膜为掩膜,刻蚀硅衬底,形成通孔后,去除剩余的硬掩膜。
上述的形成半导体通孔的方法,其中,采用化学沉积工艺进行所述步骤S2中硬掩膜薄膜的沉积。
上述的形成半导体通孔的方法,其中,采用SiCoNi刻蚀工艺进行所述步骤S4中的刻蚀。
上述的形成半导体通孔的方法,其中,采用干法刻蚀工艺进行步骤S5中通孔的刻蚀。
上述的形成半导体通孔的方法,其中,采用湿法刻蚀工艺去除所述步骤S5中剩余的硬掩膜。
上述的形成半导体通孔的方法,其中,形成的所述通孔的直径为1-100nm。
上述的形成半导体通孔的方法,其中,所述通孔的深度为1-1000nm。
综上所述,由于采用了上述技术方案,本发明提出一种形成半导体通孔的方法,通过量测对比硬掩膜上对应通孔位置的关键尺寸与工艺需求的关键尺寸大小,并根据该量测结果采用保型沉积硬掩膜或刻蚀工艺来调整硬掩膜上对应通孔位置的关键尺寸,以使其符合工艺需求,不仅降低了工艺成本,还提高了生产能力。
附图说明
图1是本发明形成半导体通孔的方法流程示意图;
图2-6是本发明形成半导体通孔的方法的流程结构示意图。
具体实施方式  
下面结合附图对本发明的具体实施方式作进一步的说明:
图1是本发明形成半导体通孔的方法流程示意图;
图2-6是本发明形成半导体通孔的方法的流程结构示意图。
如图1-6所示,在MOS半导体制造工艺中,一种形成半导体通孔的方法,包括以下步骤:
首先,如图2所示,制备与通孔位置对于的图形化硬掩膜2覆盖硅衬底1的上表面,并量测该图形化硬掩膜2上对应通孔位置的关键尺寸(critical dimension,简称CD)的值m,并将m与工艺需求的关键尺寸的值D进行对比,若m=D,则以该图形化硬掩膜2为掩膜采用干法刻蚀工艺刻蚀硅衬底1形成直径为1-100nm、深度为1-1000nm的通孔,并采用湿法刻蚀工艺去除图形化硬掩膜2;若m<D,则采用SiCoNi刻蚀工艺去除多余的硬掩膜后,使得图形化硬掩膜上的关键尺寸符合工艺需求后,继续进行通孔的形成及剩余硬掩膜的去除工艺。
其次,若m<D,如图3所示,则采用化学气相沉积工艺(chemical vapor deposition,简称CVD)沉积一层硬掩膜薄膜3覆盖图形化硬掩膜2的上表面和嵌入图形化硬掩膜2中的通孔图形的底部及其侧壁,并测量出硬掩膜上的关键尺寸d的值;此时,若d<D,则重复沉积硬掩膜薄膜3的工艺,直至硬掩膜上的关键尺寸不小于D的值;若d=D,则以此时的硬掩膜为掩膜刻蚀硅衬底1,形成通孔后去除剩余硬掩膜;
然后,若d<D,如图4所示,则采用SiCoNi刻蚀工艺去除多余的硬掩膜,使得剩余的硬掩膜薄膜31与图形化硬掩膜2形成的硬掩膜上的关键尺寸符合工艺需求后,则以此时的剩余的硬掩膜为掩膜刻蚀形成如图5所示的结构,及形成剩余的硅衬底11和通孔4。
最后,如图6所示,采用湿法刻蚀工艺去除剩余硬掩膜,以最终形成关键尺寸为D的通孔4。
其中,上述形成的通孔的直径均为1-100nm、深度为1-1000nm,并均采用湿法刻蚀工艺去除多余的硬掩膜,以形成最后的通孔结构。
综上所述,由于采用了上述技术方案,本发明提出一种形成半导体通孔的方法及其方法,通过量测对比硬掩膜上对应通孔位置的关键尺寸与工艺需求的关键尺寸大小,并根据该量测结果采用保型沉积硬掩膜或刻蚀工艺来调整硬掩膜上对应通孔位置的关键尺寸,以使其符合工艺需求,不仅降低了工艺成本,还提高了生产能力。
通过说明和附图,给出了具体实施方式的特定结构的典型实施例,基于本发明精神,还可作其他的转换。尽管上述发明提出了现有的较佳实施例,然而,这些内容并不作为局限。
对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

Claims (7)

1.一种形成半导体通孔的方法,其特征在于,包括以下步骤: 
步骤S1:在一硅衬底的上表面上制备一与通孔对应的图形化硬掩膜,量测通孔对应位置图形化硬掩膜上的关键尺寸;若所述关键尺寸大于工艺需求关键尺寸,则进行步骤S2;若所述关键尺寸小于于工艺需求关键尺寸,则进行步骤S4;若所述关键尺寸等于工艺需求关键尺寸,则进行步骤S5;
步骤S2:沉积硬掩膜薄膜保型覆盖所述底层图形化硬掩膜;
步骤S3:量测通孔对应位置硬掩膜上的关键尺寸;若所述关键尺寸大于工艺需求,则重复步骤S2;若所述关键尺寸小于工艺需求的关键尺寸,则进行步骤S4;若所述关键尺寸等于工艺需求的关键尺寸,则进行步骤S5;
步骤S4:采用刻蚀工艺刻蚀去除多余的硬掩膜,使得通孔图形的关键尺寸等于工艺需求的关键尺寸;
步骤S5:以具有符合工艺需求关键尺寸通孔图形的硬掩膜为掩膜,刻蚀硅衬底,形成通孔后,去除剩余的硬掩膜。
2.根据权利要求1所述的形成半导体通孔的方法,其特征在于,采用化学沉积工艺进行所述步骤S2中硬掩膜薄膜的沉积。
3.根据权利要求2所述的形成半导体通孔的方法,其特征在于,采用SiCoNi刻蚀工艺进行所述步骤S4中的刻蚀。
4.根据权利要求3所述的形成半导体通孔的方法,其特征在于,采用干法刻蚀工艺进行步骤S5中通孔的刻蚀。
5.根据权利要求4所述的形成半导体通孔的方法,其特征在于,采用湿法刻蚀工艺去除所述步骤S5中剩余的硬掩膜。
6.根据权利要求1-5中任意一项所述的形成半导体通孔的方法,其特征在于,形成的所述通孔的直径为1-100nm。
7.根据权利要求6所述的形成半导体通孔的方法,其特征在于,所述通孔的深度为1-1000nm。
CN201210158835.0A 2012-05-22 2012-05-22 一种形成半导体通孔的方法 Active CN102709230B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210158835.0A CN102709230B (zh) 2012-05-22 2012-05-22 一种形成半导体通孔的方法
US13/707,485 US20130316470A1 (en) 2012-05-22 2012-12-06 Method which can form contact holes in wafer of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210158835.0A CN102709230B (zh) 2012-05-22 2012-05-22 一种形成半导体通孔的方法

Publications (2)

Publication Number Publication Date
CN102709230A true CN102709230A (zh) 2012-10-03
CN102709230B CN102709230B (zh) 2015-05-20

Family

ID=46901892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210158835.0A Active CN102709230B (zh) 2012-05-22 2012-05-22 一种形成半导体通孔的方法

Country Status (2)

Country Link
US (1) US20130316470A1 (zh)
CN (1) CN102709230B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931069A (zh) * 2012-11-28 2013-02-13 上海华力微电子有限公司 栅极的制作方法
CN107316810A (zh) * 2017-06-20 2017-11-03 上海华力微电子有限公司 一种改善刻蚀关键尺寸稳定性的方法
CN107735851A (zh) * 2015-06-03 2018-02-23 应用材料公司 在先进图案化工艺中用于间隔物沉积与选择性移除的设备与方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263348B2 (en) * 2013-01-10 2016-02-16 International Business Machines Corporation Film thickness metrology
US9733638B2 (en) 2013-04-05 2017-08-15 Symbotic, LLC Automated storage and retrieval system and control system thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806195B1 (en) * 1997-02-05 2004-10-19 Texas Instruments Incorporated Manufacturing method of semiconductor IC device
CN1728340A (zh) * 2004-07-29 2006-02-01 应用材料有限公司 用于制造场效应晶体管门极结构的工艺整合的组合工具和方法
US20090286402A1 (en) * 2008-05-13 2009-11-19 Applied Materials, Inc Method for critical dimension shrink using conformal pecvd films
US7901844B2 (en) * 2007-09-18 2011-03-08 Hynix Semiconductor Inc. Method with correction of hard mask pattern critical dimension for fabricating photomask
CN102437092A (zh) * 2011-08-04 2012-05-02 上海华力微电子有限公司 一种半导体通孔开设方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806195B1 (en) * 1997-02-05 2004-10-19 Texas Instruments Incorporated Manufacturing method of semiconductor IC device
CN1728340A (zh) * 2004-07-29 2006-02-01 应用材料有限公司 用于制造场效应晶体管门极结构的工艺整合的组合工具和方法
US7901844B2 (en) * 2007-09-18 2011-03-08 Hynix Semiconductor Inc. Method with correction of hard mask pattern critical dimension for fabricating photomask
US20090286402A1 (en) * 2008-05-13 2009-11-19 Applied Materials, Inc Method for critical dimension shrink using conformal pecvd films
CN102437092A (zh) * 2011-08-04 2012-05-02 上海华力微电子有限公司 一种半导体通孔开设方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931069A (zh) * 2012-11-28 2013-02-13 上海华力微电子有限公司 栅极的制作方法
CN107735851A (zh) * 2015-06-03 2018-02-23 应用材料公司 在先进图案化工艺中用于间隔物沉积与选择性移除的设备与方法
CN107735851B (zh) * 2015-06-03 2021-11-05 应用材料公司 在先进图案化工艺中用于间隔物沉积与选择性移除的设备与方法
CN107316810A (zh) * 2017-06-20 2017-11-03 上海华力微电子有限公司 一种改善刻蚀关键尺寸稳定性的方法

Also Published As

Publication number Publication date
CN102709230B (zh) 2015-05-20
US20130316470A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
CN104733435B (zh) 3dic互连装置和方法
JP6012763B2 (ja) 基板貫通ビアを集積回路の中間工程層に組み込むこと
CN104769722B (zh) 形成本地化的绝缘体上硅鳍式场效应晶体管的方法和结构
TWI545693B (zh) 關於形成具有犧牲插件之基板通孔之裝置、系統、及方法
CN106876419B (zh) Cmos图像传感器及其形成方法
CN105814674B (zh) 装置、系统及用于制造穿衬底通孔及前侧结构的方法
CN102709230B (zh) 一种形成半导体通孔的方法
US20120091593A1 (en) Structure and method for simultaneously forming a through silicon via and a deep trench structure
CN108987272A (zh) 包括绝缘层的半导体器件及其形成方法
CN105830211A (zh) 使用光刻-冷冻-光刻-蚀刻工艺的细长接触件
KR20210158393A (ko) 유동성 유전체 재료들을 이용한 트렌치 격리를 위한 기법들
CN106158958A (zh) 具有源极/漏极覆盖层的FinFET
JP3790763B2 (ja) シリコン・オン・インシュレータ・デバイスのオン・チップ・デカップリング・トレンチ・キャパシタおよびその形成方法
CN106601602B (zh) 用于自对准双重构图的方法及半导体器件的制造方法
CN110024106A (zh) 带有转化的衬里的自对准硬掩模
CN102856246B (zh) 制造半导体器件的方法和半导体器件
CN103811307B (zh) 半导体器件及其形成方法
CN104253081A (zh) 半导体器件的形成方法
KR101010945B1 (ko) 펌핑 모스 커패시터
CN102437089B (zh) 一种铜后道互连工艺
CN102437092A (zh) 一种半导体通孔开设方法
CN102509711B (zh) 一种检测浅沟槽隔离缺陷的方法
CN107706146B (zh) 半导体器件的制备方法
CN105810637A (zh) 一种3d nand外围器件的集成方法
CN100595921C (zh) 耐高温单片集成微传感器系统集成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant