CN102695670A - 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 - Google Patents

具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 Download PDF

Info

Publication number
CN102695670A
CN102695670A CN2010800481302A CN201080048130A CN102695670A CN 102695670 A CN102695670 A CN 102695670A CN 2010800481302 A CN2010800481302 A CN 2010800481302A CN 201080048130 A CN201080048130 A CN 201080048130A CN 102695670 A CN102695670 A CN 102695670A
Authority
CN
China
Prior art keywords
fuel
rich
gas
reaction zone
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800481302A
Other languages
English (en)
Other versions
CN102695670B (zh
Inventor
L-S·樊
F·李
L·曾
D·斯瑞达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohio State Innovation Foundation
Original Assignee
Ohio State University Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohio State University Research Foundation filed Critical Ohio State University Research Foundation
Publication of CN102695670A publication Critical patent/CN102695670A/zh
Application granted granted Critical
Publication of CN102695670B publication Critical patent/CN102695670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • C01B3/063Cyclic methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/344Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using non-catalytic solid particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1612CO2-separation and sequestration, i.e. long time storage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Fuel Cell (AREA)

Abstract

提供基本零CO2排放的高效发电方法和系统。形成了在产生气态燃料(H2、CO等)的单元与燃料电池阳极侧之间的闭合回路。在某些实施方案中,对于气态燃料产生也利用来自燃料电池阴极侧的热和含氧排出气体。该用于转化燃料的系统可包括配置用于实施氧化-还原反应的反应器。所得发电效率由于在燃料电池阳极回路中用于气态燃料生产的最小化蒸汽消耗以及战略性质量和能量集成方案而改进。

Description

具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成
本发明通常涉及在原位CO2捕集下发电的系统和方法。在某些实施方案中,利用使用一种或多种化学中间体的氧化还原(redox)系统以在CO2捕集下转化碳质燃料。这后面是与电化学转化装置的战略性集成以产生电力。在其他实施方案中,水裂解系统与电化系统集成。通过工艺集成,工艺辅助动力消耗和/或水利用和用于产生蒸汽的能量被最小化。
包括原油、天然气和煤炭的化石燃料代表着全世界现今能量供应的大多数。然而,化石燃料的使用需要将它们转变成载体,诸如热、电力、液体燃料或通过化学转化过程转变为化学品。在日益增加的能量需要和对于来自化石燃料应用的碳排放的伴随担忧之下,广泛的工作已经调整向发展可持续的碳中性的、有效且经济的能量系统。从使用化石燃料到使用核和诸如太阳能和生物质的可再生资源的转换因此代表着这类工作的自然进展。
现有发电技术具有一个或多个以下局限性/缺点:1)高成本(例如,光伏、气化、超超临界粉煤燃烧);2)低效率(例如,亚临界粉煤燃烧);3)环境问题(例如,化石燃料发电站);和4)安全问题(例如,核动力)。
关于常规热电站的常见问题之一在于在冷却和重新加热蒸汽期间的大量能量损失。因此需要使蒸汽产生的需求最小化的系统和方法。
在碳质燃料和空气/蒸汽/CO2之间在反应介质辅助下的化学反应可代表使燃料转化过程中的能量损失最小化的有效方式。已经提出了许多技术来使用金属氧化物转化碳质燃料。例如,Watkins的美国专利3,027,238号描述了一种生产氢气的方法,其包括在还原区中还原金属氧化物和在氧化区中用蒸汽氧化还原了的金属以产生氢气。然而,该技术限于气态燃料转化。此外,该气态燃料仅通过金属氧化物部分转化。Thomas的美国专利7,767,191号、Fan的PCT申请WO 2007082089号和Fan的PCT申请WO 2010037011号描述了通过以下来生产氢气的方法:在基于碳的燃料和金属氧化物之间的还原反应中还原金属氧化物以提供具有较低氧化态的被还原的金属或金属氧化物,和氧化被还原的金属或金属氧化物以产生氢气和具有较高氧化态的金属氧化物。
氢气也可以经光电解、热解和热化学路径由水裂解产生。
为了产生电力,上述方法教导了氢气产物在燃气涡轮机、燃气发动机和/或燃料电池中的进一步转化。然而,大量蒸汽用于这些工艺中以便产生氢气。氢气在常规氢燃料发电装置中的简单转化将导致大量蒸汽/水的冷却和重新加热,产生发电系统的极大不可逆性。
在对电力的需要日益增加的情况下,这要求在效率较高和污染物较少的情况下产生电力的改进的方法、系统和在其中的系统组件。
本发明的实施方案通常涉及在基本零CO2排放的情况下的高效发电方法和系统。形成了在产生气态燃料(H2、CO等)的单元与燃料电池阳极侧之间的闭合回路。在某些实施方案中,对于气态燃料产生也利用来自燃料电池阴极侧的热和含氧排出气体。本文公开的系统的发电效率显著大于目前技术水平方法,这归因于气态燃料生产的最小化的蒸汽消耗、燃料电池阳极回路以及战略性质量和能量集成方案。
鉴于以下附图和详述将更全面地理解由本发明的实施方案提供的其它特征和优势。
当结合以下附图阅读时,可更好地理解本发明的说明性实施方案的以下详述,其中类似结构用类似参考数字表示且其中:
图1为根据一个实施方案在最小蒸汽消耗下产生电力的方法的一般示意图,其中燃料电池与重整或水裂解系统集成以使在该方法中的蒸汽产生需求最小化。
图2为用于在最小蒸汽需求下发电的燃料电池与基于氧化还原的重整/水裂解区块的集成的实施方案的一般示意图。
图3进一步说明基于铁氧化物的氧化还原的重整/水裂解区块和燃料电池系统的实施方案的集成。
图4为使用来源于诸如煤炭或生物质的固体燃料作为原料的合成气的基于铁氧化物的氧化还原方法的实施方案的示意图。
图5为使用固体燃料诸如煤炭、生物质和/或固体废物直接作为原料的基于铁氧化物的氧化还原方法的实施方案及其与燃料电池的集成的示意图。
图6为与燃料电池集成的基于钙的重整/水裂解区块的实施方案的示意图。
图7为用于发电的与燃料电池集成的膜强化的重整/水裂解区块的实施方案的示意图。
图8为使用太阳能或核热能的基于锌的水裂解区块的实施方案及其与使用太阳能或核能的燃料电池的集成的示意图。
图9为说明使用氧化还原反应和固体氧化物燃料电池(SOFC)的集成的煤变电系统的实施方案的更详细示意图。
图10说明以下实施方案,其中来自基于氧化还原的重整/水裂解区块的还原器的未转化的燃料通过辅助燃料电池转化,接着进行氧精加工步骤(polishing step)。在氧化器与燃料电池区块之间的工作流体保持闭合回路。
通常参看图1,本发明的实施方案涉及在最小蒸汽消耗和/或辅助发电及低至零的碳排放下使热和化学能源转化为电力的系统和方法。除非另作说明或上下文另外要求,否则所有百分数都以重量%报道。
在一个实施方案中,系统被分成两个区块或子系统,即重整/水裂解区块和燃料电池区块。所述重整/水裂解区块由蒸汽/CO2和诸如太阳能、核和碳质燃料的能源产生诸如氢气、合成气和/或轻质烃的气态燃料。所述燃料电池区块使来自重整/水裂解区块的气态燃料转化为电力,同时产生含有未转化的燃料和蒸汽和/或CO2的排出物流用于重整/水裂解区块。
燃料电池区块的蒸汽/CO2排出物,其可能含有未转化的燃料,被再循环到重整/水裂解区块以产生气态燃料。在某些情况下,需要排出物的较低程度重新加热和重新加压。在所有情况下,蒸汽冷凝和重新加热是最小的。
为了保持重整/水裂解区块和燃料电池区块两者的操作压力,从主气态物流中分离出排出物和/或气态燃料的流股(bleed)并重新加压。同时,将重新加压的补充物流与主气态物流合并。因为CO2/蒸汽与CO/H2燃料一起在重整/水裂解区块和燃料电池区块之间循环,蒸汽/CO2充当工作流体用于发电。涡轮机(蒸汽涡轮机和燃气涡轮机两者)的使用在该方案中最少化,因为来自燃料电池的部分转化的气态燃料几乎完全再循环到燃料生产阶段。在重整/水裂解区块和燃料电池区块之间形成工作流体的闭合回路。通过使蒸汽冷凝和重新加热最少化且使燃料电池中的燃料转化率最大化,使该工艺的不可逆性被最小化。
在使用诸如固体氧化物燃料电池(SOFC)的高温燃料电池的情况下,耐硫水平比较高。因此,诸如氧化钙吸附剂床的简单热气清除单元可与工作流体回路集成。
重整/水裂解区块的操作压力可与燃料电池区块相当。两个区块都在1.01×105Pa至8.11×106Pa(1atm至80atm)之间的压力下操作。各单元的温度介于300℃至1300℃之间。来自系统的高温高压废物流可用于预热进料物流,产生动力并重新加压补充物流。
用于重整/水裂解区块的能源可为碳质燃料或来自诸如太阳能或核的其他来源的热能。所述碳质燃料可包括煤炭、甲烷、生物质、合成气、石油焦、超稠油、蜡和油页岩。
在使用碳质燃料的情况下,使用载氧体或CO2吸附剂将燃料重整/气化为氢气和/或CO。在使用来自太阳能或核的热能的情况下,使用热化学水裂解方案来将热能转化为氢气和氧气。
图2说明一般工艺构造,其中使用基于金属氧化物的载氧粒子用蒸汽/CO2间接重整或气化碳质燃料。在还原阶段中的反应为
MeOx+燃料=MeOy+CO2+H2O。
在大多数情况下,选择金属氧化物、反应器设计和操作模式以使得至少80%的燃料转化为CO2和蒸汽。在一些情况下,氧精加工步骤用以将未转化的燃料(<20%)完全燃烧成可封存的CO2和H2O。在优选的实施方案中,至少95%的燃料转化为CO2和蒸汽。来自还原步骤的排出气体物流因此为可封存的。
在图2的氧化阶段中的反应为
MeOy+(x-y)H2O/CO2=MeOx+(x-y)H2/CO
从燃料电池阳极侧的排出物中直接取出的用于氧化阶段的进料(在某些情况下进行较低程度的重新压缩)含有燃料,诸如H2/CO。在燃料电池排出物/氧化进料中的燃料浓度通常为0-60%。在进料物流中的H2O/CO2被至少部分地转化为H2/CO,因此在该气态物流中的燃料浓度增加。在氧化阶段的产物物流中的H2/CO浓度通常为30%-99%且比在燃料电池阳极的排出物流中的H2/CO浓度高至少5%。来自氧化阶段的富燃料物流随后被直接引导回到燃料电池以便发电。
图3说明具体工艺构造,其中碳质燃料用作燃料且铁氧化物用作载氧体。在该实施方案中,使用三个反应器氧化还原系统以与在Thomas的美国专利7,767,191号、Fan的PCT申请WO 2007082089号和Fan的PCT申请WO 2010037011号中所公开的方式类似的方式转化燃料。第一反应器,还原器,被构造以将碳质燃料氧化成CO2和蒸汽,同时还原基于金属氧化物的载氧体。在该还原器中需要或产生的热由载氧体粒子提供或除去。第二反应器,氧化器,被构造以用蒸汽或CO2(部分)氧化被还原的载氧体的一部分。第三反应器,燃烧器,使用空气来燃烧氧化器中的被部分氧化的载氧体和来自还原器的被还原的载氧体的剩余部分。
氧化器的进料为来自燃料电池阳极侧的排出物且氧化器的产物直接用作燃料电池阳极的进料。氧化器在工作流体(CO/H2/CO2/H2O)物流中富集燃料含量。在优选的实施方案中,燃料电池阳极侧和氧化器的气态物流形成闭合回路,其中气态物流的加入和排放最低。为了保持工作流体的压力,在主回路或分流回路(split loop)内进行流体的重新加压。在某些实施方案中,高温吸附剂床,诸如使用基于氧化钙的吸附剂的高温吸附剂床,被集成到回路中以防止诸如H2S的污染物的积聚。在其他情况下,仅对排放物流进行硫处理,不处理主工作流体物流。
载氧体包括具有布置在载体上的至少一种金属氧化物的多个陶瓷复合粒子。陶瓷复合粒子描述在Thomas的美国专利7,767,191号、Fan的PCT申请WO 2007082089号和Fan的PCT申请WO 2010037011号中。
回头参看在图3的第一反应器(即,还原器)中的还原反应,该还原器利用诸如合成气、甲烷和轻质烃、煤炭、焦油、油页岩、油砂、沥青砂、生物质、蜡和焦炭的各种碳质燃料来还原含铁氧化物的陶瓷复合材料,以产生被还原的金属和/或金属氧化物的混合物。可能的还原反应包括:
FeOx+燃料→FeOy+CO2+H2O
燃料+CO2→CO+H2
燃料+H2O→CO+H2
FeOx+CO/H2→FeOy+CO2/H2O。
具体地讲,在还原器中形成金属铁(Fe)。同时,自该还原器产生含有至少60%CO2(干基)的排出物流。在优选的方案中,CO2浓度超过95%且可直接封存。
还原器的优选设计包括具有一级或多级的移动床反应器、多级流化床反应器、阶梯式反应器、旋转窑炉或本领域的普通技术人员已知提供逆流气固接触模式的任何合适的反应器或容器。在固体和气体之间的逆流模式用以强化气体和固体的转化。逆流流动模式使固体和气体两者的反混都最少化。此外,其保持反应器的固体出口处于更具还原性的环境下,同时反应器的气体出口保持在更具氧化性的环境下。因此,气体转化和固体转化二者都被强化。
回头参看在图3中的第二反应器(即,氧化器)中的氧化反应,该氧化器使用富含CO2和/或蒸汽的来自燃料电池阳极的排出气体物流将来自还原器的含铁载氧粒子转化到较高氧化态。在该物流中存在的未转化燃料不会参与该反应。可能的反应包括:
Fe+CO2/H2O=FeO+CO/H2
3FeO+CO2/H2O=Fe3O4+CO/H2
在某些实施方案中,将仅一部分的来自还原器的被还原的载氧体引入氧化器中,其余部分绕过氧化器且直接送到燃烧器中。通过这样做,从氧化还原区块产生更多的热以补偿在还原器中需要的反应热。或者,将亚化学计量之量的燃料电池阳极排出气体送到氧化器中以使得在随后的燃烧器中产生更多热。
虽然未转化的燃料可能存在于燃料电池阳极排出物流中,在该气体物流中的燃料含量显著富集,引起在铁/铁氧化物和H2O/CO2之间的反应。
氧化器的优选设计也包括移动床反应器和提供逆流气固接触模式的其他反应器设计。优选逆流模式,以便获得蒸汽到氢气的高转化和CO2到CO的高转化。
回头参看在图3中的第三反应器(即,燃烧器)中的氧化反应,含氧气体诸如空气和/或来自燃料电池阴极侧的部分转化的空气至少部分地用以将在自氧化器产生的载氧体中的铁氧化为Fe2O3。在燃烧器中的反应包括:
4FeO+O2=2Fe2O3
4Fe3O4+O2=6Fe2O3
燃烧器的优选反应器设计包括快速流化床反应器、夹带床反应器、输送床反应器或机械输送系统。燃烧器的功能包括:将载氧体氧化到较高氧化态;和使载氧体重复循环到还原器的入口用于另一氧化还原循环。
图4说明转化气态燃料的重整/水裂解区块的一个实施方案的示意流程图。在该实施方案中,使用气化系统以将诸如煤炭、生物质、石油焦和蜡的固体燃料转化为气态燃料。使用诸如含有氧化钙、氧化锌等高温吸附剂的高温吸附剂除去气态燃料中的硫。在气态燃料中需要的硫水平为<500ppm。在优选的方案中,在气态燃料中的硫水平降低到<20ppm。
燃料气体随后作为燃料引入在图4中的还原器中用于氧化还原循环。作为来自气化器的气态燃料的替代品,也可将来自重整器或热解器的燃料用于氧化还原系统中。诸如甲烷和轻质烃的气态燃料也可作为燃料直接引入氧化还原系统中。
在Fan的PCT申请WO 2010037011号和本发明的实施方案中描述的方法和系统之间的一个差异在于第二反应器(即氧化器)的气态进料除了H2O和CO2以外含有诸如H2和CO的燃料气体。在某些实施方案中,用于燃烧器的含氧气体包括来自阴极的排出气体的至少一部分。
所述燃烧器为高度放热的。在燃烧器中产生的热可用以补偿在还原器中需要的热。该热也可用以预热进料流且产生用于附加能量消耗的动力。从系统中排出的高压气态物流可用以驱动膨胀机用于气体压缩。
表1说明在所述方法的一个实施方案中主要物流的质量流量。表2说明所述系统的一个实施方案的能量平衡。在这种情况下,甲烷用作燃料。H2O/H2用作工作流体。利用SOFC系统的燃料电池区块将富燃料(H2)气体物流转化为与H2平衡的70%蒸汽。工艺的HHV效率,定义为在电力产品中的能量除以甲烷进料的较高热值,大于60%。在这种情况下,基本所有产生的CO2被压缩到1.52×107Pa(2200psi)且以备封存。
表1.使用甲烷作为燃料的用于发电的集成的重整-燃料电池的质量平衡
*所述CO2物流含有小于0.5%的杂质,诸如未转化的燃料
+来自氧化器的排出物含有70%的H2和30%的蒸汽
表2.使用甲烷作为燃料的用于发电的集成的重整-燃料电池的能量平衡
  甲烷(MWth)  附加动力(MWe)  动力生产(MWe)  净动力(M)We
  1000   80   700   620
在使用煤炭和煤炭气化器的情况下,工艺效率根据煤炭和煤炭气化器的类型而在38%和60%之间变化(HHV,具有CO2捕集)。当将生物质气化并用于氧化还原系统时,效率比其煤炭对应物低1-10%。因为在生物质中的所有CO2都被捕集,所以从生命周期分析观点来看,来自系统的净CO2排放为负。
参看在图5中说明的实施方案,诸如煤炭、生物质、蜡、重质残渣、石油焦和沥青砂的固体燃料在不需要气化器/热解器/重整器的情况下在氧化还原系统中直接转化。该实施方案描绘与如本文中例示的固体氧化物燃料电池(SOFC)集成的直接煤炭氧化还原系统。
由于在约800℃至1000℃之间的在SOFC系统中的高操作温度,释放大量热且需要将其回收以强化工艺效率。当前工艺设计通常组合了SOFC和燃气涡轮机-蒸汽涡轮机系统以便将燃料完全转化为电力。在SOFC中首先转化了约60%-90%的燃料,且剩余部分将在燃气涡轮机系统连同基础兰金循环(bottoming Rankine cycle)中完全转化。然而,该系统的成本高,因为所有三个组件(即,氢气生产系统、燃料电池和涡轮机系统)为资本密集型的。用于发电的常规IGCC-SOFC路径可达到至多55%的效率。
在Fan的PCT申请WO 2010037011号中描述的直接化学回路(DCL)方法将固体燃料转化为氢气。在该DCL系统内,基于铁氧化物的载氧体在三种反应器之中循环,所述三种反应器为还原器、氧化器和燃烧器。在该还原器中,煤炭和/或生物质由含Fe2O3的粒子气化为CO2和H2O,所述含Fe2O3的粒子被还原为Fe和FeO。被还原粒子的一部分与蒸汽在氧化器中反应以产生氢气,同时剩余的被还原的粒子连同来自氧化器的被部分氧化的粒子一起进料到燃烧器中。最后,含Fe2O3的粒子通过用诸如被压缩的空气的含氧气体燃烧而再生并再循环回去。在燃烧器中释放且由铁氧化物载送到还原器的热可完全补偿在系统中的任何热量亏损。通过该DCL系统,氢气和二氧化碳在不同反应器中产生,其通过消除对于产物分离的需要而节约大量能量。并且,其节约CO2去除和空气分离单元的设备投资成本。该DCL系统可从煤炭以70-85%的效率和从生物质以60-75%的效率产生氢气。
在该实施方案中,我们集成了DCL系统和SOFC系统以便自煤炭高效率发电。DCL-SOFC方法和系统具有在高压或低压下的多种构造。具体地讲,我们描述了以下实施方案,其中氧化器和阳极集成在如图5和图9中所示的氢气和蒸汽的闭合回路内。
考虑1000MW的热输入,且相应地在DCL-SOFC系统中加工131.8吨/小时的烟煤。首先将煤炭粉碎成恰当大小的粒子,且随后通过烟气由7.23%湿度干燥到5%湿度。在该DCL系统中,还原器和氧化器两者都采用移动床设计。将含有45.6重量%的Fe2O3和54.4重量%的Al2O3(作为惰性物质)的约3549.5吨/小时的载氧体进料到还原器的顶部,且将煤炭从还原器的中部注入。在移动床还原器中,固体向下流动,而气体向上上升。逆流设计可在900℃、1.01×105Pa(1atm)下将煤炭完全转化为CO2和H2O。将铁氧化物还原成Fe、FeO和痕量FeS的形式。将71.5%被还原的铁粒子用于在氧化器中的氢气产生,且其他28.5%在燃烧器中燃烧。氧化器在850℃下操作,将90.4%摩尔H2O和9.6%摩尔H2的气态混合物转化为35.9%H2O和64.1%H2和ppm水平的H2S的混合物。该气态混合物随后进料到耐硫SOFC的阳极以便发电。同时,Fe和FeO将被氧化成Fe3O4,其流向燃烧器中以便Fe2O3再生。
鼓风器驱动1992吨/小时的空气以进料DCL-SOFC系统。该空气在HRSG段中预热到900℃,且随后行进到SOFC装置的阴极。在于900℃下操作的SOFC中消耗30%的氧气和85%的氢气。废空气用于燃烧器中以使Fe2O3在1280℃下再生。随后将废氢气/蒸汽混合物冷却到约240℃用于随后的脱硫单元。在氢气/蒸汽混合物再循环回到氧化器中之前,仅将少量蒸汽补充到该氢气/蒸汽混合物中。
在DCL-SOFC工艺期间,通过简单冷凝接着压缩到1.37×107Pa(>135atm)来获得纯度>99%的CO2以便温室气体控制。压缩步骤消耗约35.8MW的功。诸如Cl、S和Hg的其他污染物可与CO2共封存或通过传统技术除去。可由布置在还原器之前的旋风分离器从载氧体中除去灰分。
表3汇总主工艺物流的流量。由于DCL和SOFC的集成,可由DCL-SOFC系统产生535MW的电力,且可通过回收低位热由蒸汽涡轮机系统产生96MW的电力。总工艺可在CO2压缩的情况下产生640MW的电力,这等于64%的煤炭到动力的效率(HHV)。可进一步优化所说明的实施例以获得大于70%的效率。
DCL-SOFC系统可以高效率将煤炭和生物质的广泛组合转化为电力。可能的设计也包括工作流体(氢气和蒸汽的混合物)的低压和低温操作。也可在SOFC之前用热气清除单元除去在氢气/蒸汽混合物中的H2S。应注意到,当用诸如生物质的低硫燃料(约小于0.2重量%)进料系统时,不需要脱硫单元。
表3.DCL-SOFC工艺的工艺流程图
Figure BDA0000156899470000111
Figure BDA0000156899470000121
Figure BDA0000156899470000131
表4.煤变电工艺构造和工艺效率
Figure BDA0000156899470000132
虽然在该实施方案中例示的DCL-SOFC系统和方法对于工作流体组成、重整/水裂解区块的类型和燃料电池区块具有特殊性,但上述参数的选择具有极大自由度。例如,CO和CO2可代替H2/H2O作为工作流体使用。在Fan的PCT申请WO 2010037011号中描述的各种构造可用于重整/水裂解区块。诸如熔融碳酸盐燃料电池(MCFC)的其他燃料电池也可以与DCL系统集成。在这种情况下,将由DCL还原器产生的CO2的一部分注入MCFC的阴极侧以促进转化。另外,DCL系统可被构造以使得来自还原器的排出物不完全转化。在这种情况下,未转化的燃料在获得浓缩的CO2物流之前被送到另一燃料电池和/或氧精加工步骤(参见图10)。当所有被还原的载氧体粒子都用于氢气生产时,即,直接燃烧的分流比为0,且假设在来自燃烧器的烟气中的高位热可用于加热还原器,发电效率可在CO2压缩的情况下达到70%。表4显示数种构造和相应发电效率。
图6说明以下实施方案,其中钙吸附剂强化重整过程且用作重整/水裂解区块。在这种情况下,燃料在CaO/Ca(OH)2吸附剂和蒸汽/来自燃料电池阳极的富蒸汽排出气体存在下重整/转变成H2
CaO+CxHy+H2O→CaCO3+H2
废吸附剂随后在高温下使用来自系统的废热在煅烧炉中再生:
CaCO3=CaO+CO2
任选增加水合步骤以使吸附剂再活化。随后压缩并封存来自煅烧炉的浓缩的CO2。在这种情况下,可使一部分工作流体分流以避免工作流体积聚。
图7说明使用膜强化的重整器/水煤气变换反应器作为重整/水裂解区块的选择。在该实施方案中,燃料在重整器中重整/转变,且从膜中同时除去CO2。重整器的保留侧富集具有重整燃料的工作流体,而渗透侧产生浓缩的CO2
图8说明显示氧化锌水裂解循环和燃料电池的集成的实施方案。在该实施方案中,使用来自太阳能或核能源的热能促进基于氧化锌的水裂解循环。使用从水裂解中获得的氢气来富集包含H2O和H2的工作流体。
本领域技术人员将显而易见的是,可在不偏离本发明的范围的情况下进行各种变化,且所述变化不被视为受说明书和附图中描述的特殊实施方案限制,而是仅受随附权利要求书的范围限制。

Claims (21)

1.一种将碳质燃料或热能转化为电力的系统,其包括:
重整/水裂解区块,用于将富蒸汽和/或CO2的气体物流和碳质燃料和/或热能转化为富燃料(H2和/或CO)的气体物流和排出气体物流;
燃料电池区块,分别用于由阳极和阴极将所述富燃料的气体物流和含氧气体物流转化为贫燃料的气体物流和废含氧气体物流;和
在所述重整/水裂解区块和所述燃料电池区块之间的闭合回路。
3.权利要求1的系统,其中所述燃料电池区块包括固体氧化物燃料电池或熔融碳酸盐燃料电池。
4.权利要求1的系统,其中所述碳质燃料包括合成气、一氧化碳、富甲烷气体、轻质烃、液体碳质燃料、煤炭、生物质、沥青砂、油页岩、石油焦、重质液体烃、蜡以及它们的混合物。
5.权利要求1的系统,其中排放小于10%的所述富燃料或富蒸汽/CO2的气体物流。
6.权利要求1的系统,其中所述热能包括太阳能或核能。
7.权利要求1的系统,其中所述富燃料物流通过水裂解、电解、吸附剂或膜强化的重整和/或水煤气变换反应或蒸汽-铁反应产生。
8.权利要求1的系统,其中使用金属氧化物粒子的氧化还原性质来辅助所述碳质燃料转化。
9.权利要求1的系统,其中使用氧化钙吸附剂来强化所述碳质燃料转化。
10.一种由碳质燃料和蒸汽生产电力和单独的富CO2物流的方法,其包括:
通过在第一反应区中使含Fe2O3的粒子与碳质燃料反应将所述粒子还原到包括金属铁的较低氧化态;
在第二反应区中用来自燃料电池阳极的富蒸汽或CO2的气体氧化含金属铁的粒子的至少一部分,同时产生富燃料(H2和/或CO)的气体物流;
使来自所述第二反应区的富燃料的气体物流回到所述燃料电池的阳极;
在第三反应区中用含氧气体氧化来自所述第一反应区的剩余的含金属铁的粒子和从所述第二反应区中的氧化反应获得的含铁氧化物的粒子,以产生含Fe2O3的粒子;和
使所述含Fe2O3的粒子回到所述第一反应区。
11.权利要求10的方法,其中所述燃料电池包括固体氧化物燃料电池堆。
12.权利要求10的方法,其中所述碳质燃料包括合成气、一氧化碳、富甲烷气体、轻质烃、液体碳质燃料、煤炭、生物质、沥青砂、油页岩、石油焦、重质液体烃、蜡以及它们的混合物。
13.权利要求10的方法,其中所述剩余的CO2在冷凝出湿气之后被封存。
14.权利要求10方法,其中在所述第三反应区中使用的所述含氧气体的至少一部分为从所述燃料电池阴极的出口产生的含氧气体。
15.权利要求10的方法,其中将离开所述第三反应区的所述含氧气体的至少一部分引入所述燃料电池阴极的入口。
16.权利要求10的方法,其中排放小于10%的所述富燃料或富蒸汽/CO2的气体物流。
17.权利要求10的方法,其中所述金属氧化物粒子含有承载材料,所述承载材料包括选自由以下各物组成的集合中的至少一种的陶瓷材料:Al、Ti、Zr、Y、Si、La、CR、Mg、Mn、Cu、Ca的氧化物;Si和Ti的碳化物;海泡石;斑脱土和高岭土。
18.权利要求10的方法,其中将所述富燃料的物流的一部分或所述富CO2的气体的蒸汽引入所述第一反应区的底部以强化所述铁氧化物粒子和所述碳质燃料二者的转化。
19.权利要求10的方法,其中所述碳质燃料为固体粒子形式,所述固体粒子被所述第一反应区中的气体悬浮,直至它们在被淘选向所述第一反应区的顶部之前转化至少50%。
20.权利要求10的方法,其中将从所述闭合回路排放的所述富燃料或富蒸汽/CO2的物流重新加压并引导回到所述闭合回路中。
21.权利要求10的方法,其中从所述第三反应区释放的热用以预热去往所述燃料电池阴极或所述第三反应区的进料气体物流。
22.权利要求10的方法,其中所述燃料电池包括熔融碳酸盐燃料电池且所述燃料电池阴极需要的CO2的至少一部分由通过所述第一反应区产生的富CO2的气体物流提供。
CN201080048130.2A 2009-09-08 2010-09-08 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 Active CN102695670B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24050809P 2009-09-08 2009-09-08
US61/240,508 2009-09-08
PCT/US2010/048125 WO2011031755A1 (en) 2009-09-08 2010-09-08 Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610075115.6A Division CN105762386A (zh) 2009-09-08 2010-09-08 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成

Publications (2)

Publication Number Publication Date
CN102695670A true CN102695670A (zh) 2012-09-26
CN102695670B CN102695670B (zh) 2016-02-24

Family

ID=43128273

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080048130.2A Active CN102695670B (zh) 2009-09-08 2010-09-08 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成
CN201610075115.6A Pending CN105762386A (zh) 2009-09-08 2010-09-08 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610075115.6A Pending CN105762386A (zh) 2009-09-08 2010-09-08 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成

Country Status (7)

Country Link
US (2) US9371227B2 (zh)
EP (1) EP2475613B1 (zh)
CN (2) CN102695670B (zh)
AU (1) AU2010292313B2 (zh)
CA (1) CA2773458C (zh)
ES (1) ES2630217T3 (zh)
WO (1) WO2011031755A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154907A (zh) * 2015-09-22 2015-12-16 中国华能集团清洁能源技术研究院有限公司 一种基于固体氧化物电解质的电解水制氧系统与方法
CN105431219A (zh) * 2013-06-14 2016-03-23 Zeg动力股份公司 用于在包括固体氧化物燃料电池的发电设备中的可持续生产能量的方法
CN106856245A (zh) * 2015-12-08 2017-06-16 财团法人工业技术研究院 整合clp与sofc的发电设备及其操作方法
CN109756184A (zh) * 2019-01-23 2019-05-14 东北石油大学 一种新型的太阳能电池-太阳能燃料联产循环系统
CN109831927A (zh) * 2016-07-14 2019-05-31 Zeg动力股份公司 用于发电和生产h2气的包括固体氧化物燃料电池(sofc)的方法和发电装置
CN110380092A (zh) * 2019-07-17 2019-10-25 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池与钙循环集成系统及方法
CN114314508A (zh) * 2021-11-30 2022-04-12 西安交通大学 一种耦合生物质烘焙和化学链转化的多联产方法及系统
CN115467747A (zh) * 2021-06-11 2022-12-13 三菱动力美洲株式会社 具有co2捕获的混合动力式发电设备

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2737946C (en) 2008-09-26 2016-11-15 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
AU2010292310B2 (en) 2009-09-08 2017-01-12 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
EP2475613B1 (en) 2009-09-08 2017-05-03 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
NO332984B1 (no) * 2009-12-22 2013-02-11 Zeg Power As Fremgangsmåte og anordning for samtidig produksjon av energi i form av elektrisitet, varme og hydrogengass
FR2955854B1 (fr) 2010-02-01 2014-08-08 Cotaver Procede et systeme de production d'hydrogene a partir de matiere premiere carbonee
FR2955918B1 (fr) 2010-02-01 2012-08-03 Cotaver Procede et systeme de production d'une source d'energie thermodynamique par la conversion de co2 sur des matieres premieres carbonees
FR2955865B1 (fr) * 2010-02-01 2012-03-16 Cotaver Procede de recyclage du dioxyde de carbone (co2)
FR2955866B1 (fr) 2010-02-01 2013-03-22 Cotaver Procede et systeme d'approvisionnement en energie thermique d'un systeme de traitement thermique et installation mettant en oeuvre un tel systeme
EP2637777A1 (en) 2010-11-08 2013-09-18 The Ohio State University Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
ES2746905T3 (es) 2011-05-11 2020-03-09 Ohio State Innovation Foundation Materiales portadores de oxígeno
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US9504982B2 (en) * 2011-11-21 2016-11-29 Regents Of The University Of Minnesota Thermochemical reactor systems and methods
FR2985517B1 (fr) * 2012-01-11 2018-05-18 Ifp Energies Now Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
US9664385B2 (en) * 2012-09-17 2017-05-30 Phillips 66 Company Process for enabling carbon-capture from existing combustion processes
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
CN105264701B (zh) 2013-03-15 2018-02-06 埃克森美孚研究工程公司 使用燃料电池的综合发电和碳捕集
US9481837B2 (en) 2013-03-15 2016-11-01 The Babcock & Wilcox Company Chemical looping processes for partial oxidation of carbonaceous fuels
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
GB2518352A (en) * 2013-07-30 2015-03-25 Cogent Heat Energy Storage Systems Ltd Energy generation process
GB2518351B (en) * 2013-07-30 2017-05-24 Origen Power Ltd Energy generation process
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9470111B2 (en) * 2014-02-14 2016-10-18 Serdar Firkan Air independent propulsion and power generation system based on exothermic reaction sourced thermal cycle
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US9865894B2 (en) * 2014-09-02 2018-01-09 The University Of Akron Solid oxide fuel cells fueled with reducible oxides
US10782016B2 (en) * 2015-03-12 2020-09-22 General Electric Technology Gmbh System and method for reducing emissions in a chemical looping combustion system
WO2016167737A1 (en) * 2015-04-17 2016-10-20 Vanderpan Peter W Method of separating and recombining the water molecule
CN109195696B (zh) 2016-04-12 2022-04-26 俄亥俄州立创新基金会 从含碳燃料化学循环生产合成气
CN106190195B (zh) * 2016-06-29 2019-01-25 清华大学 一种生物质热解-化学链燃烧制备高纯氢气的装置及方法
US10381669B2 (en) * 2016-07-13 2019-08-13 Lg Fuel Cell Systems Inc. Steam reformer for in-block fuel cell reforming
CN106252694B (zh) * 2016-09-26 2019-01-18 华南理工大学 一种全固态碳-空气电池
KR101928002B1 (ko) 2017-05-25 2018-12-12 한국과학기술원 산소공여입자 및 이산화탄소를 이용한 메탄으로부터 합성가스의 제조방법
CN107221695B (zh) * 2017-06-30 2023-05-30 北京理工大学 一种以生物质气化制氢的燃料电池系统及其发电方法
CN111065459B (zh) 2017-07-31 2023-09-22 俄亥俄州立创新基金会 具有不相等反应器组件运行压力的反应器系统
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
WO2020033500A1 (en) 2018-08-09 2020-02-13 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
CN109215809B (zh) * 2018-09-13 2022-03-01 中国核动力研究设计院 一种超临界二氧化碳反应堆微球形燃料组件
CN109181779B (zh) * 2018-09-14 2021-07-27 东南大学 一种化学链油气联产协同二氧化碳还原方法
KR102610184B1 (ko) 2018-11-30 2023-12-04 퓨얼셀 에너지, 인크 용융 탄산염 연료 전지를 위한 연료 전지 스테이징
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
KR20210107700A (ko) 2018-11-30 2021-09-01 퓨얼 셀 에너지, 인크 심층 co2 포획을 위한 용융 탄산염 연료전지들의 재생성
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
WO2020112774A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced co2 utilization
CA3129146A1 (en) 2019-04-09 2020-10-15 Liang-Shih Fan Alkene generation using metal sulfide particles
AU2020340961A1 (en) * 2019-09-03 2022-03-24 Ohio State Innovation Foundation Redox reaction facilitated carbon dioxide capture from flue gas and conversion to carbon monoxide
JP2023503995A (ja) 2019-11-26 2023-02-01 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 燃料電池モジュールのアセンブリおよびそれを使用するシステム
EP4066301A1 (en) 2019-11-26 2022-10-05 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US20220180733A1 (en) * 2020-01-10 2022-06-09 Daniel McNicholas Vapor displacement refueling including data communications
CN112448413A (zh) * 2020-11-16 2021-03-05 成都精智艺科技有限责任公司 一种近零碳排放的分布式能源供给系统及方法
US11850566B2 (en) 2020-11-24 2023-12-26 Aircela Inc. Synthetic fuel production system and related techniques
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell
WO2023201034A1 (en) * 2022-04-14 2023-10-19 Ohio State Innovation Foundation Systems and methods for redox thermal degradation of plastic materials
CN114725432A (zh) * 2022-05-05 2022-07-08 成都岷山绿氢能源有限公司 一种固体氧化物燃料电池零碳发电系统及发电工艺
CN115466637B (zh) * 2022-09-15 2024-03-22 西安交通大学 一种耦合生物质能及太阳能的燃料电池发电系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063777A (zh) * 1990-05-30 1992-08-19 石川岛播磨重工业株式会社 应用熔融碳酸盐燃料电池的深冷液化天然气发电系统
CN1198757C (zh) * 1999-12-09 2005-04-27 加利福尼亚大学董事会 从含碳物质生产氢气
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1658939A (en) 1928-02-14 Chaeles e
US2899374A (en) 1959-08-11 Methods and apparatus for handling particulate solids
US971206A (en) 1908-12-02 1910-09-27 Corp Internationale Wasserstoff Ag Process of producing hydrogen.
US1078686A (en) 1910-07-16 1913-11-18 Int Wasserstoff Ag Process for the production of hydrogen.
US2198560A (en) 1938-04-18 1940-04-23 Kellogg M W Co Method for the production of hydrogen
US2182747A (en) 1938-04-18 1939-12-05 Kellogg M W Co Production of hydrogen by the high pressure iron process
US2449635A (en) 1943-03-19 1948-09-21 Standard Catalytic Co Production of hydrogen
US2694622A (en) 1948-07-02 1954-11-16 Union Oil Co Hydrocarbon refining apparatus
US2614067A (en) 1948-07-02 1952-10-14 Union Oil Co Refining process and apparatus
US2635947A (en) 1948-07-02 1953-04-21 Union Oil Co Hydrogen process
US2686819A (en) 1949-09-01 1954-08-17 Kellogg M W Co Synthesis of methane
US2697686A (en) 1951-04-26 1954-12-21 Universal Oil Prod Co Method for effecting the conversion of fluid reactant streams by contact with a moving bed of solid particles
US3031287A (en) 1958-06-23 1962-04-24 Homer E Benson Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
US3027238A (en) 1959-12-07 1962-03-27 Universal Oil Prod Co Hydrogen manufacture
NL293037A (zh) 1962-05-23
US3338667A (en) 1963-12-02 1967-08-29 Johns Manville Recovery of silica, iron oxide and magnesium carbonate from the treatment of serpentine with ammonium bisulfate
US3421869A (en) 1964-06-01 1969-01-14 Con Gas Service Corp Method for the production of a mixture of hydrogen and steam
US3442613A (en) 1965-10-22 1969-05-06 Braun & Co C F Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared
US3573224A (en) 1967-11-14 1971-03-30 Chemical Construction Corp Production of hydrogen-rich synthesis gas
US3494858A (en) 1967-11-17 1970-02-10 Exxon Research Engineering Co Two-stage countercurrent catalyst regenerator
US3442619A (en) 1968-03-27 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process utilizing dual solids recycle
US3442620A (en) 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
US3619142A (en) 1969-02-11 1971-11-09 Consolidation Coal Co Continuous steam-iron process
US3726966A (en) 1970-10-06 1973-04-10 Phillips Petroleum Co Barium promoted iron oxide for use as a catalyst in steam-iron process for producing hydrogen
US4017270A (en) 1974-01-31 1977-04-12 Kamyr, Inc. Coal gasification process with improved procedures for continuously feeding lump coal under pressure
US4334959A (en) 1974-03-07 1982-06-15 Occidental Petroleum Corporation Mixing method and apparatus
CA1050736A (en) 1974-05-24 1979-03-20 Occidental Petroleum Corporation Mixing of particulate materials
US4057402A (en) 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
US4272399A (en) 1979-09-21 1981-06-09 Monsanto Company Conversion of carbon-containing materials to synthesis gas
US4343624A (en) 1979-12-10 1982-08-10 Caterpillar Tractor Co. Rotating fluidized bed hydrogen production system
US4325833A (en) 1980-06-27 1982-04-20 Chevron Research Company Three-stage catalyst regeneration
JPS5836034B2 (ja) 1980-12-22 1983-08-06 重質油対策技術研究組合 重質油の熱分解と共に還元鉄を製造する方法
US4348487A (en) 1981-11-02 1982-09-07 Exxon Research And Engineering Co. Production of methanol via catalytic coal gasification
US4404086A (en) 1981-12-21 1983-09-13 Standard Oil Company (Indiana) Radial flow retorting process with trays and downcomers
NL190510C (nl) 1983-02-17 1994-04-05 Hoogovens Groep Bv Gasmenger.
US4778585A (en) 1983-07-14 1988-10-18 Research Foundation Of The City Univ. Of Ny Two-stage pyrolysis of coal for producing liquid hydrocarbon fuels
US4861165A (en) 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
US4869207A (en) 1987-07-13 1989-09-26 A. Ahlstrom Corporation Circulating fluidized bed reactor
FR2619023B1 (fr) 1987-08-07 1991-04-12 Lamort E & M Injecteur melangeur sous pression
DE3727119A1 (de) 1987-08-14 1989-02-23 Didier Werke Ag Verfahren zur herstellung von katalysatoren fuer die reduzierung von stickoxiden aus abgasen oder fuer chemische luftreinigungsverfahren und nach dem verfahren hergestellte katalysatoren
US5130106A (en) 1988-12-28 1992-07-14 Uop Moving bed radial flow reactor for high gas flow
AU5635290A (en) 1989-05-01 1990-11-29 Ky Dangtran Fluidized bed device for combustion of low-melting fuels
US4902586A (en) * 1989-08-28 1990-02-20 International Fuel Cells Corporation Once through molten carbonate fuel cell system
HU9201539D0 (en) 1990-09-11 1992-08-28 Kortec Ag Method and device for gasifying gasifiable materials and/or transforming gas as well as heat exchanger of high temperature for executing said method
US5578498A (en) 1991-05-22 1996-11-26 Behringwerke Ag Metal chelate containing compositions for use in chemiluminescent assays
US5365560A (en) 1991-07-29 1994-11-15 General Electric Company Method and apparatus for acquiring a uniform distribution of radon data sufficiently dense to constitute a complete set for exact image reconstruction of an object irradiated by a cone beam source
JP3315719B2 (ja) 1992-06-03 2002-08-19 東京電力株式会社 化学ループ燃焼方式発電プラントシステム
AU660852B2 (en) 1992-11-25 1995-07-06 Elan Pharma International Limited Method of grinding pharmaceutical substances
US5509362A (en) 1992-12-11 1996-04-23 Energy And Environmental Research Corporation Method and apparatus for unmixed combustion as an alternative to fire
US5827496A (en) 1992-12-11 1998-10-27 Energy And Environmental Research Corp. Methods and systems for heat transfer by unmixed combustion
US5529599A (en) 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
JPH09272815A (ja) 1996-04-02 1997-10-21 Merck Japan Kk 金属酸化物複合微粒子及びその製造方法
TW406055B (en) 1996-04-08 2000-09-21 Air Prod & Chem Integrated steam methane reforming process for producing carbon monoxide and hydrogen
US6007699A (en) 1996-08-21 1999-12-28 Energy And Environmental Research Corporation Autothermal methods and systems for fuels conversion
JP3094093B2 (ja) 1997-03-11 2000-10-03 科学技術庁無機材質研究所長 アルカリ土類珪酸塩によるco2の固定化方法
US6025403A (en) 1997-07-07 2000-02-15 Mobil Oil Corporation Process for heat integration of an autothermal reformer and cogeneration power plant
CN1242717A (zh) 1997-10-07 2000-01-26 日本钢管株式会社 制造氢或合成气体用的催化剂及制造氢或合成气体的方法
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US5958222A (en) 1997-11-17 1999-09-28 Uop Llc Standpipe distributor for short time contact of hydrocarbon compounds with particles
US6348278B1 (en) * 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
US6334895B1 (en) 1998-07-20 2002-01-01 The University Of Wyoming Research Corporation System for producing manufactured materials from coal combustion ash
EP1138096B1 (en) * 1998-10-14 2010-10-06 IdaTech, LLC Fuel processing system
AU4835800A (en) 1999-05-07 2000-11-21 Rentech, Inc. Convertible methanol/fischer-tropsch plant and method
FI107758B (fi) 1999-11-10 2001-09-28 Foster Wheeler Energia Oy Kiertoleijureaktori
CA2340822C (en) 2000-03-17 2010-08-03 Snamprogetti S.P.A. Process for the production of hydrogen
JP2001299744A (ja) 2000-04-18 2001-10-30 Hitachi Medical Corp 医用x線装置
NZ522214A (en) 2000-04-24 2004-10-29 Shell Int Research Method and system for treating a hydrocarbon containing formation
US7247279B2 (en) 2000-08-01 2007-07-24 Enviroscrub Technologies Corporation System for removal of pollutants from a gas stream
US6509000B1 (en) 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
DE10047642A1 (de) 2000-09-26 2002-04-11 Basf Ag Verfahren zur Dehydrierung von Kohlenwasserstoffen
AU2002246736A1 (en) 2000-10-24 2002-08-06 The Johns Hopkins University Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
DE10063862A1 (de) 2000-12-21 2002-07-11 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularen Silizium
US6682714B2 (en) 2001-03-06 2004-01-27 Alchemix Corporation Method for the production of hydrogen gas
US6663681B2 (en) 2001-03-06 2003-12-16 Alchemix Corporation Method for the production of hydrogen and applications thereof
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
JP2004525062A (ja) 2001-04-20 2004-08-19 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 二酸化炭素でのミネラル炭酸化方法
EP1262235A3 (en) 2001-05-23 2003-04-16 Rohm And Haas Company Mixed-metal oxide catalysts containing molybdenum and vanadium and processes for preparing the same
US6568206B2 (en) 2001-07-18 2003-05-27 Air Products And Chemicals, Inc. Cryogenic hydrogen and carbon monoxide production with membrane permeate expander
US6494153B1 (en) 2001-07-31 2002-12-17 General Electric Co. Unmixed combustion of coal with sulfur recycle
US6669917B2 (en) 2001-07-31 2003-12-30 General Electric Co. Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide
US6834623B2 (en) 2001-08-07 2004-12-28 Christopher T. Cheng Portable hydrogen generation using metal emulsions
US6667022B2 (en) 2001-08-14 2003-12-23 General Electric Co. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
WO2003029390A1 (fr) 2001-09-28 2003-04-10 Ebara Corporation Procede de modification de gaz inflammable, appareil de modification de gaz inflammable et appareil de gazeification
US6797253B2 (en) 2001-11-26 2004-09-28 General Electric Co. Conversion of static sour natural gas to fuels and chemicals
FR2833005B1 (fr) 2001-11-30 2004-01-23 Atofina Procede de fabrication d'acide acrylique a partir de propane et en l'absence d'oxygene moleculaire
US6703343B2 (en) 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
US20030119658A1 (en) 2001-12-21 2003-06-26 Conocophillips Company Recovery of rhenium from a spent catalyst via sublimation
US20080031809A1 (en) 2006-07-18 2008-02-07 Norbeck Joseph M Controlling the synthesis gas composition of a steam methane reformer
US20030162846A1 (en) 2002-02-25 2003-08-28 Wang Shoou-L Process and apparatus for the production of synthesis gas
CA2478794A1 (en) 2002-03-13 2003-09-25 Conocophillips Company Controlled-pore catalyst structures and process for producing synthesis gas
US7244399B2 (en) 2002-04-26 2007-07-17 Foster Wheeler Energia Oy Grid construction for a fluidized bed reactor
WO2004002881A1 (ja) 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. 水素製造方法および水素供給装置
RU2005115080A (ru) 2002-10-16 2005-10-27 КонокоФиллипс Кампэни (US) Способ получения гидротермально стабильных катализаторов конверсии синтез-газа в углеводороды, способ получения углеводородов и катализатор с повышенной гидротермальной стабильностью
EP1551531A1 (en) 2002-10-17 2005-07-13 Mykrolis Corporation Method for purifying carbon dioxide
US20040126293A1 (en) 2002-10-23 2004-07-01 Geerlings Jacobus Johannes Cornelis Process for removal of carbon dioxide from flue gases
CA2448715C (en) * 2002-11-11 2011-07-05 Nippon Telegraph And Telephone Corporation Fuel cell power generating system with two fuel cells of different types and method of controlling the same
AU2003295465A1 (en) 2002-11-11 2004-06-03 Conocophillips Company Stabilized alumina supports, catalysts made therefrom, and their use in partial oxidation
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
ITMI20030192A1 (it) 2003-02-05 2004-08-06 Eni Spa Sistema catalitico e procedimento per la produzione
WO2004076017A2 (en) * 2003-02-26 2004-09-10 Questair Technologies Inc. Hydrogen recycle for high temperature fuel cells
US20040213705A1 (en) 2003-04-23 2004-10-28 Blencoe James G. Carbonation of metal silicates for long-term CO2 sequestration
US7604787B2 (en) 2003-05-02 2009-10-20 The Penn State Research Foundation Process for sequestering carbon dioxide and sulfur dioxide
US7075532B2 (en) 2003-05-23 2006-07-11 International Business Machines Corporation Robust tetrahedralization and triangulation method with applications in VLSI layout design and manufacturability
JP4387702B2 (ja) * 2003-06-24 2009-12-24 キヤノン株式会社 レンズ鏡筒
US7255840B2 (en) 2003-06-26 2007-08-14 Praxair Technology, Inc. Autothermal reactor and method for production of synthesis gas
TW200519073A (en) 2003-08-21 2005-06-16 Pearson Technologies Inc Process and apparatus for the production of useful products from carbonaceous feedstock
WO2005019779A1 (es) 2003-08-22 2005-03-03 Instituto Mexicano Del Petróleo Método de visualización de flujos multifásicos usando tomografía de capacitancia eléctrica
WO2005077818A1 (en) 2004-02-06 2005-08-25 David Tsay Single stage membrane reactor for high purity hydrogen production
ITMI20040555A1 (it) 2004-03-23 2004-06-23 Eni Spa Procedimento per la produzione di idrogeno e la co-produzione di anidride carbonica
US20050274648A1 (en) 2004-04-21 2005-12-15 Goldstein Stuart S Method for revamping fixed-bed catalytic reformers
US20060042565A1 (en) 2004-08-26 2006-03-02 Eaton Corporation Integrated fuel injection system for on-board fuel reformer
US7223714B2 (en) 2004-11-04 2007-05-29 Exxonmobil Chemical Patents Inc. Method of transferring catalyst in a reaction system
US20110289845A1 (en) 2005-04-12 2011-12-01 Ze-Gen, Inc. Method for controlling syngas production in a system with multiple feed materials using a molten metal bath
FR2889248B1 (fr) 2005-07-29 2007-09-07 Inst Francais Du Petrole Nouvelle masse active oxydo-reductrice pour un procede d'oxydo-reduction en boucle
CN101389734A (zh) 2006-01-12 2009-03-18 俄亥俄州立大学 转化燃料的体系和方法
CA2636325C (en) 2006-01-12 2015-04-28 The Ohio State University Systems and methods of converting fuel
DE102006017614A1 (de) * 2006-04-12 2007-10-18 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und zugehöriges Betriebsverfahren
WO2007122498A2 (en) 2006-04-24 2007-11-01 University Of The Witwatersrand, Johannesburg Improvement of carbon efficiencies in hydrocarbon production
NZ573217A (en) 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
WO2007134075A2 (en) 2006-05-08 2007-11-22 Alchemix Corporation Method for the gasification of hydrocarbon feedstocks
WO2008019079A2 (en) 2006-08-04 2008-02-14 Zabolotny Ernest R Gasification process
US7824574B2 (en) 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
CA2860684C (en) 2006-09-25 2015-12-01 The Ohio State University High purity, high pressure hydrogen production with in-situ co2 and sulfur capture in a single stage reactor
US20080134666A1 (en) 2006-12-11 2008-06-12 Parag Prakash Kulkarni Systems and Methods Using an Unmixed Fuel Processor
WO2008071215A1 (de) 2006-12-14 2008-06-19 Horst Grochowski Verfahren und vorrichtung zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung
US7902416B2 (en) 2006-12-28 2011-03-08 Uop Llc Fluidized bed reactor with back-mixing for dehydrogenation of light paraffins
WO2008082312A1 (en) 2007-01-05 2008-07-10 Sinvent As Hydrogen production
NO328522B1 (no) 2007-03-19 2010-03-08 Statoil Asa Fremgangsmate for produksjon av hydrogen, hydrogenproduksjonsanlegg, en vann-gassskift-reaktor samt en fremgangsmate for fremstilling av hydrogen fra syngass.
US7840053B2 (en) 2007-04-05 2010-11-23 Liao Hstau Y System and methods for tomography image reconstruction
DE102007031635A1 (de) 2007-07-06 2009-01-15 Evonik Degussa Gmbh Verfahren zur Herstellung von Metalloxidgranulaten
BRPI0812629A2 (pt) 2007-07-09 2019-09-24 Range Fuels Inc "método para a produção de gás de síntese, método de formação de gás de síntese, método de produão de um produto, aparelho, método de desvalorização de um material de partida que contém carbono e aparelho para a produção de gás síntese"
WO2009018200A1 (en) 2007-07-27 2009-02-05 The Trustees Of Columbia University In The City Of New York Methods and systems for producing synthetic fuel
US20090042070A1 (en) * 2007-08-08 2009-02-12 The University Corporation, Inc. At California State University, Northridge Barometric thermal trap and collection apparatus and method thereof for combining multiple exhaust streams into one
AT505526B1 (de) 2007-08-14 2010-09-15 Univ Wien Tech Wirbelschichtreaktorsystem
FR2923732B1 (fr) 2007-11-16 2011-03-04 Nicolas Ugolin Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh)
FR2924035B1 (fr) 2007-11-23 2010-09-03 Sebatien Roux Formulation d'oxydes, son obtention et son utilisation comme porteur d'oxygene dans un procede d'oxydation et/ou de desoxydation d'un flux gazeux
US7880481B2 (en) 2007-12-19 2011-02-01 Infineon Technologies Ag Capacitive sensor and measurement system
US8374709B2 (en) 2008-03-03 2013-02-12 Alstom Technology Ltd Control and optimization system
FR2930733B1 (fr) 2008-04-30 2014-04-11 Inst Francais Du Petrole Masse active d'oxydo-reduction et procede de combustion en boucle chimique.
WO2010033850A2 (en) 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CA2737946C (en) 2008-09-26 2016-11-15 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
WO2010063923A2 (fr) 2008-12-02 2010-06-10 Jean-Xavier Morin Installation a cycle thermochimique pour combustibles reactifs
US20100187159A1 (en) 2009-01-28 2010-07-29 Christopher Naunheimer Moving Bed Hydrocarbon Conversion Process
CA2954374A1 (en) 2009-01-21 2010-08-12 Res Usa, Llc System and method for dual fluidized bed gasification
JP2010167366A (ja) 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
FR2941689B1 (fr) 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
FR2945034B1 (fr) 2009-04-29 2012-06-08 Inst Francais Du Petrole Procede integre de production d'energie et/ou de gaz de synthese par production d'oxygene in situ, combustion et gazeification en boucle chimique
US8500868B2 (en) 2009-05-01 2013-08-06 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
US8202349B2 (en) 2009-06-30 2012-06-19 General Electric Company Method and apparatus for removal of carbon dioxide from pre-combustion syngas
US8762084B2 (en) 2009-06-30 2014-06-24 The University Of Connecticut Multiple excitation capacitance polling for enhanced electronic capacitance tomography
US8303696B2 (en) 2009-07-10 2012-11-06 Southern Company Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
US8366882B2 (en) 2009-07-14 2013-02-05 C20 Technologies, Llc Process for treating agglomerating coal by removing volatile components
FR2948177B1 (fr) 2009-07-16 2011-08-05 Inst Francais Du Petrole Procede de combustion en boucle chimique avec controle independant de la circulation des solides
WO2011021161A2 (en) 2009-08-18 2011-02-24 Oron Zachar Method and system for producing syngas
EP2475613B1 (en) 2009-09-08 2017-05-03 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
AU2010292310B2 (en) 2009-09-08 2017-01-12 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9873840B2 (en) 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
US20110094226A1 (en) 2009-10-28 2011-04-28 Mchugh Lawrence F Process and apparatus for high energy efficiency chemical looping combustion
US8961629B2 (en) 2009-12-21 2015-02-24 Southern Company Services, Inc. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors
US8761943B2 (en) 2010-01-29 2014-06-24 Alstom Technology Ltd Control and optimization system and method for chemical looping processes
US8524159B2 (en) 2010-05-28 2013-09-03 Exxonmobil Chemical Patents Inc. Reactor with reactor head and integrated valve
FR2960869B1 (fr) 2010-06-02 2014-08-08 Inst Francais Du Petrole Procede et installation de production d'oxygene par boucle chimique en lit fluidise
FR2960940B1 (fr) 2010-06-02 2015-08-07 Inst Francais Du Petrole Procede de combustion en boucle chimique avec une zone de reaction integrant une zone de separation gaz-solide et installation utilisant un tel procede
EP2601443A1 (en) 2010-08-02 2013-06-12 Siemens Aktiengesellschaft Chemical looping system
US8508238B2 (en) 2010-08-12 2013-08-13 General Electric Company System and method for performing electrical impedance tomography
CA2754948A1 (en) 2010-10-13 2012-04-13 Song Sit Chemical looping combustion
EP2637777A1 (en) 2010-11-08 2013-09-18 The Ohio State University Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
EP2450420A1 (en) 2010-11-08 2012-05-09 Shell Internationale Research Maatschappij B.V. Multi stage process for producing hydrocarbons from syngas
KR20120064030A (ko) 2010-12-08 2012-06-18 에스케이이노베이션 주식회사 이산화탄소의 배출이 저감된 가스화 방법
EP2515038A1 (en) 2011-04-21 2012-10-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Fixed bed chemical looping combustion
ES2746905T3 (es) 2011-05-11 2020-03-09 Ohio State Innovation Foundation Materiales portadores de oxígeno
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
EP3326966A1 (en) 2011-09-23 2018-05-30 Newcastle Innovation Limited Integrated chemical looping air separation in large-scale oxy-fuel plants
US9259168B2 (en) 2011-10-04 2016-02-16 The Ohio State University Adaptive electrical capacitance volume tomography
US20130255272A1 (en) 2012-03-30 2013-10-03 Alstom Technology Ltd. Method for carbon capture in a gas turbine based power plant using chemical looping reactor system
US9909756B2 (en) 2012-11-30 2018-03-06 Saudi Arabian Oil Company Staged chemical looping process with integrated oxygen generation
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063777A (zh) * 1990-05-30 1992-08-19 石川岛播磨重工业株式会社 应用熔融碳酸盐燃料电池的深冷液化天然气发电系统
CN1198757C (zh) * 1999-12-09 2005-04-27 加利福尼亚大学董事会 从含碳物质生产氢气
US20050175533A1 (en) * 2003-12-11 2005-08-11 Thomas Theodore J. Combustion looping using composite oxygen carriers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. STEINFELD ET AL.: "DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING-A CASE STUDY:TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM", 《SOLAR ENERGY》, vol. 65, no. 1, 31 December 1999 (1999-12-31), XP004362617, DOI: doi:10.1016/S0038-092X(98)00092-9 *
A. STEINFELD: "Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 27, 31 December 2002 (2002-12-31) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431219A (zh) * 2013-06-14 2016-03-23 Zeg动力股份公司 用于在包括固体氧化物燃料电池的发电设备中的可持续生产能量的方法
CN105154907A (zh) * 2015-09-22 2015-12-16 中国华能集团清洁能源技术研究院有限公司 一种基于固体氧化物电解质的电解水制氧系统与方法
CN106856245A (zh) * 2015-12-08 2017-06-16 财团法人工业技术研究院 整合clp与sofc的发电设备及其操作方法
CN106856245B (zh) * 2015-12-08 2020-08-25 财团法人工业技术研究院 整合化学回路程序装置与sofc的发电设备及其操作方法
CN109831927A (zh) * 2016-07-14 2019-05-31 Zeg动力股份公司 用于发电和生产h2气的包括固体氧化物燃料电池(sofc)的方法和发电装置
CN109756184A (zh) * 2019-01-23 2019-05-14 东北石油大学 一种新型的太阳能电池-太阳能燃料联产循环系统
CN109756184B (zh) * 2019-01-23 2021-09-14 东北石油大学 一种太阳能电池-太阳能燃料联产循环系统
CN110380092A (zh) * 2019-07-17 2019-10-25 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池与钙循环集成系统及方法
CN115467747A (zh) * 2021-06-11 2022-12-13 三菱动力美洲株式会社 具有co2捕获的混合动力式发电设备
CN115467747B (zh) * 2021-06-11 2023-09-05 三菱动力美洲株式会社 具有co2捕获的混合动力式发电设备
CN114314508A (zh) * 2021-11-30 2022-04-12 西安交通大学 一种耦合生物质烘焙和化学链转化的多联产方法及系统
CN114314508B (zh) * 2021-11-30 2023-07-11 西安交通大学 一种耦合生物质烘焙和化学链转化的多联产方法及系统

Also Published As

Publication number Publication date
EP2475613A1 (en) 2012-07-18
ES2630217T3 (es) 2017-08-18
CN102695670B (zh) 2016-02-24
US20120171588A1 (en) 2012-07-05
CA2773458C (en) 2018-05-08
AU2010292313A1 (en) 2012-04-12
AU2010292313B2 (en) 2015-08-20
CN105762386A (zh) 2016-07-13
EP2475613B1 (en) 2017-05-03
CA2773458A1 (en) 2011-03-17
US20160268616A1 (en) 2016-09-15
US9371227B2 (en) 2016-06-21
WO2011031755A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
CN102695670B (zh) 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成
CA2902864C (en) Integration of molten carbonate fuel cells with fermentation processes
US8349504B1 (en) Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier
CN105518112B (zh) 包括发电装置烟气的co2甲烷化的发电装置和甲烷化方法
Wang et al. Clean and efficient use of petroleum coke for combustion and power generation
CN107221695B (zh) 一种以生物质气化制氢的燃料电池系统及其发电方法
US20130017460A1 (en) Sorption enhanced methanation of biomass
KR20160114632A (ko) 수소 생성을 위한 개질기-전해조-정제기(rep) 어셈블리, 이를 통합한 시스템들 및 수소를 생성하는 방법
CN102597173A (zh) 具有原位co2捕集的合成燃料和化学品生产
CN110156047B (zh) 一种固体氧化物电解/化石燃料合成氨耦合的合成氨方法
CN116134159A (zh) 用于操作冶金设备以生产铁制品的方法
Wang et al. Hydrogen production
KR101441491B1 (ko) 석탄가스화 복합발전 연계형 연료전지 시스템 및 가스 공급 방법
Gnanapragasam et al. Hydrogen production using solid fuels
CN115245729A (zh) 一种钢铁流程co2转化循环利用的方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160222

Address after: American Ohio

Patentee after: OHIO STATE INNOVATION FOUNDATION

Address before: American Ohio

Patentee before: The Ohio State Univ. Research Foundation