TW406055B - Integrated steam methane reforming process for producing carbon monoxide and hydrogen - Google Patents

Integrated steam methane reforming process for producing carbon monoxide and hydrogen Download PDF

Info

Publication number
TW406055B
TW406055B TW085104198A TW85104198A TW406055B TW 406055 B TW406055 B TW 406055B TW 085104198 A TW085104198 A TW 085104198A TW 85104198 A TW85104198 A TW 85104198A TW 406055 B TW406055 B TW 406055B
Authority
TW
Taiwan
Prior art keywords
hydrogen
water
stream
reactor
gas
Prior art date
Application number
TW085104198A
Other languages
Chinese (zh)
Inventor
Jeffrey Raymond Hufton
Shivaji Sircar
William Frederick Baade
Joseph Michael Abrardo
Madhu Anand
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/624,149 external-priority patent/US6312658B1/en
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Application granted granted Critical
Publication of TW406055B publication Critical patent/TW406055B/en

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention is a process for producing an essentially pure carbon monoxide (CO) product and an essentially pure hydrogen product by reforming a hydrocarbon such as methane and steam in the presence of a reforming catalyst to produce a reformate product enriched in CO, carbon dioxide and hydrogen. The reformate is subjected to an integrated series of separation steps and carbon dioxide present in a portion of the waste effluent recovered from such series of separation steps is shifted to CO in an integrated sorption enhanced reaction (SER) process.

Description

4 i0605l 幻..u.. A7 B7 五、發明説明( TT997年11月修正) 相關由請窭的相互參照 (請先閱讀背面之注意事項再填寫本頁) 本申請案是1 995年4月10日提出的美國專利申請案號 08/419,317之部分連續申請案,該案之說明書及申請專利 範圍被參考合倂於本案而且當作本申請案·的—部份。 發明的枝術領域 —Ί 本發明爲一種生產一種實質上純粹的一氧化碳(co)產 品及一種實質上純粹的氫產品的方法,其爲在一種重組催 化劑的存在下藉著重組烴和蒸汽以生產一種富含C〇、二 氣化碳和氫的重組產品。該IE組氣經一種整合性分離步驟 丨]*;列的處理,II.存在於一來丨‘:!該些分離步驟序列的廢氣流 出物的二氧化碳和氫於··極整合性吸附增強反應(SER)力 沾屮被轉化成CO。 發明的背景 一氧化碳的生產典型地爲在高溫度催化重組一種有蒸 汽的烴進料,和可選擇性地,二氧化碳。該反應在一種蒸 汽甲烷重組器(SMR)中進行,該重組器包含被裝在一種裝 滿催化劑小管的爐中。離開重組器的合成氣依照在下列的 反應中被建立的平衡而且包含一氧化碳(CO)以及氫、二氧 化碳(C02)、蒸汽和未被轉化的甲烷。 CH4 + H20 <--> 3H2 + CO 蒸汽重組 H2〇 + CO <--> H2 + C02 水煤氣轉化 CH4 + C〇2 <--> 2H2 + 2C0 C〇2重組 ‘人&八.,:.>!,^作家栉準(CIS’S ) Λ4規格(210X297公超) 經濟部中央標準局員工消費合作社印製 A7 ^υο055_Β7__ 五、發明説明(2 ) 上述的反應通常在高溫度(800-1000 °C)和高壓力 (5-30大氣壓)中進行,其中該些反應物與一種以鎳爲基 礎的催化劑接觸。這些反應受到熱力學控制。因此,重組 流出物的成分將決定於包括壓力、溫度、反應器進料裡的 蒸汽/甲烷莫耳比和反應器進料裡的二氧化碳濃度的許多 變數。當SMR反應使用一種不含C02而含有3:1水/甲烷 莫耳比的進料混合物在8 5 0 °C和2 5大氣壓中進行的時候, 典型的SMR流出物成分(莫耳分率)含有75 % H2, 13% CO, 8.5% C〇2和5.5 % CH4。該SMR流出物經過一連 串的反應和分離操作以回收高純度的氫產品(9 9 . 9 +莫爾 % )或高純度的C 0產品(9 9 . 5 +莫爾% )。 商業的SMR工廠生產的一氧化碳典型地被用於經由 光氣化學生產異氰酸酯和聚碳酸酯。另外,用來生產羰氧 醇的某些方法需要用到一種1:1氫對一氧化碳的合成氣。 在此些S M R方法階段所形成的副產品氫和流出蒸汽可能 有燃料價値,但是可能未被當做產品。 如工業界中被廣爲人知地,於重組器原料之內注入 C02和藉由降低SMR原料裡蒸汽對烴的比率可以生產高 一氧化碳含量的合成氣。藉由再循環產生而且分離自合成 氣或回收自火爐煙道氣的C02或自外面來源輸入額外的 C02進入原料之內可以進一步提高SMR原料中C02的濃 度。具有高C02對甲烷比率和減少蒸汽量的SMR原料抑 制水煤氣轉化反應從CO產生額外的H2而且在極端的反應 條件之下將會使反應倒過來而自H2產生額外的CO。在 -4- 本紙張尺度適用中國國家揉準(CNS ) Λ4規格(210X297公釐] 83.3.10,000 -------------------1---訂-------你’ % (請先閲讀背面之注意事項再填寫本頁) 五、發明説明(3 ) SMR原料裡一些C02也會與甲烷反應以產生具有低 H2/CO比的共生氣體。 在傳統的SMR方法中所生產C0的數量受到反應熱力 學限制,其中相對地低的C 0轉化率(~ 1 0 - 1 5 % )使得回收 所需要的C0產品必需相當的分離努力。已知有很多的先 前技藝SMR方法用於生產合成氣,其利用多種分離循環 以從典型地包含氫、一氧化碳、C02和甲烷的混合氣之 SMR重組流出物中回收所需要的一氧化碳產品。 美國專利3 , 9 8 6,8 4 9揭示一種如圖1所描述之以轉化 水和一種例如天然氣的甲烷來源成爲氫產品的SMR方 法。甲烷和水經由管線1被導入一個傳統的SMR反應器2 之內,而且在重組條件之下反應以生產富含氫的重組氣物 流3。物流3被導入冷凝器4之內以在250-350 °C中間溫度 生產蒸汽和經冷卻的重組氣物流6。該經冷卻的重組氣接 著被導入水煤氣轉化反應器7 (高溫度轉化反應器,單獨或 與一個低溫度轉化反應器組合)以藉由使C0與H20依照 反應式(CO + H20 <--> C02 + H2)將重組氣物流6 裡一部分的C 0轉化成氫。 經濟部中央標準局貝工消費合作社印製 當氫是被需要產品的時候,上述的轉化反應在全部的 方法裡扮演一種關鍵性的角色,因爲在分離重組產品混合 物以生產實質上純氫之前該轉化反應增加了重組產品混合 物裡的氫濃度和量。藉著與冷凝器9裡的冷卻水進行間接 熱交換,轉化反應器流出物8被進一步冷卻到接近周圍溫 度(25-50 °C),於其中相當量的水自重組氣中經由管線 83.3. !0,〇〇〇 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標隼局貝工消費合作杜印製 A7 B7 五、發明説明(4 ) 10被冷凝而且移除。最後,離開冷凝器的物流il被導入 一個氫壓力增減吸附單元(H2-PSA)之內以經由物流14 生產純氫和可於重組器中當做燃料的廢氣物流13 » 美國專利4 , 1 7 1,2 0 6揭示一種如圖2所描述的S M R 方法用於轉化水和一種例如天然氣的甲烷來源以同時地生 產一種高純度氫產品和高純度C Ο 2產品。甲烷和水經由管 線21被導入一個傳統的SMR反應器22之內,而且在重組 條件之下反應以生產重組氣物流23。 物流23被導入冷凝器24之內以生產在中間溫度25〇-3 5 0 °C經冷卻的重組氣物流2 6和凝液物流(未編號)。該 被冷卻的重組氣然後被導入水煤氣轉化反應器2 7之內以 將在重組氣物流26裡的一部分CO轉化成氫。藉著與冷凝 器29裡的冷卻水進行間接的熱交換,轉化反應器流出物 28被進一步地冷卻到接近周圍溫度(25-50 °C),其中相 當量的水從重組氣中被冷凝而且經由管線30被移除。最 後,離開冷凝器29的重組氣物流31被導入C02眞空增減 吸附(VSA)單元32之內,於其中該重組氣被分離以提供 一實質上純粹的C02產品物流35。來自C〇2 VSA單元 32的廢氣經由管線34被導入H2-PSA單元38之內並且被 分離以生產一實質上純粹的氫物流3 7和可於重組器2 2中 當做燃料的廢氣物流36 » C〇2 VSA單元32和H2 - PSA單 元36被整合以獲得最大的分離效率。 一個傳統的SMR方法被描述在圖3,於其中水和一種 甲烷來源經由管線41被導入一個傳統的SMR反應器42之 -6- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 — .1 II ‘裝 II訂— 氣 (請先聞讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印製 406055 五、發明説明(5 ) 內而且在重組條件之下反應以生產重組氣物流4 3。物流 43被導入一個含有一種物理化學溶劑(physicochemical solvent)的C〇2吸收/汽提器44之內,該溶 劑將C02自預先冷卻的SMR流出物移除以提供含有實質 上純C02的物流45和C02耗竭的重組氣物流46,該物流 46被導入熱增減吸附單元47之內以除去水和剩餘的C02 並經由管線4 8從吸附單元4 7被排出。水和C 0 2耗竭的物 流49被導入極冷冷箱50之內以生產實質上純粹的氫物流 51 '實質上純粹的CO物流53和可於重組器42中當做燃 料含有未反應甲烷的廢棄物流52 » 另外的一個傳統SMR方法被描述於圖4,其中水和一 種甲烷來源經由管線61被導入一個傳統的SMR反應器62 之內而且在重組條件之下反應以生產重組氣物流6 3。物 流63被導入一個含有一種物理化學溶劑的C02吸收/汽提 器44之內,該溶劑將C02自預先冷卻的SMR流出物移除 以提供一個富含C 0 2的物流6 5,該物流6 5可能經由壓縮 機66被壓縮而且當做C〇2進料經由管線67被再導入SMR 反應器62之內。C02耗竭的重組氣物流68經由管線71離 開TSA單元69並被導入極冷冷箱72之內以生產實質上純 粹的氫物流73、實質上純粹的C0物流75和可於重組器 62中當做燃料含有未反應甲烷的廢棄物流74。 美國專利4,9 1 5,7 1 1揭示如圖5所描述的一種S M R 方法。水和一種甲烷來源經由管線81被導入一個傳統的 SMR反應器82之內而且在重組條件之下反應以生產重組 -7- 本紙張;^1適用中國國家樣準(匚灿)八顿為(2丨0父297公釐) 83. 3.10,000 I I I I I I I 訂— I I I I 1-^ (請先聞讀背面之注^^項再填寫本頁) 經濟部中央標率局負工消費合作社印製 <ιϋβ055 %_ 五、發明説明(6 ) 氣物流83。另外,一個C02物流也能被導入重組器之內 以增加C0生產。物流83被導入冷凝器84之內以生產在中 間溫度3 0 ° - 1 2 0 °C的水凝液蒸汽8 5和經冷卻的重組氣物 流86。該經冷卻的重組氣接著被導入CO-VSA87之內’ 於其中該重組氣被分離以提供一實質上純粹的C0產品物 流8 8和可於重組器8 2中當做燃料的廢氣物流8 9。 另一個SMR方法被描述於圖6,於其中水和一種甲院 來源經由管線91被導入一個傳統的SMR反應器92之內而 且在重組條件之下反應以生產重組氣物流93。 物流93被導入冷凝器94之內以生產在中間溫度30° -1 20 °C的水凝液蒸汽9 5和經冷卻的重組氣物流96。該經 冷卻的重組氣接著被導入CO-VSA97之內,於其中該重 組氣被分離以提供一實質上純粹的C02產品物流98,而 藉由使CO-VSA廢氣物流流經管線99進入一種傳統的聚 合物薄膜100之內以進一步處理廢氣物流99並提供廢氣物 流101,該物流101經由壓縮機103被壓縮而且當做額外 的原料經由管線104被導入SMR反應器92之內。 圖7描述了生產實質上純粹的CO和實質上純粹的氫之 另一個SMR方法。水和一種甲烷來源經由管線111被導 入一個傳統的SMR反應器112之內而且在重組條件之下 反應以生產重組氣物流113。物流113被導入冷凝器114 之內以生產經冷卻的重組氣物流1 1 6,該物流1 1 6被導入 水煤氣轉化反應器117之內以轉化一部分的水和重組氣物 流116成爲氫。該富含氫的重組氣127通過冷凝器128以 本紙張尺度適用中國國家揉準(CNS > Α4規格(210Χ297公釐) 83.3.10,000 (請先閱讀背面之注$項再填寫本頁) -裝4 i0605l Magic..u .. A7 B7 V. Description of the Invention (Amended in TT997) Cross-references are requested (Please read the notes on the back before filling this page) This application is April 1995 Part of the serial application of US Patent Application No. 08 / 419,317 filed on the 10th, the description of the case and the scope of the patent application are incorporated in this case and are deemed to be part of this application. Field of Invention of the Invention—Ί The present invention is a method for producing a substantially pure carbon monoxide (co) product and a substantially pure hydrogen product, which are produced by recombining hydrocarbons and steam in the presence of a recombination catalyst A reconstituted product rich in CO, digassed carbon and hydrogen. The IE group gas undergoes an integrated separation step 丨] *; column treatment, II. Exists in one's one: '!! The carbon dioxide and hydrogen of the exhaust effluent of the separation step sequence are extremely integrated adsorption enhancement reactions (SER) Force is converted to CO. BACKGROUND OF THE INVENTION The production of carbon monoxide is typically the catalytic recombination of a steamed hydrocarbon feed at high temperatures, and optionally, carbon dioxide. The reaction is carried out in a steam methane reformer (SMR), which comprises a furnace filled with a small tube filled with catalyst. The syngas leaving the recombiner follows the equilibrium established in the following reaction and contains carbon monoxide (CO) and hydrogen, carbon dioxide (C02), steam, and unconverted methane. CH4 + H20 <-> 3H2 + CO steam reorganization H2〇 + CO <-> H2 + C02 water gas conversion CH4 + C〇2 <-> 2H2 + 2C0 C〇2 reorganization 'human &; .. ::. ≫!, ^ Writer 栉 quasi (CIS'S) Λ4 specification (210X297 public super) Printed by A7 ^ υο055_Β7__ of the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (2) The above reactions are usually high Temperature (800-1000 ° C) and high pressure (5-30 atmospheres), where the reactants are contacted with a nickel-based catalyst. These reactions are thermodynamically controlled. Therefore, the composition of the reconstituted effluent will depend on many variables including pressure, temperature, steam / methane mole ratio in the reactor feed, and carbon dioxide concentration in the reactor feed. Typical SMR effluent composition (mol fraction) when the SMR reaction is performed using a feed mixture containing no CO2 and a 3: 1 water / methane molar ratio at 85 ° C and 25 atmospheres. Contains 75% H2, 13% CO, 8.5% CO2 and 5.5% CH4. The SMR effluent is subjected to a series of reactions and separation operations to recover a high-purity hydrogen product (99. 9 + mole%) or a high-purity CO product (99. 5 + mole%). Commercially produced carbon monoxide from SMR plants is typically used to produce isocyanates and polycarbonates via phosgene chemistry. In addition, some methods used to produce carbonyloxy alcohol require a 1: 1 hydrogen-to-carbon monoxide synthesis gas. Hydrogen and effluent steam formed as by-products of these SMR process stages may have fuel prices, but may not be considered as products. As is widely known in the industry, injecting CO2 into the reformer feedstock and reducing the steam to hydrocarbon ratio in the SMR feedstock can produce syngas with high carbon monoxide content. The CO2 concentration in the SMR feedstock can be further increased by recycling CO2 that is generated and separated from syngas or recovered from the furnace flue gas, or that extra CO2 is input from outside sources into the feed. SMR feedstocks with a high CO2 to methane ratio and reduced steam volume inhibit the water-gas conversion reaction from generating additional H2 from CO and under extreme reaction conditions will reverse the reaction and generate additional CO from H2. In -4- this paper size applies Chinese National Standard (CNS) Λ4 specification (210X297 mm) 83.3.10,000 ------------------- 1 --- order- ------ You '% (Please read the notes on the back before filling out this page) 5. Description of the invention (3) Some C02 in SMR raw materials will also react with methane to produce a symbiotic gas with a low H2 / CO ratio The amount of C0 produced in traditional SMR methods is limited by reaction thermodynamics, where the relatively low C0 conversion rate (~ 1 0-15%) makes it necessary to recover the required C0 product with considerable separation effort. It is known There are many prior art SMR methods for the production of syngas, which utilize multiple separation cycles to recover the required carbon monoxide product from a SMR reconstituted effluent typically containing a mixture of hydrogen, carbon monoxide, CO2 and methane. US Patent 3, 9 8 6, 8 4 9 reveals an SMR method for converting hydrogen and a source of methane, such as natural gas, into hydrogen products as described in Fig. 1. Methane and water are introduced into a conventional SMR reactor 2 via line 1, And react under recombination conditions to produce a hydrogen-rich recombination gas stream 3 Stream 3 is introduced into condenser 4 to produce steam and cooled reformed gas stream 6 at an intermediate temperature of 250-350 ° C. This cooled reformed gas is then directed to a water gas conversion reactor 7 (high temperature conversion reactor, Alone or in combination with a low-temperature conversion reactor) to convert a portion of C 0 in the recombined gas stream 6 to hydrogen by making C0 and H20 according to the reaction formula (CO + H20 <-> C02 + H2). Economy Printed by the Central Bureau of Standards, Shellfish Consumer Cooperative, the above-mentioned conversion reaction plays a key role in all methods when hydrogen is a required product, because the conversion should be performed before separating the recombination product mixture to produce substantially pure hydrogen. The reaction increases the concentration and amount of hydrogen in the reconstituted product mixture. By indirect heat exchange with the cooling water in the condenser 9, the conversion reactor effluent 8 is further cooled to near ambient temperature (25-50 ° C), at A considerable amount of water is passed from the recombined gas through the pipeline 83.3.! 0, 〇〇〇 (Please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification ( (210X297 mm) A7 B7, printed by Shelley Consumer Cooperation, Central Bureau of Standards, Ministry of Economic Affairs 5. Description of the invention (4) 10 is condensed and removed. Finally, the stream il leaving the condenser is introduced into a hydrogen pressure increase / absorption unit. (H2-PSA) to produce pure hydrogen through stream 14 and an exhaust stream that can be used as fuel in a reformer 13 »US Patent 4, 1 7 1, 2 0 6 discloses an SMR method as described in Figure 2 for Water and a methane source such as natural gas are converted to produce a high purity hydrogen product and a high purity CO 2 product simultaneously. Methane and water are introduced into a conventional SMR reactor 22 via a line 21 and are reacted under recombination conditions to produce a recombined gas stream 23. Stream 23 is introduced into condenser 24 to produce a cooled recombined gas stream 26 and a condensate stream (not numbered) at an intermediate temperature of 25-30 ° C. The cooled reformed gas is then introduced into a water gas reforming reactor 27 to convert a portion of the CO in the reformed gas stream 26 to hydrogen. By indirect heat exchange with the cooling water in the condenser 29, the conversion reactor effluent 28 is further cooled to near ambient temperature (25-50 ° C), in which a considerable amount of water is condensed from the reformed gas and It is removed via line 30. Finally, the reconstituted gas stream 31 leaving the condenser 29 is directed into a CO 2 air-addition, reduction (adsorption) (VSA) unit 32 where the reformed gas is separated to provide a substantially pure CO 2 product stream 35. The exhaust gas from the CO2 VSA unit 32 is directed into the H2-PSA unit 38 via line 34 and separated to produce a substantially pure hydrogen stream 37 and an exhaust gas stream 36 that can be used as fuel in the reformer 22 2 » The Co2 VSA unit 32 and the H2-PSA unit 36 are integrated for maximum separation efficiency. A traditional SMR method is described in Figure 3, in which water and a methane source are introduced into a traditional SMR reactor 42-6 through line 41.-This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ) 83.3.10,000 — .1 II 'bound II book — gas (please read the notes on the back before filling out this page) Printed by the Shell Standard Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 406055 5. The invention description (5) React under recombination conditions to produce recombined gas stream 43. Stream 43 is directed into a CO2 absorber / stripper 44 containing a physical chemical solvent, which removes CO2 from the pre-cooled SMR effluent to provide stream 45 containing substantially pure CO2 And C02 depleted recombined gas stream 46, which is introduced into the thermal increase / decrease adsorption unit 47 to remove water and remaining CO2 and is discharged from the adsorption unit 47 via line 48. Water and C 0 2 depleted stream 49 are introduced into a cryogenic cold box 50 to produce a substantially pure hydrogen stream 51 'a substantially pure CO stream 53 and a waste containing unreacted methane that can be used as fuel in a reformer 42 Stream 52 »Another conventional SMR process is depicted in Figure 4 where water and a methane source are introduced into a traditional SMR reactor 62 via line 61 and reacted under recombination conditions to produce a recombined gas stream 6 3. Stream 63 is directed into a CO 2 absorber / stripper 44 containing a physicochemical solvent that removes CO 2 from the pre-cooled SMR effluent to provide a CO 2 enriched stream 6 5 which stream 6 5 may be compressed via compressor 66 and reintroduced into the SMR reactor 62 as line C02 feed via line 67. The C02 depleted reformed gas stream 68 leaves the TSA unit 69 via line 71 and is introduced into the cryogenic cold box 72 to produce a substantially pure hydrogen stream 73, a substantially pure CO stream 75, and can be used as fuel in the reformer 62. Waste stream 74 containing unreacted methane. U.S. Patent No. 4,9 1 5,7 1 1 discloses an SMR method as described in FIG. Water and a source of methane are introduced into a traditional SMR reactor 82 via line 81 and reacted under recombination conditions to produce reorganized paper. ^ 1 Applicable to China's national standards 2 丨 0 Father 297 mm) 83. 3.10,000 IIIIIII Order — IIII 1- ^ (Please read the note ^^ on the back before filling out this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives < ιϋβ055% _ V. Description of the invention (6) Gas flow 83. In addition, a C02 logistics can also be introduced into the reorganizer to increase C0 production. Stream 83 is directed into a condenser 84 to produce a condensate vapor 85 and a cooled recombined gas stream 86 at an intermediate temperature 30 °-120 ° C. The cooled reformed gas is then introduced into CO-VSA87 'where the reformed gas is separated to provide a substantially pure CO product stream 8 8 and an exhaust stream 8 9 that can be used as fuel in the reformer 8 2. Another SMR method is depicted in FIG. 6, where water and a source of A hospital are introduced into a conventional SMR reactor 92 via line 91 and reacted under recombination conditions to produce a recombined gas stream 93. Stream 93 is introduced into a condenser 94 to produce a condensate vapor 95 and a cooled reformed gas stream 96 at an intermediate temperature of 30 ° -1 20 ° C. The cooled recombined gas is then introduced into CO-VSA97, where the recombined gas is separated to provide a substantially pure CO2 product stream 98, and the CO-VSA exhaust stream is passed through line 99 into a traditional The polymer film 100 further processes the exhaust gas stream 99 and provides an exhaust gas stream 101 which is compressed via a compressor 103 and is introduced into the SMR reactor 92 as additional raw material via a line 104. Figure 7 illustrates another SMR process for producing substantially pure CO and substantially pure hydrogen. Water and a methane source are directed into a conventional SMR reactor 112 via line 111 and reacted under recombination conditions to produce a recombined gas stream 113. Stream 113 is introduced into condenser 114 to produce a cooled reformed gas stream 1 1 6 which is introduced into a water gas conversion reactor 117 to convert a portion of the water and reformed gas stream 116 to hydrogen. The hydrogen-rich recombined gas 127 is adapted to the Chinese national standard (CNS > Α4 (210 × 297 mm)) through the condenser 128 at this paper size. 83.3.10,000 (Please read the note on the back before filling this page)- Hold

、1T 經濟部中央標準局貝工消費合作社印装 406055_^_ 五、發明説明(7 ) 除去水而且水耗竭的物流129進入H2-PSA單元130之內 以提供可於重組器112中當做燃料的廢物物流132和實質 上純粹的氫物流1 3 1。打開閥1 1 7 a之後一部分的重組氣 能因而流入管線118。此重組氣被導入冷凝器119之內以 在經管線121進入CO-VSA 122之前冷卻氣體而且移除 水分,於其中重組氣被分離以提供實質上純粹的CO物流 123和CO耗竭的物流124,後者可選擇性地被壓縮機或 鼓風機1 2 5壓縮而後與管線1 2 9合倂以進入Η 2 - P S A 1 3 0 〇 圖8描述了生產實質上純粹的CO和實質上純粹的氫之 另一個SMR方法。水和一種甲烷來源經由管線201被導 入一個傳統的SMR反應器202之內而且在重組條件之下 反應以生產重組氣物流2 0 3。物流2 0 3被導入冷凝器204 之內以生產經冷卻的重組氣物流206,該物流206被導入 一個CO-VSA單元以提供一種實質上純粹的CO物流208 和一種C0耗竭的物流209,該C0耗竭的物流209被導入 一個氫-PSA單元210。該程序物流在該氫- PSA單元210 之內被進一步分離以提供一種實質上純粹的氫物流2 1 2和 一種能在重組器2 0 2用作燃料的廢氣物流2 1 1。 熟於蒸汽甲烷重組技藝的人士正致力於尋找改良的重 組方法,其中所需要C 0產品和氫產品的轉化被最大化。 而且,一種促進co2和氫反應以形成C0和水〔逆水煤氣 轉化反應〕的方法將會非常合乎業界需求。不幸地,沒有 已知先前技藝SMR方法整合能直接將存在於程序物流裡 -9- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 II I 裝 一~ 訂 n ϋ 1^, (請先閲讀背面之注意事項再填寫本頁) δα a 406055 'i\7 (1997年11月修正) 五、發明説明(8 的C02和氫轉化成CO和水。該逆水煤氣轉化反應在溫度 (請先閱讀背面之注^T項再填寫本頁) 800°C時爲熱力學地不宜而且溫度典型地需要超過1 〇〇0°C才 能獲得適度的co2轉化成CO。因此,該逆水煤氣轉化反應 還沒有被成功地整合進入SMR方法之內並用於生產CO。 而且,進行同時反應和吸附步驟的先前技藝方法尙未 達成商業的成功,因爲產物流率未能維持充份的固定而且 相較於不希望得到的反應產物、未反應的原料和沖洗液而 言被需要產品的存在濃度過低。工業界正在尋找方法來改 良SMR方法以同時地生產CO和氫。 發明槪要總結 木發叨α ·稱生齑·祯设贯上純粹的·氣化碳(CO>產 品及·秫贺質上純粹的氫淹品的方法,其爲在一種重組催 化劑的存在下藉著m組ψ烷和蒸汽以生產一種富含c〇、 二氣化碳和氫的重組齑品。該®組氣經-·種整合性分離步 驟序列的處埋,且存在於一來肉該些分離步驟序列的廢氣 流出物的二氧化碳和氫於一種整合性吸附增強反應(SER) 方法中被轉化成CO。 本案申請的方法克服了跟先前技藝方法有關的問題, 後者於重組甲烷與水成爲一氧化碳時典型地遭遇到生產一 種包含未轉化成所要CO產品的過量C02之重組氣,其必須 從重組氣經由昂貴的分離循環而被分離出來。而且,本案 申請的方法克服了與逆水煤氣轉化反應有關的熱力學限 制,於該反應C02和氫被轉化成CO和水。 -10 .UK;1;榀隼(C,NS ) Λ4現格(210X 297公) 繼峨㈣’正^___ 五、發明説明(9 ) (1997年11月修正) 申請人的發明解決了這些問題,其將SMR重組氣進行 第一分離以生產一種實質上純粹的C0產品和一種C0耗竭 的產品,將該CO耗竭的物流進行另一分離以形成一種實 質上純粹的氫產品和一種氫耗竭的物流。·存在於該氮耗竭 物流的二氧化碳因使用一種吸附增強反應(SER )方法而與 氫反應,其允許逆水煤氣的進行在250-350°C的溫和溫度和 5-30大氣壓的壓力下有著高C02到CO轉化率。所生產富含 CO的物流被再循環以回收CO。 . 申請人的方法整合一種SER方法,其在複數反應器裡 進ί」· 一連串的循環步驟將C02轉化成CO而且將轉化氣體產 品混合物分離成·柿經濃縮的CO物流。侮個反應器乜含 •柿轉化催化劑fll ·秫水吸附劑的摻和劑,於其屮水從反 應區在轉化反應條件之下被物理吸附而被選擇性地移除藉 此將反應平衡改變朝丨(ϋ形成所要的CO。藉由依照一預定 的計時序列利用一連串的沖洗和解壓步驟被吸附的水被從 吸附劑分離出來。因此,申請人之整合於所屮請方法的 SER方法表現了一種全新的循環以同時地獲得C〇2到CO的 高轉化率、生產經濃縮的CO流出物物流、有效率地自吸 附劑脫吸附水以及準備每個反應器以供下一個方法循環。 申請人之生產一種CO產品和一種氫產品方法之一般具 體實施例包含一個啓始步驟,其使一種含有甲烷和水的原 料在一種蒸汽甲烷重組催化劑的存在下、於溫度範圍從 n l·— I Li I IT I I n I I n n T V * 'VT (請先閲讀背面之注意事項再填寫本頁) -11 - 經濟部中央揉率局負工消費合作社印製 A7406055_B7_ 五、發明説明(l〇) 700 °C到1000 °C和壓力範圍從2到50大氣壓下、進行反 應以形成包含氫、一氧化碳、二氧化碳和未反應原料的一 種重組氣。 該一般具體實施例的第二個步驟包含將水自該重組氣 移除以形成一種水耗竭的重組氣而且將該水耗竭的重組氣 分離成CO產品和一種CO耗竭的物流。 本方法的第三個步驟考慮到將該CO耗竭的物流分離 成氫產品和一種氫耗竭的物流並且壓縮該氫耗竭的物流以 形成一種經加壓的氫耗竭物流。 該一般具體實施例的第四個步驟包含將該氫耗竭的物 流導入複數反應器之內,該些反應器依照下列的步驟以預 定的計時序列操作,該些步驟於每個反應器裡皆被循環進 行: (1 )於含有水吸附劑和水煤氣轉化催化劑的一種摻和 劑的第一個反應器裡、於第一壓力及在足以將二氧 化碳和氫轉化成一氧化碳並且將水吸附在吸附劑之 上的反應條件下、使該經加壓的氫耗竭物流進行反 應以形成一被再循環到第二步驟的水耗竭重組氣物 流之富含CO的物流; (2)藉由排出一種包含氫、二氧化碳、一氧化碳和水 的混合物而將該第一個反應器逆流地解壓到第二壓 力; (3 )在該第二壓力以一種對該吸附劑呈弱吸附的沖洗 流體逆流地沖洗該第一個反應器,以自該吸附劑將 -12- _ f - I 1 i I n 訂 I I-^ (請先閲讀背面之注$項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央標準局貝工消費合作社印製 A7 406055 B7 五、發明説明(11) 水去吸附而且排出一種包含弱吸附沖洗流體、未反 應的原料、一氧化碳和水的混合物; (4) 在該第二壓力以一種不含氫和二氧化碳而富含C0 的沖洗流體逆流地沖洗該第一個反應器以去吸附該 弱吸附沖洗流體,而且排出一種包含該弱吸附沖洗 流體、一氧化碳和水的混合物;和 (5) 在第一個反應器開始另一個循環之前以該富含C0 的沖洗流體將該第一個反應器從該第二壓力逆流地 加壓到第一壓力。 在一般的具體實施例之下亦可能進行額外的步驟。舉 例來說,一種氫或二氧化碳來源可被導入第三個步驟的氫 耗竭物流,以控制存在於依照第四個步驟之次步驟(1)之 第一個反應器中氫對二氧化碳的比率。或者,在次步驟 (〇之後次步騾(2)之前,該第一個反應器可以被一種弱 吸附沖洗流體在第一壓力逆流地沖洗,且一種包含未反應 的原料、一氧化碳和水的混合物從反應器被排出》 進行依照一般和另一具體實施例的蒸汽甲烷重組反應 所適用的催化劑包括傳統的蒸汽甲烷重組和預重組催化 劑,例如鎳-氧化鋁、鎳-鎂氧化鋁和貴金屬催化劑。 如一般具體實施例所陳述地,SER循環考慮到在複數 反應器裡進行一連串的循環步驟,該些反應器含有一種轉 化催化劑和一種水吸附劑的摻和劑。該轉化催化劑和水吸 附劑的摻和劑包含5 - 9 5重量%的吸附劑和9 5 - 5重量%的 催化劑。適當的水吸附劑包括那些選自由沸石、氧化鋁或 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) * If * ---------、裝------L------斧 (請先W讀背面之注意事項再填寫本頁) (1997年11月修正 五、發明説明(12 ) (請先閲讀背面之注意事項再填寫本頁) 矽膠組成之群。適當的水煤氣轉化催化劑包括那些選自由 鐵-鉻高溫轉化催化劑、銅/鋅氧化物低溫轉化催化劑和銅 /鋅氧化物中溫轉化催化劑組成之群。 於閱讀發明的詳細描述時將變得更淸楚地,藉由利用 一新穎連串的反應、吸附和去吸附步驟以將存在於來自氫 -PSA廢氣物流的C02轉化成C0而且在進料壓力及相對地固 定的流率下分離和收集經大大地濃縮的C0,申請人的方 法克服了與先前技藝方法有關的問題。這個結果的達成部 份在於申請人料想不到的在開始另一個SER循環之前使用 -·種C0或富含C0的反應產物來沖洗該些SER反應器而且來 加賊該些反應器至反應議力。 -般熟於此项技藝的人士將會預期到在開始反應步驟 之_使用逆水煤氣轉化反應的一種產品來沖洗和加壓SER k應器將會不仕地將平衡常數改變朝向形成co2和氫;申 誦:人發現使用產品氣體代替C 0 2或氫或男一種沖洗流體來 沖洗該些SER反應器提供了一種高度有效率的方法,於其 中-種富含C0的物流能在進料壓力及相對地固定的流率下 被收集。 圖示的簡要描沭 圖1舉例說明依照美國專利3,986,849的一種蒸汽甲焼 重組(SMR)方法’其中SMR反應器重組氣在一個轉化反應 器被進一步反應而且在一種氫壓力增減吸附(Η 2 - PS A )單元 被分離以提供一種高純度氫產品。 圖2舉例說明依照美國專利4,1 7 1,206的一種SMR方 -14- Q.G u. 3 ^ 406050 ' · - , ^ _ 五、發明説明(13 ) (1997年11月修正) 法,其中SMR反應器重組氣在一個轉化反應器被進一步反 應而且使用一種C02-VSA和H2 - PSA單元的整合被分離以提 (請先閱讀背面之注意事項再填艿本頁) 供一種實質上純粹的氫物流。 圖3舉例說明一種先前技藝SMR方法,其利用一種C02 吸收/汽提器將重組氣物流之C02移除,之後重組氣物流 被導入一種熱增減吸附(TSA)單元以進一步移除其中之水 及二氧化碳,之後在一個極冷冷箱中進行最後分離以生產 一實質上純粹的氫物流、一實質上純粹的CO物流和一含 奋中烷和CO的廢氣物流,該廢氣能用作重組器的燃料。 圖4舉例説明依照圖3的·種改设方法,其屮一種C02 吸收/汽提器被來將重紺氣物流被導入TSA單元之前將 jl、: C〇2移除,以丨‘:丨ίΤ(紺氣進·少移除興水及C02。所分離 C 0 2的部分被刚縮和丨〖丨Μ環進人S M R以供進·步轉化成 氫和CO。 圖5舉例説叨一栩先前技藝SMR力法以生產實質上純 粹的CO ’其中SMRE組氣被冷凝以除去水,之後該重組氣 被於一種CO-VSΑ中分離以提供一種實質上純粹的C0產品 和一種能被再循環用作重組器燃料的廢氣物流。 圖6舉例說明依照圖5的一種改良方法,其中從co-VS A 冋收的 廢氣物 流與一 種選 擇透過 的聚合 薄膜接 觸以提 供·種能被洱循環用作重組器燃料的廢氣物流及一種富含 C 0 2的物流’讀虽含C 0 2的物流被壓縮丨i再導入S M R反 應器以供進步轉化成C0和氫。 圖7舉例說明一種先前技盤s M R方法,其中s M R反應 -15- 木·尺‘+.U';屮丨4、ϋΐ 卒(CNS ) Λ4^ 格(210/297 公筇) : Α7 Β7 (1997年11月修正) 五、發明説明(Μ (請先閱讀背面之注意事項再填寫本頁) 器重組氣被分離成一種被導入轉化反應器的第一物流和-種第二物流,該第二物流被導入CO-VSA以生產一種實質 上純粹的C0產品和一種C0耗竭的物流,該C0耗竭的物流 與轉化反應器的流出物結合而且在一種H2-PSA單元中被 分離以提供一種實質上純粹的氫產品。 圖8舉例說明一種先前技藝SMR方法以生產C0和氫’ 其中自蒸汽甲烷重組器的重組氣在一種整合的CO2-VSA和 氫PSA單元中被分離以形成一種C0產品物流、一種氫產品 物流和·植廢氣物流。 圖9舉例說明本案生產一種實質上純粹的C0物流和一 柯實質上純粹的氫物流之SMR方法的一般具體實施例,其 1丨1 1丨1烷和水/[: ·稲化劑的疗/1:下反應形成包含:鉍化 碳、·氣化碳和氚的·柯取紺席品。該SMRM紺氣被送至 •個第·分離器以少齑-·嵇寊質上純粹的CO齑品和-種 C0耗竭的物流,該CO耗竭的物流受到W ·個分離以形成 -嵇讶質上純粹的氫產品和·補氫耗竭的物流。藉山利州 屮誚人的吸附增強反應(SER)方法,存在於一部分該氫耗 竭物流的C02與氫反應以自整體程序中生產額外量的c〇。 圖號說明: 7,27,117轉化反應器 42,62,82,92,112,202,402蒸汽甲烷重組器 4,9,24,29,84,94,119,114,128,204,404 冷凝器 301,302 SER反應器 331,360 泵 304,333,335 調節容器 66,103,125,411 壓縮機 發叫的詳細描述 屮請人现在將討論芄张產一種實質上純粹的CO產品 -16- 經濟部中央標準局員工消費合作社印装 A7 ___B7 五、發明説明(I5) 和一種實質上純粹的氫產品之方法的進一步細節,較先前 技藝方法而言本方法提供了很多的利益。特定而言,藉由 使C 0 2和存在於氫p s A廢氣物流中的氫反應以經由逆水 煤氣反應而形成C0,使得較大重組器原料到C0產品的轉 化能被達到。如果不是申請人新穎的整合其S E R循環,則 上述處理方式在經濟上爲不可行,因爲該逆水煤氣反應需 要溫度超過1000 °c以提供充份的C0轉化率。 申請人方法的一般具體實施例被描述於圖9,其舉例 說明一種方法流程圖,該流程圖描述蒸汽甲烷重組器 4〇2 ’冷凝器404,SER反應器301和302 ;多個控制 閥;歧管A到E ;泵331和360 ;分離器335 ;和調節容器 3 0 4和3 3 3 (可選擇的)。參照圖9,例如甲烷或天然氣的 一種烴原料在一個容器(未顯示)裡被使用一種業界熟知 的吸附劑脫硫。該經脫硫的烴原料和蒸汽混合以形成一種 由物流401表示的混合重組器原料。原料401在預熱器 (未顯示)裡被預熱並且導入SMR重組器4 02之內。此重 組器在業界被廣爲人知並且藉由燃燒燃料和空氣(未顯示) 的一種混合物而被加熱。該重組器典型地操作在8 0 0。到 1000°C的溫度和5到30大氣壓的壓力並且生產一種以乾 重計由大約73%氫、13%(:0、9%(:〇2和5%甲烷所組成 的重組氣。該重組氣經由管線4 0 3被送到冷凝器4 0 4,於 其中氣體溫度被降低而且氣體裡的一些水被冷凝而移除而 且產生一些蒸汽。 該水耗竭的重組氣4 0 5被導入一種操作於80° -120 -17- 本紙張尺度逍用中國國家橾準(CNS ) A4規格(210X297公釐) 一 83.3.10,000 (锖先閱讀背面之注意事項再填寫本頁) -裝· 訂 40605^> A7 B7 經濟部中央標準局員工消費合作杜印装 五、發明説明(16) °c的傳統CO-VSA單元406以形成一種C0產品物流407 和一種CO耗竭的物流4〇8。該CO產品物流407之純度至 少爲99.5%。該CO耗竭的物流408被導入一種傳統的 H2-PSA單元409於其中該物流被分成一種氫產品物流 412和一種氫耗竭的物流410。該氫產品物流412之純度 至少爲9 9 . 9 %。 申請人的方法提供一種改良的方案以將存在於氫耗竭 物流的C02和氫經由一種整合性SER方法進行逆水煤氣 轉化反應轉化成CO而且產生一種富含CO的再循環物流, 其能被再循環至CO-VSA以回收額外的CO。該氫耗竭的 物流4 1 0在壓縮機4 1 1裡被壓縮至第一壓力,該經加壓的 氫耗竭物流3 03流經管線303而進入調節容器304(可選擇 的),於其中流體流經管線3〇5而進入一個加熱器(未顯示) 以形成一種受熱經加壓的氫耗竭物流而被導入歧管A。圖 9的其餘部分表現該SER方法,於其中該受熱經加壓的氫 耗竭物流在循環操作的複數反應器中進行逆水煤氣轉化反 應以將方法物流中的C02和氫轉化成一種CO和水而且回 收一種富含CO的物流,該富含CO的物流經由管線317被 再循環到CO-VSA 406以回收CO。儘管圖9舉例說明了 管線317和管線405分別通入CO-VSA 406供進行所討 論的目的,熟於此項技藝的人士將會瞭解該二條個別物流 可能被結合成單一物流。 歧管A與支線輸入管311和321流道相通,支線輸入 管311和321連接至反應器301和302的輸入端。管線 -18 - ---------- k 裝-- (請先聞讀背面之注意事項再填寫本頁)、 1T Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, 406055 _ ^ _ V. Description of the Invention (7) The water 129 with water removed and depleted enters the H2-PSA unit 130 to provide fuel that can be used as fuel in the reformer 112 The waste stream 132 and the substantially pure hydrogen stream 1 3 1. A portion of the reformed gas can then flow into line 118 after valve 1 1 a is opened. This reformed gas is introduced into condenser 119 to cool the gas and remove moisture before entering CO-VSA 122 via line 121, where the reformed gas is separated to provide a substantially pure CO stream 123 and a CO depleted stream 124, The latter can be optionally compressed by a compressor or blower 1 2 5 and then combined with pipeline 1 2 9 to enter Η 2-PSA 1 3 0 〇 Figure 8 depicts the production of substantially pure CO and substantially pure hydrogen. An SMR method. Water and a methane source are directed into a conventional SMR reactor 202 via line 201 and reacted under recombination conditions to produce a recombined gas stream 203. Stream 203 is directed into condenser 204 to produce a cooled reformed gas stream 206, which is introduced into a CO-VSA unit to provide a substantially pure CO stream 208 and a CO-depleted stream 209. The CO-depleted stream 209 is directed to a hydrogen-PSA unit 210. The process stream is further separated within the hydrogen-PSA unit 210 to provide a substantially pure hydrogen stream 2 1 2 and an exhaust gas stream 2 1 1 that can be used as fuel in the reformer 200 2. Those skilled in steam methane recombination techniques are working to find improved recombination methods in which the conversion of the required CO products and hydrogen products is maximized. Moreover, a method that promotes the reaction of co2 and hydrogen to form CO and water [reverse water gas conversion reaction] would be very desirable in the industry. Unfortunately, there is no known prior art SMR method integration that can directly exist in the program logistics-9- This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83.3.10,000 II I Packing ~ order n ϋ 1 ^, (Please read the precautions on the back before filling this page) δα a 406055 'i \ 7 (Amended in November 1997) V. Description of the invention (8 CO2 and hydrogen are converted into CO and water. The backwater gas conversion The reaction is at temperature (please read the note ^ T on the back, and then fill out this page) at 800 ° C, which is thermodynamically unsuitable and the temperature typically needs to exceed 1000 ° C to obtain a moderate conversion of CO2 to CO. Therefore, this The backwater gas conversion reaction has not been successfully integrated into the SMR process and used to produce CO. Moreover, the prior art methods of performing simultaneous reaction and adsorption steps have not achieved commercial success because the product flow rate has not been maintained sufficiently fixed And compared with the undesired reaction products, unreacted raw materials, and rinses, the presence of the required product is too low. The industry is looking for ways to improve the SMR process to produce CO and hydrogen simultaneously. Ming Yan summarizes the method of wood hair 叨 α, called 齑, 祯, 祯, 祯, 纯粹, 祯, 纯粹, 纯粹 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,-dielectric, hydrogen, (CO > The m group of ψ alkane and steam is used to produce a reconstituted fake that is rich in CO, two gasification carbon and hydrogen. The ® group gas is buried in a series of integrated separation steps and exists in Yilai meat The carbon dioxide and hydrogen of the exhaust effluent of these separation steps are converted to CO in an integrated adsorption enhanced reaction (SER) method. The method of the present application overcomes the problems related to the prior art methods, which are used to reconstitute methane and water When becoming carbon monoxide, it is typically encountered to produce a reformed gas containing excess C02 that has not been converted into the desired CO product, which must be separated from the reformed gas through an expensive separation cycle. Moreover, the method of the present application overcomes the problem of conversion with backwater gas The thermodynamic limitation of the reaction is that CO2 and hydrogen are converted into CO and water in this reaction. -10 .UK; 1; 榀 隼 (C, NS) 44 lattice (210X 297 male) Following Emei 'Zheng ^ ___ V. Description of the invention (9) (Amended in November 1997) The applicant's invention addresses these issues by first separating the SMR reformed gas to produce a substantially pure CO product and a CO depleted product, and subjecting the CO-depleted stream to another Separated to form a substantially pure hydrogen product and a hydrogen depleted stream. The carbon dioxide present in the nitrogen depleted stream reacts with hydrogen by using an adsorption enhancement reaction (SER) method, which allows the backwater gas to proceed at 250- It has a high CO2 to CO conversion rate at a mild temperature of 350 ° C and a pressure of 5-30 atmospheres. The produced CO-rich stream is recycled to recover the CO. Applicant's method integrates a SER method, which performs a series of cyclic steps in a plurality of reactors to convert CO 2 to CO and separates the converted gas product mixture into a concentrated CO stream. The reactor contains: • persimmon conversion catalyst fll, • admixture of water adsorbent, whose water is physically adsorbed from the reaction zone under the conversion reaction conditions and is selectively removed, thereby changing the reaction equilibrium. To form the desired CO. The water adsorbed is separated from the adsorbent by using a series of washing and decompression steps in accordance with a predetermined timing sequence. Therefore, the applicant's SER method performance integrated in the requested method A new cycle was developed to simultaneously achieve high conversion of CO2 to CO, produce a concentrated CO effluent stream, efficiently desorb water from the adsorbent, and prepare each reactor for the next process cycle. Applicant's general embodiment of a method for producing a CO product and a hydrogen product includes an initiation step which causes a feed containing methane and water to be present in the presence of a steam methane reforming catalyst over a temperature range from nl · · I Li I IT II n II nn TV * 'VT (Please read the notes on the back before filling out this page) -11-Printed by the Central Government Bureau of the Ministry of Economic Affairs and Consumer Cooperatives A7406055_B7_ V. Description of the Invention (10) The reaction is performed at 700 ° C to 1000 ° C and a pressure ranging from 2 to 50 atmospheres to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide, and unreacted raw materials. The second step involves removing water from the reformed gas to form a water depleted reformed gas and separating the water depleted reformed gas into a CO product and a CO depleted stream. The third step of the process allows for The CO depleted stream is separated into a hydrogen product and a hydrogen depleted stream and the hydrogen depleted stream is compressed to form a pressurized hydrogen depleted stream. The fourth step of this general embodiment includes the hydrogen depleted stream Into a plurality of reactors, the reactors are operated in a predetermined timing sequence according to the following steps, and these steps are cyclically performed in each reactor: (1) a type containing a water adsorbent and a water gas conversion catalyst In the first reactor of the admixture, at the first pressure and at a temperature sufficient to convert carbon dioxide and hydrogen to carbon monoxide and adsorb water onto the adsorbent Under the reaction conditions, the pressurized hydrogen-depleted stream is reacted to form a CO-rich stream that is recycled to the second step of the water-depleted reformed gas stream; (2) by discharging a hydrogen-containing, carbon dioxide, A mixture of carbon monoxide and water to decompress the first reactor countercurrently to a second pressure; (3) at the second pressure to flush the first reactor countercurrently with a flushing fluid that is weakly adsorbing the adsorbent To order I- ^ from -12- _f-I 1 i I n from this adsorbent (please read the note on the back before filling this page) This paper size applies Chinese National Standard (CNS) A4 specifications ( 210X297 mm) 83.3.10,000 Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 406055 B7 V. Description of the invention (11) Water desorption and discharge of a mixture containing weakly adsorbed flushing fluid, unreacted raw materials, carbon monoxide and water (4) at the second pressure, flush the first reactor countercurrently with a CO-rich flushing fluid that does not contain hydrogen and carbon dioxide to desorb the weakly adsorbed flushing fluid, and discharge a weakly adsorbed flushing fluid containing the weakly adsorbed flushing fluid; A wash fluid, a mixture of carbon monoxide and water; and (5) pressurizing the first reactor countercurrently from the second pressure to the first reactor with the CO-rich flushing fluid before the first reactor begins another cycle A stress. Additional steps may also be performed under general specific embodiments. For example, a source of hydrogen or carbon dioxide can be introduced into the hydrogen depleted stream of the third step to control the hydrogen to carbon dioxide ratio present in the first reactor following step (1) of the fourth step. Alternatively, before the second step (0) and the second step (2), the first reactor may be flushed countercurrently at a first pressure by a weakly adsorbed flushing fluid, and a mixture containing unreacted raw materials, carbon monoxide and water Exhaust from the reactor >> The catalysts suitable for carrying out the steam methane reforming reaction according to the general and another embodiment include conventional steam methane reforming and pre-reforming catalysts, such as nickel-alumina, nickel-magnesium alumina, and precious metal catalysts. As stated in the general examples, the SER cycle allows for a series of cycling steps in a plurality of reactors containing a conversion catalyst and an admixture of a water adsorbent. The admixture contains 5-95% by weight of sorbent and 95-5% by weight of catalyst. Suitable water sorbents include those selected from zeolite, alumina, or Chinese paper standard (CNS) A4 specifications applicable to this paper standard ( 210X297 mm) * If * ---------, installed ------ L ------ axe (please read the precautions on the back before filling this page) (11, 1997 Yue Xiu V. Description of the invention (12) (Please read the notes on the back before filling out this page) The group consisting of silicone. Suitable water gas conversion catalysts include those selected from iron-chromium high temperature conversion catalysts and copper / zinc oxide low temperature conversion catalysts. And copper / zinc oxide medium temperature conversion catalysts. It will become more apparent when reading the detailed description of the invention, by utilizing a novel series of reaction, adsorption and desorption steps to remove the The C02 of the PSA exhaust gas stream is converted to C0 and the greatly concentrated C0 is separated and collected at a feed pressure and a relatively fixed flow rate. The applicant's method overcomes the problems associated with previous techniques. The department that achieved this result The part is that the applicant unexpectedly used a kind of CO or CO-rich reaction product to flush the SER reactors and add the reactors to the reaction force before starting another SER cycle. Those skilled in the art will expect that at the beginning of the reaction step, rinsing and pressurizing the SER k reactor with a product that reverses the gas shift reaction will unbalance the balance The constant changes direction to form co2 and hydrogen; recitation: People have found that using product gas instead of C 0 2 or hydrogen or a male flushing fluid to flush these SER reactors provides a highly efficient method in which-a species rich in C 0 The stream can be collected at a feed pressure and a relatively constant flow rate. A brief description of the figure Figure 1 illustrates a steam formazan reorganization (SMR) method according to US Patent 3,986,849, where the SMR reactor regenerating gas is at A conversion reactor is further reacted and separated in a hydrogen pressure increase / decrease adsorption (A 2-PS A) unit to provide a high purity hydrogen product. Figure 2 illustrates an SMR in accordance with US Patent 4,1 7, 1,206 Fang-14- QG u. 3 ^ 406050 '·-, ^ _ V. Description of the invention (13) (Amended in November 1997) method, in which the reformed gas of the SMR reactor is further reacted in a conversion reactor and a CO 2 is used The integration of the -VSA and H2-PSA units is separated (please read the notes on the back before filling this page) to provide a substantially pure hydrogen stream. Figure 3 illustrates a prior art SMR method that uses a C02 absorber / stripper to remove C02 from the recombined gas stream, after which the recombined gas stream is directed to a thermal increase / decrease adsorption (TSA) unit to further remove the water therein. And carbon dioxide, followed by final separation in an ultra-cold cold box to produce a substantially pure hydrogen stream, a substantially pure CO stream, and an exhaust gas stream containing perylene and CO, which can be used as a reformer Of fuel. Fig. 4 illustrates a modification method according to Fig. 3, in which a C02 absorber / stripper is used to remove the heavy radon gas stream before it is introduced into the TSA unit. ίΤ (绀 Gas inlet · Less removal of Xingshui and C02. The part of the separated C 0 2 is just shrunk and circulated into the SMR for further conversion into hydrogen and CO. Figure 5 illustrates an example. The previous technique SMR force method to produce substantially pure CO 'in which the SMRE group gas is condensed to remove water, and then the recombined gas is separated in a CO-VSA to provide a substantially pure CO product and a product that can be regenerated. The exhaust gas stream recycled as a reformer fuel. Fig. 6 illustrates an improved method according to Fig. 5 in which the exhaust gas stream collected from co-VS A is contacted with a selectively permeable polymer film to provide Exhaust gas stream used as recombiner fuel and a C 0 2 -rich stream 'Although the C 0 2 -containing stream is compressed, it is then reintroduced into the SMR reactor for progressive conversion to C 0 and hydrogen. Figure 7 illustrates a prior art Disc s MR method, in which s MR reaction -15- wood · ruler '+ .U'; 屮 丨 4, ϋΐ (CNS) Λ4 ^ grid (210/297 cm): Α7 Β7 (Amended in November 1997) V. Description of the invention (M (please read the notes on the back before filling this page) The reorganized gas is separated into A first stream and a second stream introduced into the conversion reactor, the second stream is introduced into the CO-VSA to produce a substantially pure CO product and a CO depleted stream, and the CO depleted stream reacts with the conversion The effluent from the reactor is combined and separated in an H2-PSA unit to provide a substantially pure hydrogen product. Figure 8 illustrates a prior art SMR method to produce CO and hydrogen 'where the recombination gas from the steam methane recombiner is in An integrated CO2-VSA and hydrogen PSA unit are separated to form a CO product stream, a hydrogen product stream, and an exhaust gas stream. Figure 9 illustrates the production of a substantially pure CO stream and a substantially pure CO stream in this case. A general specific embodiment of the SMR method of a hydrogen stream, which is 1 丨 1 1 丨 1 alkanes and water / [: · treatment of a tritium agent / 1: the following reaction forms: bismuth carbon, gasified carbon, and tritium. Ke take the feast. The SMRM is mad Sent to the • Separator to reduce the quality of pure CO products and CO-depleted streams. The CO-depleted streams are separated by W to separate-to form a pure hydrogen product and · Hydrogen-supply-depleted stream. By means of the Adsorption Enhancement Reaction (SER) method of Shanren Prefecture, some of the hydrogen-exhaust stream's CO2 reacts with hydrogen to produce an additional amount of co from the overall process. : 7,27,117 conversion reactor 42,62,82,92,112,202,202 steam methane reformer 4,9,24,29,84,94,119,114,128,204,404 condenser 301,302 SER reactor 331,360 pump 304,333,335 regulating container 66,103,125,411 compressor Detailed description: I will now discuss the issue of a purely pure CO product. 16-Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 ___B7 V. Description of the Invention (I5) and a substantially pure hydrogen product method Further details of this method provide many benefits over previous techniques. In particular, by reacting C 0 2 with hydrogen present in the hydrogen p s A exhaust gas stream to form CO through a reverse water gas reaction, the conversion of the larger reformer feed to the CO product can be achieved. If it is not the applicant's novel integration of its S E R cycle, the above treatment is economically unfeasible, as the reverse water gas reaction requires a temperature in excess of 1000 ° C to provide sufficient CO conversion. A general specific embodiment of the applicant's method is described in FIG. 9, which illustrates a method flow diagram describing a steam methane reformer 402 'condenser 404, SER reactors 301 and 302; multiple control valves; Manifolds A to E; pumps 331 and 360; separator 335; and regulating vessels 304 and 3 3 3 (optional). Referring to Fig. 9, a hydrocarbon feedstock such as methane or natural gas is desulfurized in a container (not shown) using a well-known adsorbent in the industry. The desulfurized hydrocarbon feedstock is mixed with steam to form a hybrid reformer feedstock, represented by stream 401. The raw material 401 is preheated in a preheater (not shown) and introduced into the SMR reformer 402. This recombiner is well known in the industry and is heated by burning a mixture of fuel and air (not shown). The reformer typically operates at 800. To a temperature of 1000 ° C and a pressure of 5 to 30 atmospheres and produce a reformed gas consisting of approximately 73% hydrogen, 13% (: 0, 9% (: 02 and 5% methane) on a dry basis. The reorganization The gas is sent to the condenser 404 via line 403, where the temperature of the gas is reduced and some of the water in the gas is condensed to remove and generate some steam. The water-depleted reformed gas 405 is introduced into an operation At 80 ° -120 -17- This paper size is in accordance with China National Standard (CNS) A4 (210X297 mm)-83.3.10,000 (锖 Please read the notes on the back before filling this page)-Binding · Order 40605 ^ > A7 B7 Consumption cooperation between employees of the Central Bureau of Standards of the Ministry of Economic Affairs Du Yinzhuang 5. Description of the invention (16) ° C traditional CO-VSA unit 406 to form a CO product logistics 407 and a CO depleted logistics 408 The purity of product stream 407 is at least 99.5%. The CO depleted stream 408 is introduced into a traditional H2-PSA unit 409 where the stream is divided into a hydrogen product stream 412 and a hydrogen depleted stream 410. The hydrogen product stream 412 The purity is at least 99.9%. The applicant's method provides a A good solution is to convert CO2 and hydrogen present in the hydrogen depleted stream into CO through an integrated SER process in a reverse water gas conversion reaction and produce a CO-rich recycle stream that can be recycled to CO-VSA for recovery Additional CO. The hydrogen depleted stream 4 1 0 is compressed to the first pressure in the compressor 4 1 1, and the pressurized hydrogen depleted stream 3 03 flows through line 303 and enters the regulating vessel 304 (optional). Where the fluid flows through line 305 into a heater (not shown) to form a heated, pressurized hydrogen depleted stream and is introduced into manifold A. The rest of FIG. 9 shows the SER method, where the The heated and pressurized hydrogen depleted stream is subjected to a reverse water gas conversion reaction in a cyclically operated multiple reactor to convert CO 2 and hydrogen in the process stream into a CO and water and recover a CO-rich stream, the CO-rich stream The stream is recycled to CO-VSA 406 via line 317 to recover CO. Although Figure 9 illustrates that line 317 and line 405 each enter CO-VSA 406 for the purposes discussed, those skilled in the art will To understanding The two individual streams may be combined into a single stream. Manifold A is in communication with branch line input pipes 311 and 321, and branch line input pipes 311 and 321 are connected to the input ends of reactors 301 and 302. Line-18----- ------ k pack-(Please read the notes on the back before filling in this page)

,tT ά. 本紙張尺度適用中國國家樣準(CNS ) Α4規格(210Χ297公釐) 83.3.10,000 A7 B7 (1997年11月修正) ,·;修正 406㈣〜魅 五、發明説明(!7 311和321連接至反應器301和302的輸入端。管線311和321 分別地裝備有閥31U和321a。適當閥的開啓允許該受熱經 加壓的氫耗竭物流流經歧管A而進入被選定而開始時即置 於流道中的反應器之內。因此,藉由打開閥311 a而關閉閥 321a,物流能從歧管A經由管線311而流入反應器301。 反應器301和302的輸出端分別地連接到管線340和 350,其分別皆裝備有控制閥316a和326a。管線340和350 經由管線316和326操作地連接到歧管E,經由管線316和 326—種富含CO的物流自反應器301和302排出而能被導入 管線317而進入CO-VSA 406以供作爲燃料或再循環。因 此,藉由打開適當的閥3 1 6a或326a,該富含CO的混合物自 対應的反應器經由管線34〇和3 16或管線350和326而流入歧 管E以進入管線317。 反應器301和302操作地連接到管線311和321,其分別 與管線313和3 23流道相通。管線313和323分別裝備有控制 閥3 1 3a和3 2 3a,這些管線與歧管B流道相通。歧管B能在分 別地打開閥3 1 3a或323a時經由管線3 13和323而與反應器 301和302流道相通。歧管B也與連接到管線362的泵360流 道相通,該管線的流體能被再循環至調節容器304。 歧管C與反應器3 0 1和3 0 2經由管線3 1 4和3 2 4流道相 通,該管線314和324分別地裝備有閥314a和324a 〇來自反 應器30 1和302的再生流出物經由管線3 1 4和324流入歧管C 以供分離器3 3 5分離成富含水的產品物流3 3 6 -19 本U:、尺,川窣標苹(CNS ) Λ4規格(210X297公犮) (請先閱讀背面之注意事項再填寫本頁), tT ά. This paper size applies to China National Standard (CNS) Α4 specification (210 × 297 mm) 83.3.10,000 A7 B7 (Amended in November 1997), ·; Amendment 406㈣ ~ Charm 5. Invention Description (! 7 311 and 321 is connected to the inputs of reactors 301 and 302. Lines 311 and 321 are equipped with valves 31U and 321a, respectively. The opening of the appropriate valve allows the heated, pressurized hydrogen depleted stream to flow through manifold A to the selected start. It is then placed inside the reactor in the flow path. Therefore, by opening valve 311 a and closing valve 321 a, the stream can flow from manifold A into reactor 301 via line 311. The outputs of reactors 301 and 302 are respectively Connected to lines 340 and 350, which are each equipped with control valves 316a and 326a. Lines 340 and 350 are operatively connected to manifold E via lines 316 and 326, and from lines 316 and 326, a CO-rich stream from the reactor The 301 and 302 are discharged and can be directed into line 317 into the CO-VSA 406 for fuel or recirculation. Therefore, by opening the appropriate valve 3 1 6a or 326a, the CO-rich mixture is self-reacting in the reactor Inflow via lines 34o and 3 16 or lines 350 and 326 Pipe E enters line 317. Reactors 301 and 302 are operatively connected to lines 311 and 321, which communicate with lines 313 and 3 23, respectively. Lines 313 and 323 are equipped with control valves 3 1 3a and 3 2 3a, respectively, These lines communicate with the flow path of manifold B. Manifold B can communicate with the flow paths of reactors 301 and 302 via lines 3 13 and 323 when valves 3 1 3a or 323a are opened respectively. Manifold B is also connected to the lines The pump 360 of 362 communicates with the flow channel, and the fluid in the pipeline can be recirculated to the regulating vessel 304. Manifold C communicates with the reactors 3 0 1 and 30 2 via the lines 3 1 4 and 3 2 4 and the line 314 And 324 are equipped with valves 314a and 324a respectively. The regenerated effluent from reactors 30 1 and 302 flows into manifold C via lines 3 1 4 and 324 for separation 3 3 5 into a water-rich product stream 3 3 6 -19 This U :, ruler, Chuanxiong standard apple (CNS) Λ4 size (210X297 male) (Please read the precautions on the back before filling this page)

經濟部中央橾準局貝工消費合作社印策 406055 A7 B7 五、發明说明(18) 和包含弱吸附沖洗流體的物流334,該物流334能被導入 儲存槽333(可選擇的)供以後的使用。 歧管D被連接到泵33 1,其經由管線3 3 0和3 3 2接受 各種不同的程序流體。該些程序流體通過管線330或332 而且經由泵331被加壓。該些受壓的流體可能通過歧管 D,而該歧管D經由管線3 1 5和3 2 5分別地與反應器3 0 1 和302流道相通。管線315和325與歧管D的連接方式使 得從歧管D進入反應器3 0 1和3 0 2的流動物流能被控制。 而且,弱吸附沖洗流體能以打開閥3 3 2 a經由管線3 3 2或 藉由輸入弱吸附沖洗流體經由管線330而被輸送到泵 3 3 1 - 圖9表現的一般具體實施例的SER循環的操作將會被 解釋於一個任意選定的循環,該循環如表1所示有八個各 爲十分鐘的階段。雖然不限於此,圖9所示的SER方法使 用反應器301和302,其以依照一預定計時序列的循環操 作。其他的安排可能使用較少的或較多的反應器和連結的 歧管和開關閥,選擇性地可使用泵的中斷或不連續(使用 空轉)操作。其他的安排可能藉由個別步驟的適當排序或 方法循環的階段而使用多於二個反應器》 依照圖9的一般具體實施例,每一個反應器301和 302皆進行四個階段的反應/吸附步驟,被稱爲吸附反應 步驟(sorpreaction step),解壓步驟的階段,沖洗I步 驟的階段,沖洗11步驟的階段,和加壓步驟的階段。如表 1所示,每一個反應器301和302在啓始時所採取的步驟 -20- 本紙張尺度適用中國國家搮準(CNS ) A4規格(210X297公藿) 83.3. !0,〇〇〇 ----------.>裝— (請先閲讀背面之注項再填寫本頁)Imprint 406055 A7 B7, Shellfish Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs 5. Description of the Invention (18) and a stream 334 containing a weakly adsorbed flushing fluid, which can be introduced into a storage tank 333 (optional) for later use . Manifold D is connected to a pump 33 1 which receives various program fluids via lines 3 3 0 and 3 3 2. These process fluids are pressurized through line 330 or 332 and via pump 331. The pressurized fluid may pass through the manifold D, and the manifold D is in communication with the flow channels of the reactors 3 0 1 and 302 via the lines 3 1 5 and 3 2 5 respectively. The lines 315 and 325 are connected to the manifold D so that the flow from the manifold D into the reactors 3 01 and 30 2 can be controlled. Further, the weakly adsorbed flushing fluid can be delivered to the pump 3 3 1 through valve 3 3 2 a via line 3 3 2 or by inputting weakly adsorbed flushing fluid through line 330 to the SER cycle of the general embodiment shown in FIG. 9 The operation of will be interpreted in an arbitrarily selected cycle, as shown in Table 1. There are eight stages of ten minutes each. Although not limited to this, the SER method shown in Fig. 9 uses reactors 301 and 302, which operate in a loop in accordance with a predetermined timing sequence. Other arrangements may use fewer or more reactors and connected manifolds and on-off valves, optionally with interrupted or discontinuous (using idling) operation of the pump. Other arrangements may use more than two reactors by proper sequencing of individual steps or stages of the method cycle. According to the general embodiment of FIG. 9, each of the reactors 301 and 302 undergoes four stages of reaction / adsorption. This step is called the adsorption step, the stage of the decompression step, the stage of the washing step I, the stage of the washing step 11, and the stage of the pressurizing step. As shown in Table 1, the steps taken at the beginning of each reactor 301 and 302 are -20- This paper size applies to China National Standard (CNS) A4 specification (210X297 cm) 83.3.! 0, 〇〇〇〇 ----------. > Install — (Please read the note on the back before filling this page)

.IT 4G60W g五、發明説明(19) 皆緩慢進行以使得二個反應器至少其中一個在整個方法循 環階段都能夠進行該吸附反應步驟。圖9所描述本發明的 操作主要地包括下列的步驟序列:在實施下列步驟時,第 一壓力範圍爲從2到5 0大氣壓,而第二壓力範圍爲從 0.05到2大氣壓。 丨.— ———I,、裝— I i 訂 ^ (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 -21 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公嫠) 83. 3.10,000 406055五、發明説明(2〇 ) 經濟部中央標準局員工消費合作社印製 ouoououoouuo5fe3u00u3u03u30 sfeoooouuuouuuo ¾¾UUU0Q3U0UUU011跪藝震 駿^习 εε 名CNrn々(NfnΛ9Ιε s【fnΒεΓ-Ηε jI—lfnl撇 o寸-οε _1^銮鬯 οε-ο<Ν㈣赵銮鬯 02- i 01-0itM銮薛 φ § ^οουοϋουυουυυ os-oz, 幽后 醒Μ^¥α oouooouuoouu 0/,-09 Il^i: 鳄^^淫U00330U000U009-0S sfe oouououuouoo OS 寸¾¾ ----------i— (請先閲讀背面之注意事項再填寫本頁).IT 4G60W g 5. Description of Invention (19) Both are carried out slowly so that at least one of the two reactors can carry out the adsorption reaction step throughout the process cycle. The operation of the present invention described in Fig. 9 mainly includes the following sequence of steps: When performing the following steps, the first pressure range is from 2 to 50 atmospheres and the second pressure range is from 0.05 to 2 atmospheres.丨. — ———, I, installed — I i order ^ (Please read the notes on the back before filling this page) Printed by the Staff Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs-21-This paper size applies to Chinese national standards (CNS ) A4 specification (210X297) 嫠 83. 3.10,000 406055 V. Description of invention (20) Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs -Ηε jI—lfnl skimming o-οε _1 ^ 銮 鬯 οε-ο < Ν㈣ 赵 銮 鬯 02- i 01-0itM 銮 薛 φ § ^ οουοϋουυουυυ os-oz, wake up after the silence M ^ ¥ α oouooouuoouu 0 /,-09 Il ^ i: crocodile ^^ U U00330U000U009-0S sfe oouououuouoo OS inch ¾¾ ---------- i— (Please read the precautions on the back before filling this page)

.1T.1T

A 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐} 83. 3.10,000 經濟部中央樣準局員工消費合作杜印家 A 7 _B7__五、發明説明(21) (a)吸附反應--該受熱經加壓的氫耗竭物流(原料)在 第一預定壓力通過含有一種轉化催化劑和吸附劑的摻和劑 之反應器,該吸附劑對水有優先選擇性,於其中一種富含 C 0的物流從反應器被排出。水被該吸附劑選擇性地吸 附,而且反應器裡形成一個反應物質傳遞區(RMTZ),當 更多的原料通過該反應器時該傳遞區朝向反應器的出口或 排放端移動。該RMTZ前緣的吸附劑實質上沒有被吸附的 水而該R Μ T Z後緣的吸附劑則是依局部條件與水達成平 衡。該吸附反應步驟一直繼縝直到反應器裡的吸附劑實質 上被水飽和。換句話說,一旦吸附RMTZ已經到達反應器 流出物端或消失時吸附反應步驟即結束。該富含C0的物 流從反應器被排出。 (b )解壓--藉由排出包含未反應的原料、C0和水的一 種混合物該反應器被逆流地解壓到第二預定壓力。該解壓 步驟繼續到反應器到達第二預定壓力。 (c) 沖洗I--該反應器在第二壓力被使用一種弱吸附 沖洗流體逆流地沖洗以自該吸附劑將水去吸附,而且一種 包含該弱吸附沖洗流體、未反應的原料、部分C0和部分 水的混合物自該反應器被排出。 (d) 沖洗II--該反應器在第二壓力被使用一種不含 C 0 2和氫而富含C 0的沖洗流體逆流地沖洗以去吸附該弱 吸附沖洗流體,而且一種包含該弱吸附沖洗流體、C 0和 水的混合物自該反應器被排出。 (e) 加壓--在開始另一 SER循環之前反應器被以富含 -23- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐〉 83. 3.10,000 (請先閲讀背面之注意事項再填寫本頁) 406055 A7 經濟部中央樣準局員工消費合作社印製 B7_五、發明説明(22 ) CO的沖洗流體從第二壓力逆流地加壓到第一壓力。 在上述的操作循環階段那些閥的位置也被列在表1。 指示"0 "顯示一指定的閥爲開著的而n C "代表一指定的閥 爲關著的。在一個完整的方法循環階段反應器301內進行 的操作序列步驟將會於下文被無遺漏地被描述其細節以使 連續程序的操作得以被完全了解。依照表1的相同步驟序 列在反應器3 0 2裡以緩慢的序列進行。 再一次地,參照圖9揭示的具體實施例和在表1指定 的序列階段和閥位置,反應器301進行了吸附反應步驟的 四個序列階段》儲存在儲存槽304(可選擇的)中的原料, 藉由打開閥31 la和316a而關閉閥313a ' 314a和315a 而被導入反應器30 1,藉此允許原料流過歧管A,管線 311而進入反應器301,該反應器301含有一種被需要的 轉化催化劑和水選擇性吸附劑的摻和劑。 該吸附反應繼續直到反應器3 0 1實質上被吸附的水加 以飽和。水被選擇性地吸附到該吸附劑之上而且反應物質 傳遞區(RMTZ)在反應器301裡面形成,該傳遞區隨著更 多原料通過而朝向反應器301的排放端移動。當MTZ到 達反應器流出端或在某預設定點消失的時候,該吸附反應 即完成。 一種富含CO的物流經由管線340和316離開反應器 3 0 1的排放端而且流入歧管E然後如前所述地進入管線 317之內。該方法進行一種解壓步驟的階段,於其中反應 器301藉由自反應器301的輸入端排出包含未反應的原 -24- -----------¢------ΤΓ------4 (請先閲讀背面之注意事項再4寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(2】0X297公釐) 83.3.10,000 經濟部中央橾準局貝工消費合作社印製 406055 A7 B7 五、發明説明(23 ) 料、C 0和水的混合物而被逆流地解壓到第二預定壓力。 閥3 1 3 a被打開而閥3 μ a和3 1 4 a被關閉以允許混合物經 過管線311和313進入歧管B而且與泵360流道相通。該 混合物離開泵3 6 0的排放端經過管線3 6 2以供使用當做燃 料(未顯示)或再循環進入調節容器304以當做後續方法循 環的原料。該解壓步驟繼續直到反應器到達第二預定壓 力。 然後反應器301接受沖洗I步驟的階段。反應器301 在第二壓力被用弱吸附沖洗流體逆流地沖洗。在打開閥 3 14a和3 1 5 a而保持閥3 2 5 a和3 3 2 a在關閉位置之後,來 自外部來源的弱吸附沖洗流體經由管線3 3 0通過泵3 3 1而 在第二壓力離開泵3 3 1以經由歧管D、管線3 1 5和管線 340進入反應器301的出口端。一種包含弱吸附沖洗流 體、未反應的原料' C 0和水的混合物從反應器3 0 1經由 管線3 1 1、管線3 1 4和歧管C被排出並且收集在分離器 3 3 5。該混合物可能被用當做燃料,被排放以供本方法以 外使用或在分離器335裡被分離以形成一種弱吸附沖洗流 體的物流和一種富含水的物流3 3 6。該弱吸附沖洗流體的 一部分可能被輸送經由管線334進入儲存槽333中以供未 來使用。應要求時經由打開閥3 3 2 a,該弱吸附沖洗流體 可能經由管線3 3 2和3 3 0被輸入泵3 3 1以供後續的方法循 環使用。 然後反應器301接受沖洗II步驟的階段,於其中反應 器301被一種不含氫和C02而富含CO的流體逆流地沖 -25- I 严-^1 I I I 、訂 H ϋ— ^ (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS > Α4規格(2丨0X297公釐) 83. 3.10,000 406055 經濟部中央標準局員工消費合作社印裝 五、發明説明(24) 洗。在打開閥314a和315a而保持閥325a和332a在關閉 位置之後,來自外部來源的富含C 0的沖洗流體經由管線 330通過泵331而在第二壓力離開泵331以經由歧管D ' 管線315和管線340進入反應器301的出口端。一種包含 弱吸附沖洗流體、水和富含C 0的沖洗流體的混合物從反 應器301經由管線311、管線314和歧管C被排出並且收 集在分離器3 3 5。該混合物可能被用當做燃料或被排放以 供本方法以外使用。 該方法循環的最後步驟包括一種單一序列的加壓步 驟,於其中反應器301被一種富含CO的沖洗流體(例如來 自管線317的支物流)或高純度的CO產品物流407在反應 器裡開始另一方法循環之前逆流地自第二壓力加壓到第一 壓力。特定而言,在打開閥315a而保持閥311a,313a, 3Ma, 325a和332a在關閉位置之後,該富含C0的沖洗 流體經由管線3 3 0通過泵3 3 1而在第二壓力離開泵3 3 1以 經由歧管D、管線3 1 5和管線3 4 0進入反應器3 0 1的出口 端。當反應器301到達第一壓力之後本歩驟即結束。 依照列於表1的上述步驟本方法進行著額外的循環。 儘管該些序列階段被描述爲等長,其並非必要或必需。時 間的設定取決於可允許最大氣體流率、閥和管線大小和所 使用吸附劑的性質。交互的程序可能被使用以建立每一種 循環步驟的期間。舉例來說,例如反應器流出物成分分析 的業界熟知的其他技術可能被用以決定某一特別步驟的終 點。 -26- I--I--I I I r i 裝-I (請先聞讀背面之注項再填寫本頁) 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210X2M公慶〉 83. 3. !0,〇〇〇 經濟部中央橾準局員工消費合作社印裝 娜 055_^__五、發明説明(25 ) 一般具體實施例的幾種變化可能被實施以滿足每個工 廠的特別需要。舉例來說,在該吸附反應步驟和該解壓步 驟之間每反應可能在第一壓力被用弱吸附沖洗流體進行一 種額外的逆流沖洗步驟而排出一種包含未反應的原料、 CO和水的混合物,該混合物能被當作原料經由歧管B、 泵3 6 0和管線3 6 2再循環進入SMR反應器。 而且一種氫或二氧化碳的來源(未顯示)可能被導入該 氫耗竭的物流410以控制存在於SER方法的第一個反應器 中氫和C Ο 2的比率。 熟於此項技藝的人士將會了解除非在反應之前一股適 當的支物流(未顯示)能自物流4 1 0被排出並且再循環到 CO-VSA單元406,否則甲烷可能在本案所申請方法的操 作期間堆積。該支物流將會典型地被當作SMR 402的燃 料使用。 適當的蒸汽甲烷重組反應催化劑包括傳統蒸汽甲烷重 組和預重組催化劑,例如鎳-氧化鋁、鎳-鎂氧化鋁和貴金 屬催化劑》 供在反應器或SER循環進行逆轉化反應的適當水煤氣 轉化催化劑包括傳統的轉化催化劑,例如鐵-鉻高溫轉化 催化劑、銅/鋅氧化物低溫轉化催化劑和銅/鋅氧化物中溫 轉化催化劑。 適用於整合性S E R方法反應器的水吸附劑在反應條件 下必需具有活性,其意謂該吸附劑對於該較可吸附的產品 必須保有它的容量和選擇性。其次,該吸附劑必須爲化學 -27- ----------^------1T------4 (請先聞讀背面之注意事項再填寫本頁) 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公漦) 83.3.10,000 經濟部中央橾準局貝工消費合作社印裝 40605ο Α7 Β7五、發明説明(26 ) 地中性而且不能當做逆水煤氣轉化反應的催化劑。 弱吸附流體一詞爲一種能夠在方法的操作階段取代被 吸附劑吸附了的產品之流體,而且該流體能被較不吸附的 產品去吸附使得後續的方法循環能夠在每個反應器內進 行。熟於此項技藝的人士能容易地選擇適用於所申請發明 的一種弱吸附流體或一種其混合物。 本發明的一般和另一具體實施例能使用傳統的硬體設 備而被操作。舉例來說,適當的反應器包括能夠承受實施 某種特別平衡控制方法的反應條件的任何容器,例如殼管 式反應器。而且,在方法中被列舉的該些分離器能由熟於 此項技藝的人士根據考慮到例如將被分離的特別混合物、 被分離流體的體積等等而被容易地選擇。 下列的實施例被提供以進一步舉例說明供用於生產 CO之申請人的方法。該些實施例是說明性的並且無意被 用以限制本案的申請專利範圍。 實驗部分 下列的實施例被提供以舉例說明申請人所申請之一種 生產CO的方法,該方法整合一種傳統的SMR方法和一種 SER循環以將存在於分離單元廢氣物流中的C02經由逆 水煤氣轉化反應轉化成C 0。 各圖中描述了選定方法的質量平衡計算。來自芬蘭 Outokumpu Research Oy 的"HSC Chemistry for Windows"套裝軟體被用以進行蒸汽甲烷重組器流出物成 -28- f k 裝 I 訂 I I I I^ (請先閲讀背面之注$項再填寫本頁) 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央橾準局員工消費合作社印製 406055 A7 ____B7_五、發明説明(27 ) 分的熱力學平衡計算。所有其他的計算皆是化學工程業界 裡熟於此項技藝人士的常識。該些計算中使用了下列的假 設: (a )重組產品成分取決於在定溫定壓下重組器產品的 平衡轉化; (b)該蒸汽甲烷重組器操作於8 5 0 °C和25大氣壓; (〇重組器的進料包含25莫爾/分鐘的CH4和75莫爾 /分鐘的H2〇 ; (d) 該CO-VSA方法在85%—氧化碳回收率下生產實 質上純粹的CO產品(99.5%); (e) 該H2-PSA方法在85%氫回收率下生產實質上純 粹的氫產品(99.9%); (f) 在吸附增強反應器方法(S E RP )中C Ο 2到C 0的轉 化是8 0% (即是,進料到反應器的C〇2有80%以CO 產品自反應器被排出); 實施例1 於一種傳統的CO生產方法經由CO-SER方法自廢氣物流 生產C 0產品 表2包含描述於圖8和圖9生產一氧化碳的一些方法計 畫之質量平衡資料。該表提供了被生產的氫和一氧化碳產 品的總莫爾數。 ------------------*Γ------务 (請先聞讀背面之注意事項再填寫本頁) -29-___ 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) 83. 3.10,000 406055 at ___B7五、發明説明(28 ) 表2 * 爲同時生產CO和H2之整合性SERP-SMR方法計畫 _ 的比較性能 H2產品的淨量 (莫爾/分鐘) C0產品的淨量 (莫爾/分鐘) 圖8 SMR + CO-VSA + H2-PSA 57.7 10.3 圖9 SMR + CO-VSA + H2-PSA + SERP (處理75%的H2-PAS廢氣) 59.4 16.1 * SMR進料:25莫爾CH4 + 75莫爾H20(基準例)。 (請先閱讀背面之注$項再填寫本頁) 裝· 經濟部中央棵準局貝工消費合作社印製 由一個蒸汽甲烷重組器和接著的一個CO-VSA單元 分離一氧化碳和一個H2-PSA單元分離氫(圖8)所組成的 基準例方法的資料顯示每100莫爾/分鐘的重組器進料能 生產57.7莫爾/分鐘的氫和10.3莫爾/分鐘的CO。申請 人申請的方法包含蒸汽甲烷重組、以一個CO-VSA單元 分離一氧化碳 '以一個H2-PSA單元分離氫,將H2-PSA 廢氣分成一種沖洗物流和一種方法物流(其中該方法物流 代表75%的總112-?5入廢氣物流)'於一種8£11方法中將 H2-PSA廢氣物流之C02和氫轉化成CO、將富含CO的 物流自該SER方法再循環到該CO-VSA單元(申請專利範 圍第1項的一個具體實施例被說明於圖9),本方法達成每 1〇〇莫爾/分鐘的重組器進料能生產16.1莫爾/分鐘的C0 和5 9 . 4莫爾/分鐘的氫。因此,將S E R方法添加到傳統的 SMR方法以處理H2-PSA廢氣在相同SMR進料率下產生 了較先前技藝方法增加56 %總C0生產。申請人的方法也 增加氫生產率大約3 %。 -30- 本紙張尺度速用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 訂 406055 ΑΊ Β7 五、發明説明(29 ) 本發明已作了上面的描述’本發明被認爲適當的申請 專利範圍定義如下。 I I I I I i I I I 訂— I I-^ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印聚 -31 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000A The paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 Duanjia A, the consumer cooperation of employees of the Central Bureau of Standards of the Ministry of Economic Affairs A 7 _B7__ V. Description of the invention (21) (a) Adsorption Reaction--The heated and pressurized hydrogen-depleted stream (raw material) passes a reactor containing a conversion catalyst and an admixture of an adsorbent at a first predetermined pressure. The adsorbent has a preferential selectivity for water and is rich in one of them. The C 0 -containing stream is discharged from the reactor. Water is selectively adsorbed by the adsorbent, and a reaction material transfer zone (RMTZ) is formed in the reactor. When more raw materials pass through the reactor, the transfer zone faces the reaction. The outlet or discharge end of the device moves. The adsorbent at the leading edge of RMTZ is essentially free of adsorbed water, while the adsorbent at the trailing edge of RMTZ is in equilibrium with water according to local conditions. This adsorption reaction step continues until the The adsorbent in the reactor is substantially saturated with water. In other words, the adsorption reaction step ends as soon as the adsorption RMTZ has reached the reactor effluent end or disappeared. The CO-rich stream is discharged from the reactor (B) Decompression-By discharging a mixture containing unreacted raw materials, CO and water, the reactor is decompressed countercurrently to a second predetermined pressure. The decompression step continues until the reactor reaches a second predetermined pressure. (C Flushing I--The reactor was flushed countercurrently at a second pressure using a weakly-adsorbed flushing fluid to desorb water from the adsorbent, and a fluid containing the weakly-adsorbed flushing fluid, unreacted raw materials, part C0, and part The water mixture is discharged from the reactor. (D) Flushing II-The reactor is flushed countercurrently at a second pressure using a C 0 2 -free flushing fluid that is rich in C 0 and hydrogen to desorb the weak Adsorption rinse fluid, and a mixture containing the weakly adsorbed rinse fluid, CO and water is discharged from the reactor. (E) Pressurization-the reactor is enriched with -23- Paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 (Please read the precautions on the back before filling out this page) 406055 A7 Printed by the Consumer Cooperatives of the Central Sample Bureau of the Ministry of Economic Affairs B7_ 五Invention description 22) The flushing fluid of CO is counter-pressurized from the second pressure to the first pressure. The positions of those valves in the above-mentioned operating cycle stages are also listed in Table 1. The indication " 0 " indicates that a specified valve is open. N C " represents that a designated valve is closed. The sequence of operations performed in a complete process cycle stage reactor 301 will be described in detail below in detail to enable continuous program operation It is fully understood. The sequence of the same steps according to Table 1 is performed in a slow sequence in the reactor 302. Once again, referring to the specific embodiment disclosed in FIG. 9 and the sequence stages and valve positions specified in Table 1, the reaction The reactor 301 has undergone four sequential stages of the adsorption reaction step. The raw materials stored in the storage tank 304 (optional) are introduced into the reactor 30 by opening the valves 31a and 316a and closing the valves 313a'314a and 315a. This allows the feedstock to flow through manifold A, line 311, and into reactor 301, which contains a required admixture of conversion catalyst and water-selective adsorbent. This adsorption reaction continues until the water absorbed in the reactor 301 is saturated. Water is selectively adsorbed onto the adsorbent and a reaction material transfer zone (RMTZ) is formed inside the reactor 301, which transfer zone moves toward the discharge end of the reactor 301 as more raw materials pass through. When the MTZ reaches the outflow end of the reactor or disappears at a preset point, the adsorption reaction is complete. A CO-rich stream leaves the discharge end of reactor 301 via lines 340 and 316 and flows into manifold E and then enters line 317 as previously described. The method carries out a stage of a decompression step, in which the reactor 301 discharges unreacted raw materials containing -24 by ------------ ¢ ------ ΤΓ ------ 4 (Please read the notes on the back before writing this page) This paper size applies to China National Standard (CNS) A4 specifications (2) 0X297 mm 83.3.10,000 Central Bureau of Standards, Ministry of Economic Affairs Printed by Shelley Consumer Cooperative 406055 A7 B7 V. Description of the invention (23) A mixture of material, C 0 and water was decompressed countercurrently to a second predetermined pressure. Valve 3 1 3 a is opened and valves 3 μ a and 3 1 4 a are closed to allow the mixture to enter manifold B through lines 311 and 313 and communicate with the pump 360 flow path. The mixture exits the discharge end of the pump 360 and passes through the line 3 62 for use as fuel (not shown) or recycled into the conditioning vessel 304 as feedstock for subsequent process cycles. This decompression step continues until the reactor reaches a second predetermined pressure. The reactor 301 then undergoes the stage of the washing step I. The reactor 301 is flushed countercurrently with a weakly adsorbed flushing fluid at a second pressure. After opening valves 3 14a and 3 1 5 a and keeping valves 3 2 5 a and 3 3 2 a in the closed position, weakly adsorbed flushing fluid from an external source passes line 3 3 0 through pump 3 3 1 and at a second pressure The pump 3 3 1 is left to enter the outlet end of the reactor 301 via the manifold D, line 3 1 5 and line 340. A mixture containing a weakly adsorbed flushing fluid, unreacted feedstock 'C 0 and water is discharged from reactor 3 1 via line 3 1 1, line 3 1 4 and manifold C and collected in separator 3 3 5. This mixture may be used as fuel, discharged for use outside the process, or separated in separator 335 to form a weakly adsorbed flushing stream and a water-rich stream 3 3 6. A portion of this weakly-adsorbed flushing fluid may be transported via line 334 into storage tank 333 for future use. By opening the valve 3 3 2 a upon request, this weakly adsorbed flushing fluid may be fed into the pump 3 3 1 via lines 3 3 2 and 3 3 0 for subsequent method cycle use. The reactor 301 then undergoes the stage of flushing step II, in which the reactor 301 is flushed countercurrently by a fluid that is free of hydrogen and CO 2 and rich in CO -25- I Yan- ^ 1 III, order H ϋ— ^ (please first Read the notes on the back and fill in this page) This paper size applies to Chinese national standards (CNS > Α4 size (2 丨 0X297 mm) 83. 3.10,000 406055 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (24) Washing. After opening valves 314a and 315a and keeping valves 325a and 332a in the closed position, a C0 rich flushing fluid from an external source passes pump 330 through line 330 and leaves pump 331 at a second pressure to pass through the manifold. Pipe D 'lines 315 and 340 enter the exit end of reactor 301. A mixture containing weakly adsorbed flushing fluid, water, and CO-rich flushing fluid is discharged from reactor 301 via line 311, line 314, and manifold C It is collected in a separator 3 3 5. The mixture may be used as fuel or discharged for use outside the method. The final step of the process cycle includes a single sequence of pressurized steps in which reactor 301 is A CO-rich flushing fluid (such as a branch stream from line 317) or a high-purity CO product stream 407 is counter-pressurized from a second pressure to a first pressure before starting another process cycle in the reactor. Specifically After opening valve 315a and keeping valves 311a, 313a, 3Ma, 325a and 332a in the closed position, the CO-rich flushing fluid passes through pump 3 3 1 via line 3 3 0 and leaves pump 3 3 1 at the second pressure to Via manifold D, line 3 15 and line 3 40 enter the outlet end of reactor 301. This step ends when reactor 301 reaches the first pressure. The method is performed according to the above steps listed in Table 1. Additional cycles. Although these sequential stages are described as equal in length, they are not necessary or necessary. The setting of time depends on the maximum allowable gas flow rate, the size of the valves and lines, and the nature of the adsorbent used. Interactive procedures may be Used to establish the duration of each cycle step. For example, other techniques well known in the industry, such as the analysis of reactor effluent composition, may be used to determine the end point of a particular step. -26- I--I--III ri装 -I (Please read the notes on the back before filling out this page) This paper size is in Chinese National Standard (CNS) A4 size (210X2M public holiday) 83. 3.! 0, 00 Associate Bureau employee consumer cooperatives printed Na 055 _ ^ _ V. Invention description (25) Several variations of the general specific embodiments may be implemented to meet the special needs of each plant. For example, in the adsorption reaction step and the Each reaction between the decompression steps may be performed at the first pressure with an additional countercurrent flushing step with a weakly adsorbed flushing fluid to discharge a mixture containing unreacted raw materials, CO and water, which can be used as raw materials via manifold B Pump 3 6 0 and line 3 2 2 are recycled into the SMR reactor. And a source of hydrogen or carbon dioxide (not shown) may be introduced into the hydrogen depleted stream 410 to control the ratio of hydrogen to C02 present in the first reactor of the SER process. Those skilled in the art will understand that unless an appropriate branch stream (not shown) can be discharged from stream 4 1 0 and recycled to the CO-VSA unit 406 before the reaction, methane may be applied in this case. Stacked during operation. This branch will typically be used as fuel for SMR 402. Suitable steam methane reforming catalysts include traditional steam methane reforming and pre-reforming catalysts, such as nickel-alumina, nickel-magnesium alumina, and precious metal catalysts. Suitable water-gas reforming catalysts for reverse conversion reactions in reactors or SER cycles include traditional Conversion catalysts such as iron-chromium high temperature conversion catalysts, copper / zinc oxide low temperature conversion catalysts and copper / zinc oxide medium temperature conversion catalysts. A water adsorbent suitable for an integrated SER process reactor must be active under the reaction conditions, which means that the adsorbent must retain its capacity and selectivity for the more adsorbable product. Secondly, the adsorbent must be chemical -27- ---------- ^ ------ 1T ------ 4 (please read the precautions on the back before filling this page) This paper is in Chinese National Standard (CNS) A4 size (210X297). 83.3.10,000 Printed by Shellfish Consumer Cooperatives, Central Bureau of Standards, Ministry of Economic Affairs 40605ο Α7 Β7 V. Description of the invention (26) It is neutral and cannot be used as an inverse Catalyst for water gas conversion reaction. The term weakly adsorbed fluid is a fluid that can replace the product adsorbed by the adsorbent during the operation phase of the method, and the fluid can be desorbed by the less adsorbed product, allowing subsequent process cycles to be performed in each reactor. Those skilled in the art can easily select a weakly adsorbed fluid or a mixture thereof suitable for the claimed invention. The general and another specific embodiments of the present invention can be operated using conventional hardware equipment. For example, a suitable reactor includes any vessel capable of withstanding the reaction conditions under which a particular equilibrium control method is implemented, such as a shell and tube reactor. Moreover, the separators enumerated in the method can be easily selected by those skilled in the art in consideration of, for example, the particular mixture to be separated, the volume of the separated fluid, and the like. The following examples are provided to further illustrate the method for applicants for producing CO. These examples are illustrative and are not intended to be used to limit the scope of patent application in this case. The following examples in the experimental section are provided to illustrate a method for CO production that the applicant has applied that integrates a conventional SMR method and a SER cycle to react CO 2 present in the off-gas stream of the separation unit via a backwater gas shift reaction Converted to C 0. The figures show the mass balance calculations for the selected method. The "HSC Chemistry for Windows" software package from Outokumpu Research Oy, Finland, was used to perform steam methane reformer effluent formation into -28- fk. I order IIII ^ (Please read the note on the back before filling this page) This The paper size is calculated according to the Chinese National Standard (CNS) A4 (210X297 mm) 83.3.10,000 Printed by the Consumers' Cooperative of the Central Government Standards Bureau of the Ministry of Economic Affairs 406055 A7 ____B7_ V. Description of the thermodynamic equilibrium of (27) points. All other calculations are common knowledge for those skilled in the chemical engineering industry. The following assumptions were used in these calculations: (a) the composition of the recombined product depends on the equilibrium conversion of the recombiner product at a constant temperature and pressure; (b) the steam methane recombiner is operated at 850 ° C and 25 atmospheres; (0) The feed of the recombiner contains CH4 at 25 mol / min and H2 at 75 mol / min; (d) The CO-VSA process produces a substantially pure CO product at 85% -carbon oxide recovery ( (99.5%); (e) The H2-PSA method produces a substantially pure hydrogen product (99.9%) at 85% hydrogen recovery; (f) C 0 2 to C in the adsorption enhanced reactor method (SE RP) A conversion of 0 is 80% (that is, 80% of CO 2 fed to the reactor is discharged from the reactor as a CO product); Example 1 In a conventional CO production method, the exhaust gas is discharged from the reactor via the CO-SER method. Logistics production C 0 products Table 2 contains mass balance data described in Figure 8 and Figure 9 for some method plans for the production of carbon monoxide. This table provides the total moles of hydrogen and carbon monoxide products produced. ------ ------------ * Γ ------ Business (please read the notes on the back before filling this page) -29 -___ This paper size is applicable to Chinese national standards (CN S) A4 specification (210X297 mm) 83. 3.10,000 406055 at ___B7 V. Description of invention (28) Table 2 * Comparison of integrated SERP-SMR method plan for simultaneous production of CO and H2_ Comparison performance of H2 products Amount (Moore / minute) Net amount of C0 product (Moore / minute) Figure 8 SMR + CO-VSA + H2-PSA 57.7 10.3 Figure 9 SMR + CO-VSA + H2-PSA + SERP (handling 75% of H2 -PAS exhaust gas) 59.4 16.1 * SMR feed: 25 Mohr CH4 + 75 Mohr H20 (reference example). (Please read the note on the back before filling this page) The cooperative printed a baseline example method consisting of a steam methane reformer and a subsequent CO-VSA unit to separate carbon monoxide and a H2-PSA unit to separate hydrogen (Figure 8). The material can produce 57.7 mol / min hydrogen and 10.3 mol / min CO. The method applied by the applicant includes steam methane recombination, separation of carbon monoxide in a CO-VSA unit ', separation of hydrogen in a H2-PSA unit, and H2- PSA off-gas is split into a purge stream and a method stream (where the method stream represents 75% 112-? 5 into the exhaust gas stream) 'in a 8 £ 11 method to convert CO 2 and hydrogen of the H2-PSA exhaust gas stream to CO, and recycle the CO-rich stream from the SER process to the CO-VSA unit (application A specific embodiment of item 1 of the patent scope is illustrated in FIG. 9). This method achieves a C0 and 59.4 mo / min of 16.1 mo / min per reformer feed of 100 mo / min. Minutes of hydrogen. Therefore, the addition of the SER method to the conventional SMR method to treat H2-PSA exhaust gas at the same SMR feed rate resulted in a 56% increase in total CO production compared to the prior art method. The applicant's method also increased hydrogen productivity by approximately 3%. -30- The Chinese paper standard (CNS) A4 size (210X297 mm) 83. 3.10,000 Order 406055 ΑΊ Β7 V. Invention description (29) The invention has been described above. 'The invention is recognized The scope of an appropriate patent application is defined below. Order IIIII i III — I I- ^ (Please read the notes on the back before filling out this page) Employees' Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, Yinju-31-This paper size applies to China National Standard (CNS) A4 (210X297) %) 83. 3.10,000

Claims (1)

(2000年1月修正)(Amended in January 2000) 經濟部中央標隼局員工消費合作社印製 (a) 使一種含有甲烷和水的原料在一選自鎳-氧化鋁、_ 二鎂氧化鋁和貴金屬催化劑所組成族群的蒸汽甲烷重 組催化劑的存在下、於溫度範圍從700t到1000°C和 壓力範圍從2到50大氣壓下、進行反應而形成包含 氫、一氧化碳、二氧化碳和未反應原料的一重組氣; (b) 將水自該重組氣移除以形成一種水耗竭的重組氣而 且將該水耗竭的重組氣分離成CO產品和一種CO耗竭 的物流 (c) 將該CO耗竭的物流分離成氫產品和一種氫耗竭的 物流並且壓縮該氫耗竭的物流以形成一種經加壓的 氫耗竭物流; (d) 將該氫耗竭的物流導入複數反應器之內,該些反應 器依照下列的步驟以預定的計時序列操作,該些步 驟於每個反應器裡皆被循環進行: Π)於範圍介於2到50大氣壓的一第一匦力下、於含有 水吸附劑和水煤氣轉化催化劑的一摻和劑的第一個反 應器裡、在足以將二氧化碳和氫轉化成一氧化碳並且 將水吸附在吸附劑上的反應條件下、使該加壓的氫耗 竭物流進行反應以形成一被再循環到步驟(b)的水耗竭 重組氣物流之富含CO的物流,其中該水吸附劑爲選自 沸石、氧化鋁或矽膠.,而該水煤氣轉化催化劑爲潠白 鐵-鉻高溫轉化催化劑、銅/鋅氧化物低溫轉化催化劑和 -32 - 本紙张尺度適用中國國家標隼(CNS>A4tt^( 210x297公羡) (請先閲讀背面之注項再填寫本頁) ___l·__:---一--————^——--------.η——1----..,1----- C αc 4 8 888 ABCD (2000年1月修正) 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 銅/鋅氣化物中溫轉化催化劑所組成的族群; (2) 藉由排出一種包含氫、二氧化碳、一氧化碳和水的 混合物而將該第一個反應器逆流地解壓到範圍介於 〇.〇5到2大氣壓的第二艇力; (3) 在該第二壓力以一種對該吸附劑呈弱吸附的沖洗流 體逆流地沖洗該第一個反應器,以自該吸附劑將水去 吸附而且排出一種包含弱吸附沖洗流體、未反應的原 料、一氧化碳和水的混合物,其中該弱吸附沖洗流體 爲潠自甲烷、ii和二氬化碳所組成的族群; (4) 在該第二壓力以一種不含氫和二氧化碳而富含C 0 的沖洗流體逆流地沖洗該第一個反應器以去吸附該弱 吸附沖洗流體,而且排出一種包含該弱吸附沖洗流 體、一氧化碳和水的混合物;和 (5) 在第一個反應器開始另一個循環之前以該富含CO 的沖洗流體將該第一個反應器從該第二壓力逆流地加 壓到第一壓力ΰ » 2. 如申請專利範圍第1項的方法,其進一步包含: (e)導入一種氫或二氧化碳來源至步驟(c)之氫耗竭物 流中,以控制存在於依照步驟(d)(1)之第一個反應器 中氫對二氧化碳的比率。 3. 如申請專利範圍第1項的方法,其進一步包含在步 驟d(l)與步驟d(2)之間的下列步驟··在第一壓力以一種弱 _ - 33 - 本紙張尺度通用中國國家標準(CNS ) AWjyg· ( 210X25)7公釐) f— I ^^^1 ^^^1 111 t —HI— ^^^1 In -a,HM —SKI n n (請先閲讀背面之注意事項再填寫本頁) 申請專利 Α8 Β8 C8 D8 (2000年1月修正) 吸附沖洗流_流地沖洗該第—個反應器,而且排出一種 包含未反應的原料'—氧化碳和水的混合物。 4.如申g靑專利範圍第I項的方法,其中該催化劑和吸 附劑的慘和劑包含5到%重量%的吸附劑和95到5重量% 的催化劑。 5·如申請專利範圍第丨項的方法,其中該原料所包含 水和甲烷的量爲水對甲烷的化學計量比介於L5到30的範 圍6 -----1----裝-------訂-------^丨4 (請先閎讀背面之注意事項再填寫本頁) 經濟部t央標準局員工消費合作社印製 -34 - 本紙浪尺度通用中國國家梯準(CNS ) A4規格(2丨〇><297公釐)Printed by the Employees' Cooperative of the Central Bureau of Standards, Ministry of Economic Affairs (a) A raw material containing methane and water is present in the presence of a steam methane reforming catalyst selected from the group consisting of nickel-alumina, _ dimagnesium alumina and precious metal catalysts At a temperature ranging from 700t to 1000 ° C and a pressure ranging from 2 to 50 atmospheres, the reaction is performed to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide and unreacted raw materials; (b) removing water from the reformed gas To form a water depleted reformed gas and separate the water depleted reformed gas into a CO product and a CO depleted stream (c) separate the CO depleted stream into a hydrogen product and a hydrogen depleted stream and compress the hydrogen depleted stream To form a pressurized hydrogen depleted stream; (d) introducing the hydrogen depleted stream into a plurality of reactors that operate in a predetermined timing sequence according to the following steps, which are performed at each The reactors are all circulated: Π) a blending agent containing a water adsorbent and a water gas conversion catalyst under a first pressure ranging from 2 to 50 atmospheres In the first reactor, the pressurized hydrogen-depleted stream is reacted under reaction conditions sufficient to convert carbon dioxide and hydrogen to carbon monoxide and adsorb water on the adsorbent to form a recycled to step (b) CO-rich stream of water depleted reformed gas stream, wherein the water adsorbent is selected from the group consisting of zeolite, alumina, or silica gel, and the water gas conversion catalyst is rhenium iron-chromium high temperature conversion catalyst, copper / zinc oxide low temperature conversion Catalyst and -32-This paper size is applicable to Chinese national standard (CNS > A4tt ^ (210x297)) (Please read the note on the back before filling this page) ___ l · __: ------------- ^ -------- .. η——1 ---- .., 1 ----- C αc 4 8 888 ABCD (Amended in January 2000) Employees' Cooperatives, Central Standards Bureau, Ministry of Economic Affairs Print 6. The scope of the patent application for the copper / zinc gaseous medium temperature conversion catalyst group; (2) The first reactor is decompressed countercurrently by discharging a mixture containing hydrogen, carbon dioxide, carbon monoxide and water to Second boat force ranging from 0.05 to 2 atmospheres; (3) The second pressure flushes the first reactor countercurrently with a flushing fluid that is weakly adsorbed on the adsorbent to desorb water from the adsorbent and exhausts a weakly adsorbed flushing fluid, unreacted raw materials, carbon monoxide And water, wherein the weakly adsorbed flushing fluid is a group consisting of methane, ii, and carbon dioxide; (4) at the second pressure, a flushing fluid that is rich in C 0 without hydrogen and carbon dioxide Flush the first reactor counter-currently to desorb the weakly adsorbed flushing fluid and discharge a mixture containing the weakly adsorbed flushing fluid, carbon monoxide and water; and (5) before the first reactor begins another cycle with The CO-rich flushing fluid counter-pressurizes the first reactor from the second pressure to the first pressure ΰ »2. The method according to item 1 of the patent application scope, further comprising: (e) introducing a Hydrogen or carbon dioxide is sourced into the hydrogen depleted stream of step (c) to control the ratio of hydrogen to carbon dioxide present in the first reactor according to step (d) (1). 3. As the method of applying for the first item in the scope of patent application, it further includes the following steps between step d (l) and step d (2) ··· At the first pressure with a weak _-33-This paper scale is universal China National Standard (CNS) AWjyg · (210X25) 7 mm) f— I ^^^ 1 ^^^ 1 111 t —HI— ^^^ 1 In -a, HM —SKI nn (Please read the precautions on the back first Fill out this page again) Apply for a patent A8 B8 C8 D8 (revised in January 2000) Adsorption flushing flow_Flush the first reactor, and discharge a mixture containing unreacted raw materials-carbon oxide and water. 4. The method of claim 1 in the scope of the patent application, wherein the catalyst and the sorbent blending agent comprise 5 to 5% by weight of an adsorbent and 95 to 5% by weight of a catalyst. 5. The method according to item 丨 of the patent application range, wherein the amount of water and methane contained in the raw material is a range of water to methane stoichiometric ratio ranging from L5 to 30 6 ----- 1 ---- pack- ------ Order ------- ^ 丨 4 (Please read the notes on the back before filling this page) Printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs -34-This paper is a standard for China National Ladder Standard (CNS) A4 Specification (2 丨 〇 > < 297 mm)
TW085104198A 1996-04-08 1996-04-10 Integrated steam methane reforming process for producing carbon monoxide and hydrogen TW406055B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/624,149 US6312658B1 (en) 1995-04-10 1996-04-08 Integrated steam methane reforming process for producing carbon monoxide and hydrogen

Publications (1)

Publication Number Publication Date
TW406055B true TW406055B (en) 2000-09-21

Family

ID=24500841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW085104198A TW406055B (en) 1996-04-08 1996-04-10 Integrated steam methane reforming process for producing carbon monoxide and hydrogen

Country Status (1)

Country Link
TW (1) TW406055B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447329B (en) * 2008-09-26 2014-08-01 Univ Ohio State Conversion of carbonaceous fuels into carbon free energy carriers
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US9376318B2 (en) 2008-09-26 2016-06-28 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
TWI447329B (en) * 2008-09-26 2014-08-01 Univ Ohio State Conversion of carbonaceous fuels into carbon free energy carriers
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10865346B2 (en) 2009-09-08 2020-12-15 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10253266B2 (en) 2009-09-08 2019-04-09 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US10502414B2 (en) 2011-05-11 2019-12-10 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10501318B2 (en) 2013-02-05 2019-12-10 Ohio State Innovation Foundation Methods for fuel conversion
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11826700B2 (en) 2018-08-09 2023-11-28 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
US11767275B2 (en) 2019-04-09 2023-09-26 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Similar Documents

Publication Publication Date Title
US6312658B1 (en) Integrated steam methane reforming process for producing carbon monoxide and hydrogen
US4869894A (en) Hydrogen generation and recovery
US4813980A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
US4553981A (en) Enhanced hydrogen recovery from effluent gas streams
CA1257206A (en) Purification of raw gas for ammonia synthesis
EP2565154B1 (en) Process and apparatus for producing hydrogen and carbon monoxide
TW406055B (en) Integrated steam methane reforming process for producing carbon monoxide and hydrogen
US8241400B2 (en) Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit
US8715617B2 (en) Hydrogen production process with low CO2 emissions
CA1334888C (en) Process and apparatus for the production of high purity oxygen and carbon dioxide
CA1336041C (en) Separation of gas mixtures including hydrogen
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US4846851A (en) Purification of ammonia syngas
CA2762282A1 (en) Processes for the recovery of high purity hydrogen and high purity carbon dioxide
US5000925A (en) Hydrogen and carbon dioxide coproduction apparatus
EP0411506A2 (en) Production of hydrogen, carbon monoxide and mixtures thereof
GB2337212A (en) Production of a high purity hydrogen gas stream and a high purity carbon monoxide gas stream
US5068058A (en) Production of ammonia synthesis gas
US4988490A (en) Adsorptive process for recovering nitrogen from flue gas
EP0737647B1 (en) Integrated steam methane reforming process for producing carbon monoxide
US5449696A (en) Process for methanol production using simulated moving bed reactive chromatography
CA2173802C (en) Integrated steam methane reforming process for producing carbon monoxide and hydrogen
JPH0578364B2 (en)
US5202057A (en) Production of ammonia synthesis gas
JPS6197124A (en) Collection of carbon dioxide