WO2010063923A2 - Installation a cycle thermochimique pour combustibles reactifs - Google Patents

Installation a cycle thermochimique pour combustibles reactifs Download PDF

Info

Publication number
WO2010063923A2
WO2010063923A2 PCT/FR2009/052306 FR2009052306W WO2010063923A2 WO 2010063923 A2 WO2010063923 A2 WO 2010063923A2 FR 2009052306 W FR2009052306 W FR 2009052306W WO 2010063923 A2 WO2010063923 A2 WO 2010063923A2
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
cyclone separator
installation according
gas
carbon dioxide
Prior art date
Application number
PCT/FR2009/052306
Other languages
English (en)
Other versions
WO2010063923A3 (fr
Inventor
Jean-Xavier Morin
Original Assignee
Jean-Xavier Morin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean-Xavier Morin filed Critical Jean-Xavier Morin
Priority to CA2745055A priority Critical patent/CA2745055C/fr
Publication of WO2010063923A2 publication Critical patent/WO2010063923A2/fr
Publication of WO2010063923A3 publication Critical patent/WO2010063923A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/101Entrained or fast fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to a thermochemical cycle plant for reactive fuels.
  • thermochemical oxygen transport cycles using metal oxides for The production of pure carbon dioxide from fossil fuels dates back to the 1950s and used dense, interconnected fluidized beds. Then came the use of the same techniques for a different purpose to achieve which is the combustion of fossil fuels for electricity generation with integrated capture of carbon dioxide, using circulating fluidized beds and no longer dense fluidized beds.
  • thermochemical cycles The configuration generally adopted for thermochemical cycles is that of two interconnected circulating fluidized-bed loops for circulation of solid circulating particles with, for each of the loops, a reactor, an associated cyclone separator, a return line with a siphon and possibly a barrier sulfur and carbon. Such an installation has a certain complexity and increases investment and maintenance costs.
  • Patent Document 2003/0035770 discloses a process for producing hydrogen by synthesis gas treatment combining a fluidized bed reactor with a mixture of synthesis gas and steam and a reactor which can be moved and lowered in which is injected with a mixture of oxygen and water vapor. These two reactors are interconnected in order to achieve a "CO shift" reaction called in French “displaced carbon monoxide conversion” and to convert the carbon monoxide present in the synthesis gas into carbon dioxide which is combined into carbonates through calcium present in this loop which also contains oxides of iron ensuring oxygen transfer.
  • the reactors are not insulated from each other with respect to the gases, and the resulting gas exchanges result in poor performance of the gas. treatment.
  • the object of the invention is to seek maximum compactness of a thermochemical cycle reactor to reduce investment costs, while making it capable of providing complete conversion functions of solid fuels of fossil origin or not fossil in the case of combustion and in the case of partial oxidation.
  • reactive fuels including solid fuels with a high content of moisture and volatile matter, require limited residence times to convert the solid carbon residue which is very reactive. This applies particularly to biomass, peat, lignite, oil shale, oil sands, sub-bituminous coals and petroleum residues.
  • thermochemical cycle plant comprising a fast fluidized bed oxidation reactor containing solid thermochemical reaction particles, a first associated cyclone separator and a solid return arrangement at the outlet of this cyclone separator.
  • said return arrangement comprising a reduction reactor consisting of a moving down bed, characterized in that said reduction reactor comprises a reactive fuel supply and comprises several injections of a mixture of carbon dioxide and steam of water, in that this reduction reactor is associated with a second cyclone separator associated with a return pipe to the oxidation reactor, in that the said first cyclone separator comprises at its solids outlet a first sealing siphon to the gases and in that said second cyclone separator comprises at its solids outlet a second siphon gas tightness .
  • the invention provides a simplified fast fluidized bed and moving bed configuration facility that combines two series-integrated reactors to perform a thermochemical fuel conversion cycle with carbon dioxide capture.
  • a moving bed reactor has the advantage of a very high concentration of solids of the order of 800 to 3000 kg / m 3 which ensures a very compact installation.
  • the invention also relates to a method for implementing such an installation, characterized in that it consists in adjusting the temperature of said fast fluidized bed reactor and said moving bed reactor by selecting the quantity and the composition of said solid particles of thermochemical reaction, and by adjusting their degree of oxidation and reduction by means of the flow rate of the gas supplying said reactors.
  • the solid particles of thermochemical reaction are preferably metal oxides.
  • Each type of metal oxide, alone or mixed, has several possible oxidation levels, for example Fe in FeO, Fe 2 O 3 , Fe 3 O 4 , Mn in MnO, Mn 2 O 3 , Mn 3 O 4 and conversely for the degrees of reduction.
  • These oxidation and reduction levels are parameters that can be adjusted by the composition of the mixed oxides, so as to precisely control the reaction heats released in each reactor.
  • the injected reagents oxidation air and fuel
  • the residence time of the oxides in each reactor is the last lever for adjusting these oxidation and reduction levels.
  • Figure 1 is a schematic elevational view of a combustion plant according to the invention.
  • Figure 2 is a schematic elevational view of a gasification plant or partial oxidation according to the invention.
  • thermochemical cycle plant comprises an IA reactor fast fluidized bed oxidation method with air, containing solid thermochemical reaction particles, preferably metal oxides, a first associated cyclone separator IB connected at the top of the reactor IA and a solids return arrangement at the outlet of the reactor; this cyclone separator to the reactor IA.
  • the connection of the top of the circulating fluidized bed reactor IA and the associated cyclone separator IB is effected by a pipe section inclined downwards, the inclination being at least 35 ° with respect to a horizontal plane. This inclination of 35 ° can be reduced to 20 ° if this section has auxiliary fluidizations.
  • This section of pipe opens into the ceiling of the first cyclone separator IB near the periphery of the latter by a slot in an arc of constant width.
  • the outer peripheral edge of this slot is arranged in continuity with the cylindrical wall of the first cyclone separator IB, so as not to reduce the speed of the solids and contributes to an optimal gas / solids separation efficiency in the cyclone.
  • the return arrangement comprises a reactor 2A, 2'A of combustion and reduction fed with reactive fuel to be converted and consisting of a moving down bed having a vertical pipe 2A and in which is injected by means of several injections 2C distributed on the height of this vertical pipe 2A, a recycled mixture of carbon dioxide and water vapor.
  • This reduction reactor is associated with a second cyclone separator 2B associated with a return line 2D of the solid particles of thermochemical reaction reduced, down the oxidation reactor IA.
  • These injections of mixture of carbon dioxide and water vapor comprise a 2E injection at a high speed of between 20 and 100 m / s located near the entrance in the second cyclone separator 2B.
  • This combustion and reduction reactor 2A is extended by a pipe section 2'A inclined, the inclination being at least 35 ° relative to a horizontal plane. This inclination of 35 ° can be reduced to 20 ° if this section has auxiliary fluidizations.
  • a flow at the bottom of this section 2'A is obtained and a mass gravity flow of the solids is favored by the high speed injection 2E located near the inlet in the second cyclone separator 2B.
  • This pipe section 2'A opens into the ceiling of the second cyclone separator 2B near the periphery of the latter by a slot in an arc of constant width. The outer peripheral edge of this slot is disposed in continuity with the cylindrical wall of the second cyclone separator 2B, so as not to reduce the speed of the solids and contributes to an optimal gas / solids separation efficiency in the cyclone.
  • the first cyclone separator IB has at its solids outlet a first gas-tight sealing siphon IC fluidized with water vapor.
  • the second cyclone separator 2B comprises at its solids outlet a second gas-tight sealing siphon 2F fluidized with water vapor, optionally mixed with recycled carbon dioxide.
  • the moving bed reactor 2A, 2'A is isolated from the fluidized bed reactor IA upstream and downstream with respect to the gas.
  • the fuel When the fuel is solid, the fuel is fed by gravity drop to the top of the moving bed reactor 2A, as shown in the figures. When the fuel is liquid or gaseous, it is fed by the 2C, 2E injections of a mixture of carbon dioxide and water vapor.
  • the fuel When the fuel is in pasty form or in suspension, it is introduced by pumping and through injections distributed over the height of the moving bed reactor 2A.
  • thermochemical preferably metal oxides
  • - adjusting means the reactor temperature, which is the amount of inventory of circulating solid particles, the oxidation and reduction levels of the oxides controlled by the flow of reactants in each reactor, and finally the composition of the solid particles of thermochemical reaction, of preferably circulating metal oxides.
  • Circulating metal oxides are preferably based on iron, manganese, copper, nickel and / or titanium in order to create perovskite-type structures.
  • the gas outlet of the second cyclone 2B consisting of the conversion gas generated in the moving bed reactor 2A between the metal oxides and the fuel introduced and containing in particular the carbon dioxide resulting from the conversion, is connected to a cooling device 6, a filtration device 7 and a condensation device 8, for the transport and storage of carbon dioxide.
  • the gas outlet of the second cyclone 2B consisting of the conversion gas generated in the moving bed reactor 2A between the metal oxides and the fuel introduced and containing in particular carbon dioxide, carbon monoxide, hydrogen, resulting from the conversion, is connected to a cooling device 6, a trapping device of Na 2 O and K 2 O type alkalines 9 around 600 ° C. C and a tar trapping device 10 to 400 to 800 0 C, preferably to 400 0 C, for use in engine supply gas or after prior compression in a gas turbine 11 or directly in gas gas supply of burners of an existing or new boiler 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

L'invention concerne une installation à cycle thermochimique comportant un réacteur d'oxydation à lit fluidisé rapide (1A), contenant des particules solides de réaction thermochimique, un premier séparateur cyclone associé (1B) et un agencement de retour des solides en sortie de ce séparateur cyclone (1B) vers ledit réacteur (1A), ledit agencement de retour comportant un réacteur de réduction constitué d'un lit mobile descendant (2A, 2'A). Selon l'invention, ledit réacteur de réduction comporte une alimentation en combustible réactif et comporte plusieurs injections (2C, 2E) d'un mélange de dioxyde de carbone et de vapeur d'eau, ce réacteur de réduction est associé à un second séparateur cyclone (2B) associé à une conduite de retour (2D) vers le réacteur d'oxydation (1A), ledit premier séparateur cyclone (1B) comporte à sa sortie des solides un premier siphon d'étanchéité aux gaz (1C) et ledit second séparateur cyclone (2B) comporte à sa sortie des solides un second siphon d'étanchéité aux gaz (2F).

Description

INSTALLATION A CYCLE THERMOCHIMIQUE POUR COMBUSTIBLES
REACTIFS
L'invention concerne une installation à cycle thermochimique pour combustibles réactifs.
Pour capturer puis stocker les émissions de dioxyde de carbone des installations de production d'énergie utilisant des combustibles solides d'origine fossile ou non fossile, tels que les biomasses, les développements technologiques ont mené à des voies multiples qui visent notamment à éliminer l'azote de l'air en amont de l'installation en utilisant de l'oxygène produit par une unité cryogénique de séparation d'air, par exemple pour la pré capture de dioxyde de carbone par gazéification préalable des combustibles ou pour oxycombustion avec de l'oxygène quasi pur mélangé à des fumées recyclées de dioxyde de carbone et vapeur d'eau. La production d'oxygène constitue le verrou technologique et économique de ces filières qui peut être contourné par l'intégration directe de cette production d'oxygène dans le processus de combustion par cycle thermochimique Les cycles thermochimiques de transport d'oxygène utilisant des oxydes métalliques pour la production de dioxyde de carbone pur à partir de combustibles fossiles remontent aux années 1950 et utilisaient des lits fluidisés denses interconnectés. Puis est apparue l'utilisation des mêmes techniques pour une finalité différente à atteindre qui est celle de la combustion de combustibles fossiles pour production d'électricité avec capture intégrée de dioxyde de carbone, utilisant des lits fluidisés circulants et non plus des lits fluidisés denses.
Ensuite, il est apparu que l'utilisation de lits fluidisés rapides et non plus de lits fluidisés circulants est seule adaptée à fournir les débits de particules solides porteurs d'oxygène afin d'assurer une combustion complète et non pas une oxydation partielle des combustibles. La configuration généralement adoptée pour les cycles thermochimiques est celle de deux boucles à lit fluidisé circulant interconnectées pour la circulation de particules solides circulants avec pour chacune des boucles, un réacteur, un séparateur cyclone associé, une conduite de retour avec un siphon et éventuellement une barrière du soufre et du carbone. Une telle installation présente une complexité certaine et augmente les coûts d'investissement et de maintenance.
Le document de brevet 2003/0035770 décrit un procédé de production d'hydrogène par traitement de gaz de synthèse combinant un réacteur à lit fluidisé par un mélange de gaz de synthèse et de vapeur d'eau et un réacteur qui peut être mobile et descendant dans lequel est injecté un mélange d'oxygène et de vapeur d'eau. Ces deux réacteurs sont interconnectés afin de réaliser une réaction de « CO shift » appelée en français « conversion déplacée du monoxyde de carbone » et de convertir le monoxyde de carbone présent dans le gaz de synthèse en dioxyde de carbone qui est combiné en carbonates grâce au calcium présent dans cette boucle qui contient également des oxydes de fer assurant un transfert d'oxygène.
Outre le fait qu'une telle installation soit destiné au traitement de gaz et non à la production d'énergie, les réacteurs ne sont pas isolés entre eux en ce qui concerne les gaz, et les échanges de gaz en résultant entraînent de mauvaises performances de traitement.
L'objet de l'invention est de rechercher la compacité maximale d'un réacteur à cycle thermochimique pour réduire les coûts d'investissement, tout en le rendant capable d'assurer des fonctions de conversion complète de combustibles solides d'origine fossile ou non fossile dans le cas d'une combustion et dans le cas d'une oxydation partielle.
En particulier les combustibles réactifs, dont les combustibles solides à teneur importante en humidité et matières volatiles, ne requièrent que des temps de séjour limités pour convertir le résidu carboné solide qui est très réactif. Ceci s'applique particulièrement aux biomasses, à la tourbe, aux lignites, aux schistes bitumineux, aux sables bitumineux, aux charbons sub-bitumineux et aux résidus pétroliers.
Pour ce faire, l'invention propose une installation à cycle thermochimique comportant un réacteur d'oxydation à lit fluidisé rapide, contenant des particules solides de réaction thermochimique, un premier séparateur cyclone associé et un agencement de retour des solides en sortie de ce séparateur cyclone vers ledit réacteur, ledit agencement de retour comportant un réacteur de réduction constitué d'un lit mobile descendant, caractérisée en ce que ledit réacteur de réduction comporte une alimentation en combustible réactif et comporte plusieurs injections d'un mélange de dioxyde de carbone et de vapeur d'eau, en ce que ce réacteur de réduction est associé à un second séparateur cyclone associé à une conduite de retour vers le réacteur d'oxydation, en ce que ledit premier séparateur cyclone comporte à sa sortie des solides un premier siphon d'étanchéité aux gaz et en ce que ledit second séparateur cyclone comporte à sa sortie des solides un second siphon d'étanchéité aux gaz..
L'invention propose une installation de configuration simplifiée de lit fluidisé rapide et de lit mobile qui combine deux réacteurs intégrés en série pour réaliser un cycle thermochimique de conversion de combustibles avec capture de dioxyde de carbone. En regard d'un réacteur à lit fluidisé circulant qui présente une concentration en solides de l'ordre de 10 kg/m3 à son sommet et de l'ordre de 500 kg/m3 à sa base, un réacteur à lit mobile présente l'avantage d'une très forte concentration en solides de l'ordre de 800 à 3000 kg/m3 ce qui assure une très grande compacité de l'installation. L'invention concerne également un procédé de mise en œuvre d'une telle installation, caractérisé en ce qu'il consiste à régler la température dudit réacteur à lit fluidisé rapide et dudit réacteur à lit mobile par sélection de la quantité et de la composition desdites particules solides de réaction thermochimique, et par réglage de leur degré d'oxydation et de réduction au moyen du débit du gaz alimentant lesdits réacteurs.
Les particules solides de réaction thermochimique sont de préférence des oxydes métalliques. Chaque type d'oxyde métallique, seul ou mixtes, possède plusieurs niveaux d'oxydation possibles, par exemple Fe en FeO, Fe2O3, Fe3O4, Mn en MnO, Mn2O3, Mn3O4 et inversement pour les degrés de réduction. Ces degrés d'oxydation et de réduction sont des paramètres pouvant être ajustés par la composition des oxydes mixtes, de façon à piloter précisément les chaleurs réactionnelles libérées dans chaque réacteur. Par ailleurs, les réactifs injectés (air d'oxydation et combustible) qui réagissent avec les oxydes métalliques et leur mode d'injection par étagement sont également un moyen d'action sur ces degrés de réduction et d'oxydation. Enfin, les temps de séjour des oxydes dans chaque réacteur constituent le dernier levier d'ajustement de ces degrés d'oxydation et de réduction.
L'invention est décrite ci-après plus en détail à l'aide de figures ne représentant que des modes de réalisation préférés de l'invention.
La figure 1 est une vue schématique en élévation d'une installation de combustion conforme à l'invention.
La figure 2 est une vue schématique en élévation d'une installation de gazéification ou d'oxydation partielle conforme à l'invention.
Comme représenté sur les figures, une installation à cycle thermochimique conforme à l'invention comporte un réacteur IA d'oxydation à lit fluidisé rapide par de l'air, contenant des particules solides de réaction thermochimique, de préférence des oxydes métalliques, un premier séparateur cyclone associé IB raccordé en partie haute du réacteur IA et un agencement de retour des solides en sortie de ce séparateur cyclone vers le réacteur IA. Le raccordement du haut du réacteur à lit fluidisé circulant IA et du séparateur cyclone IB associé est effectué par un tronçon de conduite incliné vers le bas, l'inclinaison étant d'au moins 35° par rapport à un plan horizontal. Cette inclinaison de 35 ° peut être réduite à 20 ° si ce tronçon possède des fluidisations auxiliaires. Ainsi, il est obtenu un écoulement en phase dense au bas de ce tronçon de conduite et un écoulement gravitaire en masse des solides est favorisé. Ce tronçon de conduite débouche dans le plafond du premier séparateur cyclone IB à proximité de la périphérie de ce dernier par une fente en arc de cercle, de largeur constante. Le bord périphérique externe de cette fente est disposée en continuité avec la paroi cylindrique du premier séparateur cyclone IB, afin de ne pas réduire la vitesse des solides et contribue à un rendement de séparation gaz / solides optimal dans le cyclone.
En sortie des gaz de ce premier cyclone IB, est récupéré de l'air appauvri en oxygène qui est transmis à un dispositif de refroidissement 3, un dispositif de filtration 4 et un dispositif d'évacuation 5 à l'atmosphère.
L'agencement de retour comporte un réacteur 2A, 2'A de combustion et de réduction alimenté en combustible réactif à convertir et constitué d'un lit mobile descendant comportant une conduite verticale 2A et dans lequel est injecté au moyen de plusieurs injections 2C réparties sur la hauteur de cette conduite verticale 2A, un mélange recyclé de dioxyde de carbone et de vapeur d'eau. Ce réacteur de réduction est associé à un second séparateur cyclone 2B associé à une conduite de retour 2D des particules solides de réaction thermochimique réduites, vers le bas du réacteur d'oxydation IA. Ces injections de mélange de dioxyde de carbone et de vapeur d'eau comprennent une injection 2E à une haute vitesse comprise entre 20 et 100 m/s située à proximité de l'entrée dans le second séparateur cyclone 2B. Ce réacteur de combustion et de réduction 2A se prolonge par un tronçon de conduite 2'A incliné, l'inclinaison étant d'au moins 35° par rapport à un plan horizontal. Cette inclinaison de 35 ° peut être réduite à 20 ° si ce tronçon possède des fluidisations auxiliaires. Ainsi, il est obtenu un écoulement au bas de ce tronçon 2'A et un écoulement gravitaire en masse des solides est favorisé par l'injection 2E à haute vitesse située à proximité de l'entrée dans le second séparateur cyclone 2B. Ce tronçon de conduite 2'A débouche dans le plafond du second séparateur cyclone 2B à proximité de la périphérie de ce dernier par une fente en arc de cercle, de largeur constante. Le bord périphérique externe de cette fente est disposée en continuité avec la paroi cylindrique du second séparateur cyclone 2B, afin de ne pas réduire la vitesse des solides et contribue à un rendement de séparation gaz / solides optimal dans le cyclone.
Le premier séparateur cyclone IB comporte à sa sortie des solides un premier siphon d'étanchéité aux gaz IC fluidisé par de la vapeur d'eau. De même, le second séparateur cyclone 2B comporte à sa sortie des solides un second siphon d'étanchéité aux gaz 2F fluidisé par de la vapeur d'eau, éventuellement mélangé avec du dioxyde de carbone recyclé. Ainsi le réacteur à lit mobile 2A, 2'A est isolé du réacteur à lit fluidisé IA en son amont et en son aval, en ce qui concerne le gaz.
Lorsque le combustible est solide, le combustible est alimenté par chute gravitaire au sommet du réacteur à lit mobile 2A, comme illustré sur les figures. Lorsque le combustible est liquide ou gazeux, il est alimenté par les injections 2C, 2E de mélange de dioxyde de carbone et de vapeur d'eau.
Lorsque le combustible est sous forme pâteuse ou en suspension, il est introduit par pompage et grâce à des injections réparties sur la hauteur du réacteur à lit mobile 2A.
Le fait de coupler thermiquement sans bypass les deux réacteurs, c'est-à-dire que la totalité des solides circulants dans un réacteur traverse les deux réacteurs IA, 2A en série, nécessite : - d'optimiser la composition des particules solides de réaction thermochimique, de préférence des oxydes métalliques, quant à leur exothermicité et endothermicité ainsi que leur capacité en portage d'oxygène, puisqu'il n'y a pas de boucle auxiliaire de particules solides permettant une extraction de chaleur additionnelle, - des moyens de réglage de la température des réacteurs, qui sont la quantité d'inventaire de particules solides en circulation, les degrés d'oxydation et de réduction des oxydes pilotés par les débits de réactants dans chaque réacteur et enfin la composition des particules solides de réaction thermochimique, de préférence des oxydes métalliques en circulation.
Les oxydes métalliques en circulation sont préférentiellement à base de fer, de manganèse, de cuivre, de nickel ou/et de titane afin de créer des structures de type pérovskites.
Lorsque l'installation est destinée à une combustion, comme représentée sur la figure 1, la sortie des gaz du second cyclone 2B constitué du gaz de conversion généré dans le réacteur à lit mobile 2A entre les oxydes métalliques et le combustible introduit et contenant notamment le dioxyde de carbone issu de la conversion, est connectée à un dispositif de refroidissement 6, un dispositif de filtration 7 et un dispositif de condensation 8, pour le transport et le stockage du dioxyde de carbone.
Lorsque l'installation est destinée à une gazéification ou une combustion partielle, comme représentée sur la figure 2, la sortie des gaz du second cyclone 2B constitué du gaz de conversion généré dans le réacteur à lit mobile 2A entre les oxydes métalliques et le combustible introduit et contenant notamment le dioxyde de carbone, le monoxyde de carbone, l'hydrogène, issus de la conversion, est connectée à un dispositif de refroidissement 6, un dispositif de piégeage des alcalins 9 de type Na2O et K2O vers 6000C et un dispositif de piégeage de goudrons 10 vers 400 à 8000C, de préférence vers 4000C, pour l'utilisation en gaz d'alimentation de moteur ou après une compression préalable en turbine à gaz 11 ou directement en gaz d'alimentation de brûleurs d'une chaudière 12 existante ou nouvelle.

Claims

REVENDICATIONS
1. Installation à cycle thermochimique comportant un réacteur d'oxydation à lit fluidisé rapide (IA), contenant des particules solides de réaction thermochimique, un premier séparateur cyclone associé (IB) et un agencement de retour des solides en sortie de ce séparateur cyclone (IB) vers ledit réacteur (IA), ledit agencement de retour comportant un réacteur de réduction constitué d'un lit mobile descendant (2A, 2'A), caractérisée en ce que ledit réacteur de réduction comporte une alimentation en combustible réactif et comporte plusieurs injections (2C, 2E) d'un mélange de dioxyde de carbone et de vapeur d'eau, en ce que ce réacteur de réduction est associé à un second séparateur cyclone (2B) associé à une conduite de retour (2D) vers le réacteur d'oxydation (IA), en ce que ledit premier séparateur cyclone (IB) comporte à sa sortie des solides un premier siphon d'étanchéité aux gaz (IC) et en ce que ledit second séparateur cyclone (2B) comporte à sa sortie des solides un second siphon d'étanchéité aux gaz (2F).
2. Installation selon la revendication précédente, caractérisée en ce que ledit réacteur à lit mobile comporte une conduite verticale (2A) et lesdites injections (2C, 2E) sont réparties sur la hauteur de ladite conduite verticale (2A).
3. Installation selon l'une des revendications précédentes, caractérisée en ce que lesdites injections de mélange de dioxyde de carbone et de vapeur d'eau comprennent une injection (2E) à une haute vitesse comprise entre 20 et 100 m/s située à proximité de l'entrée dans ledit second séparateur cyclone (2B).
4. Installation selon l'une des revendications précédentes, caractérisée en ce que ledit réacteur de lit mobile descendant se prolonge par un tronçon de conduite incliné (2'A), débouchant dans le plafond dudit second séparateur cyclone (2B).
5. Installation selon l'une des revendications précédentes, destinée à une combustion, caractérisée en ce que la sortie des gaz dudit second cyclone (2B) est connectée à un dispositif de refroidissement (6), de filtration (7) et de condensation (8), pour le transport et le stockage du dioxyde de carbone.
6. Installation selon l'une des revendications 1 à 4, destinée à une gazéification ou une oxydation partielle, caractérisée en ce que la sortie des gaz dudit second cyclone (2B) est connectée à un dispositif de refroidissement (6), de piégeage des alcalins (9) et de piégeage de goudrons (10), pour l'utilisation en gaz moteur d'une turbine à gaz (11) ou en gaz d'alimentation de brûleurs d'une chaudière (12).
7. Installation selon l'une des revendications précédentes, dont ledit combustible est solide, caractérisée en ce que ledit combustible est alimenté par chute gravitaire au sommet dudit réacteur à lit mobile (2A).
8. Installation selon l'une des revendications précédentes, dont ledit combustible est liquide ou gazeux, caractérisée en ce que ledit combustible est alimenté par lesdites injections (2C, 2E) de mélange de dioxyde de carbone et de vapeur d'eau.
9. Installation selon l'une des revendications précédentes, caractérisée en ce que ledit réacteur d'oxydation (IA) est fluidisé par de l'air.
10. Installation selon l'une des revendications précédentes caractérisée en ce que lesdites particules solides de réaction thermochimique sont des oxydes métalliques.
11. Procédé de mise en œuvre d'une installation selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à régler la température dudit réacteur à lit fluidisé rapide (IA) et dudit réacteur à lit mobile (2A, 2'A) par sélection de la quantité et de la composition desdites particules solides de réaction thermochimique, et par réglage de leur degré d'oxydation et de réduction au moyen du débit du gaz alimentant lesdits réacteurs.
PCT/FR2009/052306 2008-12-02 2009-11-26 Installation a cycle thermochimique pour combustibles reactifs WO2010063923A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2745055A CA2745055C (fr) 2008-12-02 2009-11-26 Installation a cycle thermochimique pour combustibles reactifs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858190 2008-12-02
FR0858190 2008-12-02

Publications (2)

Publication Number Publication Date
WO2010063923A2 true WO2010063923A2 (fr) 2010-06-10
WO2010063923A3 WO2010063923A3 (fr) 2012-12-13

Family

ID=42026210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052306 WO2010063923A2 (fr) 2008-12-02 2009-11-26 Installation a cycle thermochimique pour combustibles reactifs

Country Status (2)

Country Link
CA (1) CA2745055C (fr)
WO (1) WO2010063923A2 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213415A (zh) * 2011-04-28 2011-10-12 广州迪森热能技术股份有限公司 生物质烟气制备系统
WO2012064712A1 (fr) * 2010-11-08 2012-05-18 The Ohio State University Lit fluidisé circulant comprenant des goulottes de lit mobiles et une séparation étanche aux gaz entre les réacteurs
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US9376318B2 (en) 2008-09-26 2016-06-28 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
WO2017167655A1 (fr) * 2016-03-31 2017-10-05 General Electric Technology Gmbh Système, procédé et appareil pour maintenir un équilibre de pression dans une boucle d'écoulement de solides et réguler l'écoulement de solides à travers cette dernière
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
WO2022105946A1 (fr) * 2020-12-25 2022-05-27 中国科学院广州能源研究所 Procédé et appareil pour éliminer des polluants de déchets solides organiques au moyen d'une combustion en boucle chimique couplée à une pyrolyse
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035770A1 (en) 2001-08-14 2003-02-20 Cole Jerald A. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474021A (en) * 1948-01-17 1949-06-21 Du Pont Production of metal compounds
US3619142A (en) * 1969-02-11 1971-11-09 Consolidation Coal Co Continuous steam-iron process
FR2556983B1 (fr) * 1983-12-23 1986-05-16 Creusot Loire Procede et installation de traitement de matieres en lit fluidise, en particulier pour la combustion ou gazeification de matiere combustible
FR2850156B1 (fr) * 2003-01-16 2005-12-30 Alstom Switzerland Ltd Installation de combustion avec recuperation de co2

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035770A1 (en) 2001-08-14 2003-02-20 Cole Jerald A. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US9376318B2 (en) 2008-09-26 2016-06-28 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10253266B2 (en) 2009-09-08 2019-04-09 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10865346B2 (en) 2009-09-08 2020-12-15 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
CN103354763B (zh) * 2010-11-08 2016-01-13 俄亥俄州立大学 具有反应器之间的气体密封和移动床下导管的循环流化床
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
CN103354763A (zh) * 2010-11-08 2013-10-16 俄亥俄州立大学 具有反应器之间的气体密封和移动床下导管的循环流化床
WO2012064712A1 (fr) * 2010-11-08 2012-05-18 The Ohio State University Lit fluidisé circulant comprenant des goulottes de lit mobiles et une séparation étanche aux gaz entre les réacteurs
CN102213415A (zh) * 2011-04-28 2011-10-12 广州迪森热能技术股份有限公司 生物质烟气制备系统
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10502414B2 (en) 2011-05-11 2019-12-10 Ohio State Innovation Foundation Oxygen carrying materials
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10501318B2 (en) 2013-02-05 2019-12-10 Ohio State Innovation Foundation Methods for fuel conversion
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US10011441B2 (en) 2016-03-31 2018-07-03 General Electric Technology Gmbh System and method and apparatus for maintaining a pressure balance in a solids flow loop and for controlling the flow of solids therethrough
TWI712760B (zh) * 2016-03-31 2020-12-11 瑞士商通用電器技術有限公司 用於維持固體流動迴路中壓力平衡及控制穿過其之固體流動的系統、方法及裝置
WO2017167655A1 (fr) * 2016-03-31 2017-10-05 General Electric Technology Gmbh Système, procédé et appareil pour maintenir un équilibre de pression dans une boucle d'écoulement de solides et réguler l'écoulement de solides à travers cette dernière
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11826700B2 (en) 2018-08-09 2023-11-28 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
US11767275B2 (en) 2019-04-09 2023-09-26 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
WO2022105946A1 (fr) * 2020-12-25 2022-05-27 中国科学院广州能源研究所 Procédé et appareil pour éliminer des polluants de déchets solides organiques au moyen d'une combustion en boucle chimique couplée à une pyrolyse

Also Published As

Publication number Publication date
CA2745055A1 (fr) 2010-06-10
CA2745055C (fr) 2016-10-04
WO2010063923A3 (fr) 2012-12-13

Similar Documents

Publication Publication Date Title
CA2745055C (fr) Installation a cycle thermochimique pour combustibles reactifs
EP2577162B1 (fr) Procédé de combustion en boucle chimique avec deux zones de réaction successives et une zone de séparation et installation utilisant un tel procédé
EP1969092A1 (fr) Installation de conversion d'hydrocarbures petroliers a installation de combustion integree comprenant une capture du dioxyde de carbone
EP2142622B1 (fr) Procede de production d'un gaz de synthese purifie a partir de biomasse incluant une etape de purification en amont de l'oxydation partielle
FR2985517A1 (fr) Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
EP2798045A1 (fr) Procede et equipement de gazeification en lit fixe
AU2009209689B2 (en) Process to start-up a coal gasification reactor
CA2564820A1 (fr) Systeme et procede pour recycler thermiquement des dechets
EP2344812B1 (fr) Procede d'adaptation a tout type d'oxydes, d'une installation a cycle thermochimique et installation pour la mise en oeuvre de ce procede
CA2747357A1 (fr) Procede et dispositif de production et de purification de gaz de synthese
CA2740501A1 (fr) Procede et dispositif d'extraction de dioxyde de carbone de l'atmosphere
EP1077248B1 (fr) Procédé et installation de production d'un gaz combustible à partir d'une charge riche en matière organique
EP2491306A1 (fr) Procédé et dispositif de production d'énergie par oxydation d'un combustible dans une boucle chimique
EP0223619A1 (fr) Dispositif de traitement de matières solides sous forme de particules, en lit fluidisé circuit circulant en particulier dispositif de gazéification
EP2536976B1 (fr) Dispositif destine en particulier a une conversion thermochimique
FR2689617A1 (fr) Procédé et dispositif pour le traitement thermique de déchets, notamment solides, contenant des matières organiques.
FR2917399A1 (fr) Procede et systeme de traitement d'effluents gazeux pour produire independamment h2 et co
CA2740506A1 (fr) Dispositif de lit fluidise a fluidisation rapide et a flux sature de solides circulants
CA2861050A1 (fr) Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
FR3060603A1 (fr) Dispositif et procede de production de produits differencies, dans des proportions modulables, a partir d'une pyrolyse de biomasse vegetale.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804293

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2745055

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804293

Country of ref document: EP

Kind code of ref document: A2