CN102683707A - 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法 - Google Patents

低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法 Download PDF

Info

Publication number
CN102683707A
CN102683707A CN2012101550245A CN201210155024A CN102683707A CN 102683707 A CN102683707 A CN 102683707A CN 2012101550245 A CN2012101550245 A CN 2012101550245A CN 201210155024 A CN201210155024 A CN 201210155024A CN 102683707 A CN102683707 A CN 102683707A
Authority
CN
China
Prior art keywords
compound
lithium
preparation
iron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101550245A
Other languages
English (en)
Inventor
李庆余
王红强
颜志雄
代启发
汪艳芳
文静波
朱强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHENGZHOU XIANGRIKUI NEW ENERGY TECHNOLOGY Co Ltd
Original Assignee
ZHENGZHOU XIANGRIKUI NEW ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHENGZHOU XIANGRIKUI NEW ENERGY TECHNOLOGY Co Ltd filed Critical ZHENGZHOU XIANGRIKUI NEW ENERGY TECHNOLOGY Co Ltd
Priority to CN2012101550245A priority Critical patent/CN102683707A/zh
Publication of CN102683707A publication Critical patent/CN102683707A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法,一、按物质的量比称取基础原料:铁化合物︰锂化合物︰磷化合物=2︰1.95-2.05︰2;按基础原料总质量的1-10%称取碳源;二、将上述铁化合物、锂化合物、磷化合物、碳源在循环搅拌磨中以流变相状态下混合,得到LiFePO4前驱体悬浊液;然后在110-130℃温度范围干燥,所得样品100目筛网破碎,得到淡黄色的前驱体粉末;三、将第二步所得前驱体粉末置于惰性气氛烧结炉,先在300-400℃温度条件下预分解2-6小时,再升温至500-800℃温度条件下煅烧10-20小时,冷却后得到核壳型纳米级碳包覆磷酸铁锂复合正极材料。本发明优点在于合成工艺简单,原料来源广泛,大大降低了生产成本。

Description

低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法
技术领域
本发明涉及锂离子电池正极材料,尤其是涉及低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法。 
背景技术
锂离子正极材料是锂离子电池的重要组成部分,在众多如LiCoO2、LiNiO2、LiMn2O4、LiCoxNiyMnzO2、LiFePO4等锂电池正极材料中,具有橄榄石结构的磷酸铁锂由于具有原料来源丰富、成本低、环境友好、不吸潮、安全性能高、比容量较高(理论容量为170mAh/g)、在3.4V(∝Li/Li+)左右有平稳的放电电压平台、热稳定性和循环性能优异等优点被认为是最有前途的正极材料。但是,磷酸铁锂较差的低温性能限制了其在更多领域的应用。 
提高磷酸铁锂材料低温性能主要有以下三种方式:导电性物质包覆正极材料、金属离子掺杂以提高电子电导率、细化颗粒以缩短离子扩散路径。目前,商品化的LiFePO4多使用高温固相反应技术制备,它具有设备简单、生产快速、成本低廉等特点,这种方法通常采用锂源、铁源、碳源以及磷酸二氢铵等的均匀混合物为起始物,经预烧和研磨后高温合成,但是由于高温固相反应本身的限制,该方法生产的产品粒度无法控制,产物颗粒较大且粒径分布不均匀,-20℃时的放电容量只有25℃时的50%~ 55%。改善磷酸铁锂低温性能目前主要集中在控制粒度大小,如中国专利申请号:201110025787.3、名称为:“锂离子电池正极材料微纳米磷酸铁锂的制备方法”所公开的方法是将纳米尺寸的前驱体材料和锂源、碳源及适量粘合剂均匀混合后,经干混造粒工艺得到二次颗粒为微米尺寸的球形微纳米磷酸铁锂前驱体材料,经高温热处理得到球形微纳米磷酸铁锂材料,一次颗粒粒径在30-100nm左右,二次颗粒平均粒径为1-20μm,室温下0.1C放电比容量为145mAh/g(半电池测试),-20℃,0.5C条件下放电容量保持率为70%(半电池测试);该方法所存在的不足是制备的磷酸铁锂比表面积大,导致磷酸铁锂加工性能变差,正极极片加工困难,直接影响到电池的生产,同时二次造粒对产品的稳定性也产生不良影响。因此,一次颗粒纳米化和比表面积增大而导致材料加工性能恶化之间的矛盾是摆在磷酸铁锂生产企业面前的拦路虎。中国专利申请号:200810161612.3、名称为:“具有高导电率良好低温放电性的磷酸铁锂的制备方法”所公开的方法是采用可溶性二价铁盐溶液与磷酸溶液或者可溶性磷酸盐溶液混合,然后强碱中和,得到颗粒D50在1-5μm之间的超细Fe3(PO4)2·xH2O沉淀,再混合磷酸锂和导电剂高温烧结得到良好低温放电性的磷酸铁锂,但是此方法工艺复杂,成本过高,同样存在比表面积过大的问题。 
发明内容
本发明目的在于提供一种低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法。 
为实现上述目的,本发明采取下述技术方案: 
本发明所述低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法,包括基础原料铁化合物、锂化合物、磷化合物,和碳源;按照下述步骤制备:
第一步、按下述方法称取基础原料和碳源:
按物质的量比称取基础原料:
铁化合物︰锂化合物︰磷化合物=2︰1.95-2.05︰2;
按基础原料总质量的1-10%称取碳源;
所述铁化合物为硝酸铁、醋酸铁、铁红或草酸亚铁;锂化合物为氢氧化锂、碳酸锂、硝酸锂或磷酸二氢锂;磷化合物为磷酸二氢锂或磷酸二氢铵;碳源为葡萄糖、蔗糖、淀粉等单糖或多糖及非离子表面活性剂;
第二步、将上述铁化合物、锂化合物、磷化合物、碳源在循环搅拌磨中以流变相状态下混合,得到LiFePO4前驱体悬浊液;然后在110-130℃温度范围干燥,所得样品100目筛网破碎,得到淡黄色的前驱体粉末;
第三步、将第二步所得前驱体粉末置于惰性气氛烧结炉,先在300-400℃温度条件下预分解2-6小时,再升温至500-800℃温度条件下煅烧10-20小时,冷却后得到核壳型纳米级碳包覆磷酸铁锂复合正极材料。
所述第三步的升温速率为2-5℃/min,惰性气氛烧结炉内氧含量小于20ppm。 
本发明优点在于合成工艺简单,原料来源广泛,大大降低了生产成本;各原料在流变相状态下混合,使Fe2+、Li+和PO4 3+实现分子级别的混合;以糖类及表面活性剂作为碳源,同时也是阻聚剂,在热处理过程中,糖类及表面活性剂裂解生成的碳原位包裹在磷酸铁锂颗粒表面,达到提高磷酸铁锂导电性能的目的;表面活性剂加入的目的是利用其疏水和亲水基使各基础原料不仅实现分子级别混合,而且可以引导LiFePO4晶体的生长,使糖类颗粒均匀地包裹在磷酸铁锂颗粒表面,在预合成过程中,糖类及表面活性剂颗粒所具有的空间位阻效应和高分子网络的阻隔作用阻碍了颗粒的团聚;其次,在热处理过程中,糖类及表面活性剂颗粒裂解生成的碳原位包裹在磷酸铁锂颗粒表面,不仅阻碍了颗粒在高温合成过程中的团聚,达到细化颗粒的目的,而且在磷酸铁锂颗粒表面间形成了导电性良好的碳网络,增强了其导电性能。与此同时,糖类及表面活性剂裂解生成的碳在高温煅烧过程中,抑制了二价铁离子的氧化,降低了控制反应条件的难度,提高了产品的纯度和性能。这样得到的核壳型纳米级碳包覆磷酸铁锂复合正极材料一次颗粒为三维纳米级,二次颗粒小于5微米且粒径范围窄、比表面积小(11.954m2/g)、形貌规则、低温性能优良,在-40℃放电容量不低于常温(25℃)放电容量的30%。 
附图说明
图1是实施例1制备的低温性能核壳型纳米级碳包覆磷酸铁锂的XRD图谱。 
图2是实施例1制备的低温性能核壳型纳米级碳包覆磷酸铁锂的透射电镜 
照片。
图3是实施例1制备的低温性能核壳型纳米级碳包覆磷酸铁锂的粒度分布图。 
图4是实施例1制备的低温性能核壳型纳米级碳包覆磷酸铁锂的-40℃与25℃放电曲线对比图。 
图5是实施例1制备的低温性能核壳型纳米级碳包覆磷酸铁锂的-40℃放电曲线对比图。 
图6是实施例1制备样品的粒度分布测试结果。 
图7是实施例1制备样品的比表面积测试结果。 
具体实施方式
实施例1: 
本发明所述低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法,按照下述步骤制备:
在循环搅拌磨中依次加入400ml蒸馏水、727.2g Fe(NO3)3·9H2O、207.6gH3PO4和75.6gLiOH·H2O,循环搅拌30min后,再加入82.2g氧化淀粉和80g吐温80,循环搅拌4h,所得浊液置于烘箱110℃烘干,所得样品100目筛网破碎,得到淡黄色的前驱体粉末。将前驱体粉末放入石墨坩埚中,置于惰性气氛烧结炉中,在氧含量小于20ppm下,以2℃/min的升温速率升温,在320℃处预分解4小时,同样的速率升温至700℃,煅烧12小时,样品随炉冷却至室温,得到LiFePO4/C复合材料。
样品制作成502030型软包装电池测试。正极极片采用聚偏氟乙烯(PVDF,solef-5130)为粘结剂,炭黑(SPLi)为导电添加剂,N-甲基吡咯烷酮(NMP)为溶剂。物料配比(质量比)为磷酸铁锂︰PVDF(solef-5130)︰炭黑(SPLi)=92︰3︰5;理论固含量:40%-45%。浆料过150目筛后进行涂布。涂布面密度为2.5-2.7g/dm2(双面)。负极极片采用羧甲基纤维素钠(CMC,SC390)为粘结剂,炭黑(SPLi)为导电添加剂,纯净水为溶剂。物料配比(质量比)为:石墨︰CMC(SC390)︰炭黑(SPLi)=94︰3︰3;电解液为1 mol/L LiPF6/EC:DMC(1:1)。 
对比例1: 
在循环搅拌磨中依次加入4000ml蒸馏水727.2g Fe(NO3)3·9H2O,207.6gH3PO4和75.6gLiOH·H2O,循环搅拌30min后,再加入164.4g木薯淀粉,循环搅拌4h,所得浊液置于烘箱110℃烘干,所得样品100目筛网破碎,得到淡黄色的前驱体粉末。将前驱体粉末放入石墨坩埚中,置于惰性气氛烧结炉中,在氧含量小于20ppm下,以2℃/min的升温速率升温,在320℃处预分解4小时,同样的速率升温至700℃,煅烧12小时,样品随炉冷却至室温,得到LiFePO4/C复合材料。
所制样品按实施例1中测试方法测试。 
图1是所制样品的X射线粉末衍射(XRD)图谱,从图可以看出所有特征峰均对应磷酸铁锂相应晶面,说明所制备的磷酸铁锂结晶良好。图4是实施例1样品常温与-40℃0.2C放电曲线,-40℃放电是将所制电池充满电情况下在-40℃下搁置12h后,再恒流放电,放电电压范围为 2.0V-3.9V。由图4可知,实施例1制备的样品常温放电容量为195mAh,-40℃放电容量为70 mAh,达到常温放电容量的36%。图5是实施例1与对比例1制备样品的-40℃0.2C放电曲线图;从图4中可以看出实施例1制备样品的-40℃0.2C放电容量为69 mAh,如图5所示,而对比例1制备样品的-40℃0.2C放电容量为63 mAh,相比有明显差距。图2是实施例1制备样品的透射电镜照片,从照片中可以看出样品为外层浅颜色部分为包覆碳,内层深颜色为磷酸铁锂颗粒,磷酸铁锂颗粒为三维纳米尺寸。图3是实施例1制备样品的粒度分布图,图6是实施例1制备样品的粒度分布测试结果,其平均粒径(D50)为1.75微米,粒度分布窄。图7是实施例1制备样品的比表面积测试结果,样品的比表面积为11.954m2/g。 
实施例2: 
在循环搅拌磨中依次加入4000ml蒸馏水,1000g FeC2O4·2H2O,576.0gLiH2PO4和,循环搅拌30min后,再加入41.1g蔗糖和40g吐温80,循环搅拌4h,所得浊液置于烘箱110℃烘干,所得样品100目筛网破碎,得到淡黄色的前驱体粉末。将前驱体粉末放入石墨坩埚中,置于惰性气氛烧结炉中,在氧含量小于20ppm下,以5℃/min的升温速率升温,在320℃处预分解4小时,同样的速率升温至700℃,煅烧12小时,样品随炉冷却至室温,得到核壳型纳米碳包覆复合正极材料。
实施例3: 
在循环搅拌磨中依次加入4000ml蒸馏水,727.2g Fe(NO3)3·9H2O,207.6gH3PO4和75.6gLiOH·H2O,循环搅拌30min后,再加入82.2g蔗糖和80g司盘80,循环搅拌4h,所得浊液置于烘箱110℃烘干,所得样品100目筛网破碎,得到淡黄色的前驱体粉末。将前驱体粉末放入石墨坩埚中,置于惰性气氛烧结炉中,在氧含量小于20ppm下,以2℃/min的升温速率升温,在320℃处预分解4小时,同样的速率升温至650℃,煅烧15小时,样品随炉冷却至室温,得到核壳型纳米级碳包覆LiFePO4复合正极材料。

Claims (2)

1.一种低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法,包括基础原料铁化合物、锂化合物、磷化合物,和碳源;其特征在于:按照下述步骤制备:
第一步、按下述方法称取基础原料和碳源:
按物质的量比称取基础原料:
铁化合物︰锂化合物︰磷化合物=2︰1.95-2.05︰2;
按基础原料总质量的1-10%称取碳源;
所述铁化合物为硝酸铁、醋酸铁、铁红或草酸亚铁;锂化合物为氢氧化锂、碳酸锂、硝酸锂或磷酸二氢锂;磷化合物为磷酸二氢锂或磷酸二氢铵;碳源为葡萄糖、蔗糖、淀粉等单糖或多糖及非离子表面活性剂;
第二步、将上述铁化合物、锂化合物、磷化合物、碳源在循环搅拌磨中以流变相状态下混合,得到LiFePO4前驱体悬浊液;然后在110-130℃温度范围干燥,破碎,得到淡黄色的前驱体粉末;
第三步、将第二步所得前驱体粉末置于惰性气氛烧结炉,先在300-400℃温度条件下预分解2-6小时,再升温至500-800℃温度条件下煅烧10-20小时,冷却后得到核壳型纳米级碳包覆磷酸铁锂复合正极材料。
2.根据权利要求1所述低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法,其特征在于:所述第三步的升温速率为2-5℃/min,惰性气氛烧结炉内氧含量小于20ppm。
CN2012101550245A 2012-05-18 2012-05-18 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法 Pending CN102683707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101550245A CN102683707A (zh) 2012-05-18 2012-05-18 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101550245A CN102683707A (zh) 2012-05-18 2012-05-18 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法

Publications (1)

Publication Number Publication Date
CN102683707A true CN102683707A (zh) 2012-09-19

Family

ID=46815316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101550245A Pending CN102683707A (zh) 2012-05-18 2012-05-18 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法

Country Status (1)

Country Link
CN (1) CN102683707A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394131A (zh) * 2017-06-22 2017-11-24 南昌航空大学 一种LiFePO4/C复合材料的制备方法
CN107834031A (zh) * 2017-09-18 2018-03-23 莫安琪 一种碳纳米管包覆磷酸铁锰锂复合电极材料的工艺
CN107834034A (zh) * 2017-09-19 2018-03-23 莫安琪 一种利用石墨烯改善制备磷酸铁锰锂电极材料的方法
CN107834036A (zh) * 2017-09-19 2018-03-23 莫安琪 一种利用乙炔黑制备磷酸铁锰锂复合电极材料的方法
CN107834033A (zh) * 2017-09-18 2018-03-23 莫安琪 一种磷酸铁锰锂复合电极材料的改性工艺
CN107834032A (zh) * 2017-09-18 2018-03-23 莫安琪 一种利用淀粉包覆磷酸铁锰锂的复合电极材料
CN109935828A (zh) * 2017-12-15 2019-06-25 福建省致格新能源电池科技有限公司 一种纳米磷酸铁锂复合材料
CN110436508A (zh) * 2019-08-19 2019-11-12 甘肃农业大学 一种片状纳米氧化铜的制备方法及其应用
CN112094124A (zh) * 2020-01-10 2020-12-18 武汉科技大学 一种用于耐火材料的碳源及其制备方法
CN112723333A (zh) * 2020-12-11 2021-04-30 江苏锂源电池材料有限公司 一种提高磷酸铁锂低温性能和压实密度的方法
CN114678526A (zh) * 2022-02-28 2022-06-28 合肥国轩高科动力能源有限公司 一种高性能的碳包覆磷酸铁锂复合材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630739A (zh) * 2008-12-30 2010-01-20 横店集团东磁股份有限公司 掺杂改性的磷酸铁锂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630739A (zh) * 2008-12-30 2010-01-20 横店集团东磁股份有限公司 掺杂改性的磷酸铁锂的制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394131A (zh) * 2017-06-22 2017-11-24 南昌航空大学 一种LiFePO4/C复合材料的制备方法
CN107834031A (zh) * 2017-09-18 2018-03-23 莫安琪 一种碳纳米管包覆磷酸铁锰锂复合电极材料的工艺
CN107834033A (zh) * 2017-09-18 2018-03-23 莫安琪 一种磷酸铁锰锂复合电极材料的改性工艺
CN107834032A (zh) * 2017-09-18 2018-03-23 莫安琪 一种利用淀粉包覆磷酸铁锰锂的复合电极材料
CN107834034A (zh) * 2017-09-19 2018-03-23 莫安琪 一种利用石墨烯改善制备磷酸铁锰锂电极材料的方法
CN107834036A (zh) * 2017-09-19 2018-03-23 莫安琪 一种利用乙炔黑制备磷酸铁锰锂复合电极材料的方法
CN109935828A (zh) * 2017-12-15 2019-06-25 福建省致格新能源电池科技有限公司 一种纳米磷酸铁锂复合材料
CN110436508A (zh) * 2019-08-19 2019-11-12 甘肃农业大学 一种片状纳米氧化铜的制备方法及其应用
CN110436508B (zh) * 2019-08-19 2021-08-31 甘肃农业大学 一种片状纳米氧化铜的制备方法及其应用
CN112094124A (zh) * 2020-01-10 2020-12-18 武汉科技大学 一种用于耐火材料的碳源及其制备方法
CN112723333A (zh) * 2020-12-11 2021-04-30 江苏锂源电池材料有限公司 一种提高磷酸铁锂低温性能和压实密度的方法
CN114678526A (zh) * 2022-02-28 2022-06-28 合肥国轩高科动力能源有限公司 一种高性能的碳包覆磷酸铁锂复合材料的制备方法
CN114678526B (zh) * 2022-02-28 2023-10-10 合肥国轩高科动力能源有限公司 一种碳包覆磷酸铁锂复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN102683707A (zh) 低温性能核壳型纳米级碳包覆磷酸铁锂的制备方法
US20210167387A1 (en) Vanadium sodium phosphate positive electrode material, sodium ion battery, preparation method therefor, and use thereof
CN103109399B (zh) 一种含锂盐-石墨烯复合材料及其制备方法
CA2741406C (en) Multi-component-system lithium phosphate compound particles having an olivine structure, manufacturing method thereof and lithium secondary battery employing the lithium phosphate compound particles as a positive electrode material
US20200328406A1 (en) Layered lithium-rich manganese-based cathode material with olivine structured limpo4 surface modification and preparation method thereof
CN103682266B (zh) 一种Li、Mn位共掺杂磷酸锰锂/碳复合材料及其制备方法
Wu et al. Synthesis and characterization of hollow spherical cathode Li1. 2Mn0. 54Ni0. 13Co0. 13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis
CN103956485B (zh) 一种三维分级结构的磷酸铁锂电极材料及其制备方法
JP5323410B2 (ja) リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
CN102694168B (zh) 一种磷酸锰锂正极材料及其制备方法
TW200805734A (en) The preparation and application of the LiFePO4/Li3V2(PO4)3 composite cathode materials for lithium ion batteries
CN101826617B (zh) 磷酸铁锂的制备方法
CN104752718A (zh) 一种LiMnxFe1-xPO4正极活性材料及其制备方法
CN114665058A (zh) 一种锂离子电池正极材料磷酸锰铁锂的制备方法
CN104577123A (zh) 一种锂离子电池正极材料的制备方法
Nithya et al. LiCoxMn1‐xPO4/C: a high performing nanocomposite cathode material for lithium rechargeable batteries
CN102024989A (zh) 一种高电压锂离子电池的制备方法
CN110085854B (zh) 一种磷酸钒锂正极材料及其制备方法
CN109980221A (zh) 一种高压锂离子电池正极材料及其制备方法和应用
CN104779393A (zh) 一种液相还原制备锂离子电池正极材料磷酸钒锂的方法
CN109904450B (zh) 一种碳包覆磷酸钒钠复合正极材料的制备方法
CN104393296B (zh) 一种锂离子电池复合正极材料及其制备方法
CN102983333A (zh) 一种锂离子电池正极磷酸钒锂/碳复合材料的新型制备方法
CN103066286A (zh) 一种锂离子正极材料钒、锑共掺杂磷酸铁锂及其制备方法
CN102227023A (zh) 一种磷酸铁锂前驱体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120919