CN102648104A - 车辆及车辆的控制方法 - Google Patents

车辆及车辆的控制方法 Download PDF

Info

Publication number
CN102648104A
CN102648104A CN2009801624921A CN200980162492A CN102648104A CN 102648104 A CN102648104 A CN 102648104A CN 2009801624921 A CN2009801624921 A CN 2009801624921A CN 200980162492 A CN200980162492 A CN 200980162492A CN 102648104 A CN102648104 A CN 102648104A
Authority
CN
China
Prior art keywords
vehicle
higher limit
storage battery
storage device
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801624921A
Other languages
English (en)
Other versions
CN102648104B (zh
Inventor
久须美秀年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102648104A publication Critical patent/CN102648104A/zh
Application granted granted Critical
Publication of CN102648104B publication Critical patent/CN102648104B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/248Age of storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

车辆(1)具备:蓄电池(10);电动机(20),构成为通过利用蓄积于蓄电池(10)的电力产生车辆(1)的驱动力;充电器(44),构成为将由车辆的外部(1)的电源(60)输出的电力向蓄电池(10)供给;ECU(48),构成为控制对蓄电池(10)充电时的蓄电池(10)的充电状态。ECU(48)算出表示蓄电池(10)的充电状态的指标值,并且设定其控制范围。ECU(48)在与蓄电池(10)的老化有关的规定的条件成立时,以车辆的可行驶距离成为目标距离以上的方式使指标值的上限值上升。

Description

车辆及车辆的控制方法
技术领域
本发明涉及车辆及车辆的控制方法,特别是涉及搭载于车辆上的蓄电装置的充电的控制。
背景技术
混合动力汽车、电动汽车及燃料电池汽车等车辆具备用于蓄积电力的蓄电装置和电动机。电动机通过从蓄电装置供给的电力而产生车辆的驱动力。车辆制动时,电动机进行再生发电。通过再生发电生成的电力向蓄电装置供给。因此,上述车辆行驶中,控制蓄电装置的充电及放电,以使表示蓄电装置的充电状态的指标值(SOC)在适当的范围内。SOC被定义为当前蓄电量相对于满蓄电状态的蓄电量的比率。满蓄电状态的蓄电装置的SOC为100(%),完全没有蓄电的状态下的蓄电装置的SOC为0(%)。
例如,日本特开2004-56867号公报(专利文献1)公开了能够按照行驶区间调节蓄电装置的SOC的管理幅度而构成的混合动力车辆的控制系统。该控制系统具备:道路信息获取部,其获取车辆的行驶预定路径的道路信息;管理幅度及行驶方法决定处理部,其改变蓄电单元的SOC的管理幅度,同时决定车辆的行驶方法;控制执行处理部,其按照决定的行驶方法执行车辆的行驶控制。管理幅度及行驶方法决定处理部在车辆的行驶预定路径的规定区间算出蓄电单元(蓄电池)的SOC,并且基于该SOC,改变SOC的管理幅度。另外,管理幅度及行驶方法决定处理部以其规定区间的终点的SOC处于其管理幅度内的方式决定混合动力车辆的行驶方法。
例如,日本特开2005-65352号公报(专利文献2)公开了用于控制蓄电池的充电及放电的控制装置。该控制装置通过改变蓄电池的SOC的管理幅度,防止蓄电池的过放电,同时,能够避免记忆效应对蓄电池的充电及放电的影响。具体而言,上述控制装置在发生记忆效应的情况下,使SOC的管理幅度的上限值及下限值均上升。
在先技术文献
专利文献1:日本特开2004-56867号公报
专利文献2:日本特开2005-65352号公报
发明内容
优选上述车辆的续航距离尽量长。在本说明书中,“续航距离”是指车辆利用蓄电装置蓄积的电力能够行驶的距离。
用于延长续航距离的一个解决策略是增加蓄电装置的个数或构成蓄电装置的单电池的个数。但是,由于蓄电装置的个数或单电池的个数增加,不仅蓄电装置的体积、重量增加,蓄电装置的成本也上升。由于蓄电装置的重量增加,实际续航距离可能比基于蓄电装置的电容算出的距离短。
专利文献1公开的控制装置为了将充足的再生电流回收到蓄电池中,而在混合动力车辆行驶中改变SOC的管理幅度。由此,能够降低混合动力车辆的燃料消耗量。但是,专利文献1仅公开了用于在任意时期进行的车辆行驶中降低燃料消耗量的技术。
在反复进行混合动力车辆的行驶中,蓄电装置渐渐老化。由于蓄电装置老化,蓄电装置的电容降低。因此,随着混合动力车辆的使用年数变长,可能不能够充分地得到降低燃料消耗量的效果。专利文献1没有说明用于抑制蓄电装置的电容降低的具体方法。
专利文献2说明用于防止记忆效应引起的蓄电池的电容降低的方法。但是,专利文献2没有说明反复进行车辆的行驶引起的蓄电池的老化。换言之,专利文献2没有公开考虑蓄电池老化的蓄电池的控制。
本发明的目的在于提供一种能够实现抑制蓄电装置老化和确保续航距离这两者的车辆。
按照本发明的某一形态的车辆具备:蓄电装置,构成为能够再充电;电动机,构成为通过利用蓄积于蓄电装置的电力产生车辆的驱动力;充电机构,构成为将由车辆的外部的电源输出的电力向蓄电装置供给;指令生成部,构成为通过手动操作切换用于延长蓄电装置的使用期间的指令的生成和指令生成的停止;控制装置,构成为控制对蓄电装置充电时的蓄电装置的充电状态。控制装置包含:状态推定部,构成为算出表示充电状态的指标值;设定部,构成为在与蓄电装置的老化有关的规定的条件成立时,使指标值的上限值上升。设定部以车辆的可行驶距离成为目标距离以上的方式设定上限值的变化量。
优选设定部构成为上限值的上升次数越增加越减小变化量。
优选设定部构成为,直到上限值达到基准值为止使上限值反复上升,并且,在上限值达到基准值后,将上限值保持在基准值。
优选控制装置还包含检测部,构成为检测蓄电装置产生的异常。设定部构成为在通过检测部检测到异常的情况下,使上限值降低。
优选控制装置还包含检测部,构成为检测蓄电装置产生的异常。设定部构成为在通过检测部检测到异常的情况下将上限值固定在当前的值。
优选规定的条件是基于车辆的使用期间预先确定的条件。
优选规定的条件是基于车辆的行驶距离预先确定的条件。
优选设定部可切换固定了上限值的第一模式、和可调整上限值的第二模式,且在第二模式下设定变化量。
优选车辆还具备指令生成部,所述指令生成部构成为通过手动操作切换用于延长蓄电装置的使用期间的指令的生成和指令生成的停止。设定部在指令生成部生成了指令的情况下,从第一及第二模式中选择第二模式,另一方面,在指令生成部停止指令的生成的情况下,从第一及第二模式中选择第一模式。
本发明另一形态为车辆的控制方法。车辆具备:蓄电装置,构成为能够再充电;电动机,构成为通过利用蓄积于蓄电装置的电力产生车辆的驱动力;充电机构,构成为将由车辆的外部的电源输出的电力向蓄电装置供给;指令生成部,构成为通过手动操作切换用于延长蓄电装置的使用期间的指令的生成和所述指令生成的停止;控制装置,构成为控制对蓄电装置充电时的蓄电装置的充电状态。控制方法具备:算出表示充电状态的指标值的步骤、和在与蓄电装置的老化有关的规定的条件成立时使指标值的上限值上升的步骤。使上限值上升的步骤中,以车辆的可行驶距离成为目标距离以上的方式设定上限值的变化量。
优选控制方法还具备上限值的上升次数越增加使变化量越小的步骤。
优选控制方法还具备在上限值重复上升的情况下限制上限值以使上限值不超出基准值的步骤。
优选控制方法还具备:检测蓄电装置产生的异常的步骤、和在检测到异常的情况下使上限值降低的步骤。
优选控制方法还具备:检测蓄电装置产生的异常的步骤、和在检测到异常的情况下将上限值固定在当前的值的步骤。
优选规定的条件是基于车辆的使用期间预先确定的条件。
优选规定的条件是基于车辆的行驶距离预先确定的条件。
优选还具备选择固定了上限值的第一模式和可调整上限值的第二模式中任一方的步骤。使上限值上升的步骤中,在选择了第二模式时设定变化量。
优选车辆还具备指令生成部,所述指令生成部构成为通过手动操作切换用于延长蓄电装置的使用期间的指令的生成和指令生成的停止。选择的步骤中,在指令生成部生成指令的情况下,从第一及第二模式中选择第二模式,另一方面,在指令生成部停止了指令的生成的情况下,从第一及第二模式中选择第一模式。
根据本发明,能够抑制搭载于车辆上的蓄电装置的老化,同时,能够确保该车辆的续航距离。
附图说明
图1是本发明实施方式1的车辆的整体框图;
图2是表示图1所示的监视单元的结构例的图;
图3是图1所示的充电ECU的功能框图;
图4是用于说明普通模式下的SOC的控制范围及节电模式下的SOC的控制范围的图;
图5是用于说明通过图1所示的充电ECU执行的蓄电池的充电的控制的流程图;
图6是用于说明通过蓄积于锂离子电池的电力行驶的车辆的使用年数与该锂离子电池的电容维持率之间的相关关系的图;
图7是用于说明节电模式下的续航距离和普通模式下的续航距离的图;
图8是说明通过根据本实施方式的控制可实现的续航距离的图;
图9是用于说明基于蓄电池10的使用年数的控制范围的上限值的控制的图;
图10是用于说明基于车辆1的行驶距离的控制范围的上限值的控制的图;
图11是表示图3所示的控制范围设定部111所存储的表的第一例的图;
图12是表示图3所示的控制范围设定部111所存储的表的第二例的图;
图13是用于说明根据图11所示的表执行的控制的流程图;
图14是用于说明根据图12所示的表执行的控制的流程图;
图15是本发明实施方式2的车辆的整体框图;
图16是图15所示的充电ECU的功能框图;
图17是用于说明实施方式2的控制范围的上限值的控制的图;
图18是用于说明通过图15所示的充电ECU执行的控制的流程图;
图19是本发明实施方式3的车辆的整体框图;
图20是图19所示的充电ECU的功能框图;
图21是用于说明实施方式3的控制范围的上限值的控制的图;
图22是用于说明通过图19所示的充电ECU执行的控制的流程图;
图23是用于说明检测到蓄电池10的异常时执行的第一控制的图;
图24是用于说明图23所示的控制的流程图;
图25是用于说明检测到蓄电池10的异常时执行的第二控制的图;
图26是用于说明图25所示的控制的第一流程图;
图27是用于说明图25所示的控制的第二流程图;
图28是表示本发明实施方式的车辆之一例的混合动力车辆的构成的图。
具体实施方式
下面,参照附图详细说明本发明实施方式。另外,图中,对于相同或相当的部分标注同一标号,不重复其说明。
[实施方式1]
图1是本发明实施方式1的车辆的整体框图。参照图1,本发明实施方式1的车辆1具备:蓄电池10、系统主继电器(下面,也称为“SMR”。)12、逆变器16、电动发电机(下面,也称为“MG”。)20、驱动轮22、MG-ECU(Electronic Control Unit)30。车辆1还具备:充电接口42、传感器43、充电器44、继电器46、充电ECU48、开关49、电流传感器50、监视单元54、空调70。
蓄电池10是构成为能够再充电的蓄电装置。蓄电池10由串联有多个单电池11的电池组构成。在本实施方式中,蓄电池10是锂离子电池。
在车辆1行驶时,蓄电池10将用于驱动MG20的电力向逆变器16供给。通过将蓄积于蓄电池10的电力向MG20供给,MG20产生车辆1的驱动力。车辆1制动时,通过MG20的再生发电生成的电力向蓄电池10供给。在从设置于车辆1的外部的电源60向车辆1供给电力的情况下,充电器44向蓄电池10供给电力。通过向蓄电池10供给电力,对蓄电池10充电。电源60例如是交流电源。
SMR12设于蓄电池10和逆变器16之间。SMR12通过正极线13P及负极线13N与蓄电池10连接。SMR12通过正极线15P及负极线15N与逆变器16连接。车辆1行驶时,SMR12处于接通状态。另一方面,通过充电器44对蓄电池10充电时,SMR12处于断开状态。另外,SMR12也可以配置于蓄电池10和继电器46之间。
逆变器16基于来自MG-ECU30的控制信号PWI1驱动MG20。虽然未图示,但是逆变器16由例如具备U相支路、V相支路及W相支路的三相桥接电路构成。逆变器16将从蓄电池10输出的直流电转换成交流电,同时将该交流电向MG20供给。逆变器16将通过MG20生成的交流电转换成直流电,同时将该直流电向蓄电池10供给。另外,为了进行蓄电池的直流电压和逆变器的直流电压的转换,也可以在蓄电池10和逆变器16之间设置电压转换器(DC/DC转换器)。
MG20是交流旋转电机,由例如具有埋设有永磁体的转子的三相交流同步电动机构成。MG20的旋转轴与驱动轮22连结。MG-ECU30生成用于驱动MG20的控制信号PWI1,同时将该控制信号PWI1向逆变器16输出。
连接器62设置于车辆1的外部,且与电源60连接。充电接口42构成为与充电器44的输入侧连接且能够与连接器62连接。充电接口42与连接器62连接,由此将来自电源60的交流电输入充电接口42。传感器43检测充电接口42与连接器62的连接,同时,输出表示能够开始蓄电池10的充电的信号STR。连接器62从充电接口42拆下时,传感器43停止信号STR的输出。
充电器44通过继电器46与正极线13P及负极线13N连接,同时,将从电源60输出的电力向蓄电池10供给。充电器44由例如将交流电转换成直流电的AC/DC转换器构成。充电器44基于来自充电ECU48的控制信号PWD,将从电源60供给的交流电转换成直流电。从充电器44输出的直流电通过继电器46、正极线13P及负极线13N,向蓄电池10供给。充电器44对蓄电池10充电期间,继电器46保持接通状态。
另外,充电器44也可以设置于车辆1的外部。这种情况下,充电接口42接收从充电器44输出的直流电。输入充电接口42的电力经由继电器46、正极线13P及负极线13N,向蓄电池10供给。总而言之,充电接口42及继电器46将从电源60输出的电力向蓄电池10供给。
充电ECU48基于来自传感器43的信号STR,开始充电器44的控制。详细而言,充电ECU48基于从监视单元54发送的电流、电压及温度的检测值,生成用于驱动充电器44的控制信号PWD,同时,将该控制信号PWD向充电器44发送。充电器44基于控制信号PWD,将从电源60供给的交流电转换成直流电。
充电ECU48基于表示蓄电池10的充电状态的指标值(SOC)控制充电器44。蓄电池10的SOC达到控制范围的上限值时,充电ECU48停止控制信号PWD的输出。充电ECU48停止控制信号PWD的输出,从而充电器44停止。充电器44停止,由此蓄电池10的充电结束。SOC定义为当前蓄电池10的蓄电量相对于满蓄电状态的蓄电池10的蓄电量的比率。
开关49作为由用户操作的开关搭载于车辆1上。通过手动操作,开关49将其状态在接通状态和断开状态之间切换。开关49处于接通状态时,开关49生成用于设定蓄电池10的充电模式以抑制蓄电池10的老化的指令(信号SLF)。通过抑制蓄电池10的老化,能够延长蓄电池10的使用期间。即,信号SLF是用于延长蓄电池10的使用期间的指令。在下面的说明中,将用于抑制蓄电池10的老化的充电模式称为“节电模式”。
通过用户断开开关49,开关49停止信号SLF的生成。由此,解除节电模式的设定,同时,车辆1的充电模式从节电模式切换到普通模式。即,用户能够通过操作开关49,来从节电模式及普通模式中选择车辆1的充电模式。
充电ECU48为了对蓄电池10充电而设定SOC的控制范围。节电模式下的控制范围比普通模式下的控制范围窄。具体而言,节电模式下的控制范围的上限值比普通模式下的控制范围的上限值小。节电模式下的控制范围的下限值为普通模式下的控制范围的下限值以上。即,充电ECU48控制蓄电池10充电时的蓄电池10的充电状态。
另外,在下面的说明中,有时也将“控制范围的上限值”称为“SOC的上限值”或只称为“上限值”。
电流传感器50检测对蓄电池10输入的电流及从蓄电池10输出的电流,同时,将根据该电流大小而变化的模拟信号向监视单元54输出。
监视单元54将从电流传感器50输出的模拟信号转换成表示电流值的数字信号。监视单元54将该数字信号(电流值)向充电ECU48输出。另外,监视单元54以由规定个数的单电池11构成的电池块为单位检测温度及电压。监视单元54将表示各块的温度及电压的数字信号向充电ECU48输出。
正极线13P及负极线13N与通过从蓄电池10供给的电力而动作的辅机连接。在图1中,作为辅机的代表例,例示了空调70。
图2是表示图1所示的监视单元的结构例的图。参照图2,蓄电池10包括串联的多个单电池11。多个单电池11分割成多个电池块BB(1)~BB(n)(n:自然数)。监视单元54包括:传感器组56(1)~56(n),其分别与电池块BB(1)~BB(n)对应配置;模拟-数字转换器(A/D)58,其与电流传感器50对应配置。
各个传感器组56(1)~56(n)检测对应的块的温度及电压。传感器组56(1)~56(n)分别检测温度Tb(1)~Tb(n)。另外,传感器组56(1)~56(n)分别检测电压Vb(1)~Vb(n)。各传感器组56(1)~56(n)的检测值向充电ECU48输出。
模拟-数字转换器58将来自电流传感器50的模拟信号转换成数字信号。数字信号表示电流Ib的值。电流Ib是输入蓄电池10的电流及从蓄电池10输出的电流。
另外,除了图2所示的传感器组56(1)~56(n)及模拟-数字转换器(A/D)58以外,也可以在每个单电池11上设置用于监视单电池11的电压的监视器。各监视器在例如对应的单电池11的电压在正常范围外的情况下,使表示单电池11异常的标志为接通。通过使标志为接通,从而充电ECU48能够检测蓄电池10的异常。
图3是图1所示的充电ECU的功能框图。参照图3,充电ECU48包括SOC推定部101、控制范围设定部111、判定部112、信号生成部113。
SOC推定部101从监视单元54接收电流Ib、电压Vb(1)~Vb(n)及温度Tb(1)~Tb(n)的各检测值。SOC推定部101基于各检测值算出蓄电池10的整体SOC。详细而言,SOC推定部101基于各块的检测值算出该块的SOC,同时,基于各块的SOC算出整体SOC。在本实施方式中,可以使用用于算出锂离子电池的SOC的公知方法作为用于算出各块的SOC的方法。例如,可以基于电流Ib的累计值算出各块的SOC。或着,也可以基于开路电压(OCV)和SOC之间的相关关系及通过监视单元54检测出的电压值,按一定周期算出各块的SOC。用于由各块的SOC算出整体SOC的方法没有特别限定,例如,整体SOC可以是各块的SOC的平均值。
控制范围设定部111设定SOC的控制范围。开关49为断开状态时,开关49停止信号SLF的生成。这种情况下,控制范围设定部111将SOC的控制范围设定为第一范围,同时输出第一范围的上限值UL1。另一方面,用户接通开关49的情况下,开关49生成信号SLF。这种情况下,控制范围设定部111将SOC的控制范围设定为第二范围,同时输出第二范围的上限值UL2。第一范围是普通模式下的SOC的控制范围。第二范围是节电模式下的SOC的控制范围。
判定部112从SOC推定部101接收SOC,同时从控制范围设定部111接收上限值UL1及UL2中的任一个。判定部112判定SOC是否达到上限值(UL1或UL2)。判定部112将该判定结果向信号生成部113输出。
信号生成部113基于来自传感器43的信号STR生成控制信号PWD。信号生成部113将该控制信号PWD向充电器44输出。判定部112判定为SOC已到达上限值的情况下,信号生成部113基于判定部112的判定结果,停止控制信号PWD的生成。通过控制信号PWD的生成停止,充电器44停止。通过充电器44停止,蓄电池10的充电结束。
图4是用于说明普通模式下的SOC的控制范围及节电模式下的SOC的控制范围的图。参照图4,第一范围R1是普通模式下的SOC的控制范围。第二范围R2是节电模式下的SOC的控制范围。UL1是第一范围R1的上限值,UL2是第二范围R2的上限值。
第一范围R1的下限值及第二范围R2的下限值均为LL。需要说明的是,第二范围R2的下限值也可以比第一范围R1的下限值大。上限值UL2比上限值UL1小。因此,第二范围R2比第一范围R1窄。为了防止蓄电池10的过充电,上限值UL1、UL2均比100(%)小。为了防止蓄电池10的过放电,下限值LL比0(%)大。
图5是用于说明通过图1所示的充电ECU执行的蓄电池的充电的控制的流程图。该流程图的处理每隔一定时间或每当规定的条件成立时执行。
参照图5,在步骤S1中,充电ECU48判定是否生成了信号STR。信号生成部113接收到信号STR时,信号生成部113判定为信号STR已生成。这种情况下(在步骤S1中为“是”),处理进入步骤S2。另一方面,信号生成部113未接收到信号STR的情况下,信号生成部113判定为信号STR未生成。这种情况下(在步骤S1中为“否”),处理返回主程序。
在步骤S2中,充电ECU48判定是否生成了信号SLF。控制范围设定部111未接收到信号SLF的情况下,控制范围设定部111判定为信号SLF未生成。这种情况下(在步骤S2中为“否”),处理进入步骤S3。另一方面,控制范围设定部111接收到信号SLF时,控制范围设定部111判定为信号SLF已生成。这种情况下(在步骤S2中为“是”),处理进入步骤S4。
在步骤S3中,充电ECU48(控制范围设定部111)将SOC的控制范围的上限值设定为UL1。由此,充电模式被设定为普通模式。在步骤S4中,充电ECU48(控制范围设定部111)将SOC的控制范围的上限值设定为UL2。由此,充电模式被设定为节电模式。通过控制范围设定部111设定的上限值(UL1或UL2)从控制范围设定部111向判定部112发送。
执行步骤S3或S4的处理后,执行步骤S5的处理。在步骤S5中,充电ECU48(信号生成部113)生成控制信号PWD。充电器44基于该控制信号PWD,将从电源60供给的交流电转换成直流电。通过从充电器44向蓄电池10供给直流电,来对蓄电池10充电。
在步骤S6中,充电ECU48算出蓄电池10的SOC。详细而言,SOC推定部101基于从监视单元54发送的电流值Ib、电压值Vb(1)~Vb(n)及温度Tb(1)~Tb(n),算出蓄电池10的整体SOC。
在步骤S7中,充电ECU48判定SOC是否达到上限值(UL1或UL2)。具体而言,在步骤S7中,判定部112将通过SOC推定部101算出的SOC和上限值作比较。基于该比较结果,判定部112判定SOC是否达到上限值。
判定为SOC达到上限值的情况下(在步骤S7中为“是”),处理进入步骤S8。另一方面,判定为SOC未达到上限值的情况下(在步骤S7中为“否”),处理返回步骤S5。为了对蓄电池10充电,反复执行步骤S5~S7的处理,直到SOC达到上限值。
在步骤S8中,充电ECU48停止控制信号PWD的生成。详细而言,通过判定部112判定为SOC达到上限值时,信号生成部113基于判定部112的判定结果,停止控制信号PWD的生成。由此,蓄电池10的充电结束。步骤S8的处理结束时,整个处理返回主程序。
图1所示的车辆1通过蓄积于蓄电池10的电力行驶。为了延长车辆1的续航距离,需要从蓄电池10取出尽可能多的电量。在增加了蓄电池10的电容的情况下,能够增加从蓄电池10取出的电量。但是,由于蓄电池10的电容增加,可能带来蓄电池10的重量及体积的增加。
在本实施方式中,最大限度提高蓄电池10充电时的SOC的上限值。具体而言,以SOC达到上限值时蓄电池10不会成为过充电状态的方式预定上限值。另一方面,将SOC的下限值(LL)预定为用于防止蓄电池10的过放电的值。由此,能够从蓄电池10取出较多的电量。因此,能够延长车辆1的续航距离。
而且,在本实施方式中,使用锂离子电池作为蓄电池10。锂离子电池具有能量密度高的特征。通过将锂离子电池搭载于车辆1上,能够从蓄电池10取出较多的电量,同时能够实现蓄电池10的小型化及轻量化。
但是,锂离子电池直接以高SOC状态(例如,满充电状态)长时间保存的情况下,产生锂离子电池特性的劣化。例如,锂离子电池的电容降低。通过将锂离子电池以低SOC状态保存,能够抑制锂离子电池特性的老化。
图6是用于说明通过蓄积于锂离子电池的电力而行驶的车辆的使用年数与该锂离子电池的电容维持率之间的相关关系的图。参照图6,定义锂离子电池为新品时的电容维持率是100(%)。由于反复进行车辆的行驶,锂离子电池渐渐老化。车辆的使用年数越长,电容维持率越小。即,锂离子电池的电容降低。锂离子电池充电结束时的SOC越高,电容维持率相对于使用年数的降低的程度越大。
从蓄电池10充电结束到开始车辆1的行驶的期间可因用户而异。因此,蓄电池10可能以高SOC状态长时间保存。由于蓄电池10以高SOC状态长时间保存,蓄电池10的电容可能降低。
在本实施方式中,车辆1具有用于延长蓄电池10的使用期间的节电模式。通过设定节电模式,SOC的控制范围变窄。具体而言,控制范围的上限值降低。通过SOC的控制范围变窄,能够降低蓄电池10充电结束时的SOC。因此,能够抑制蓄电池10的电容的降低。
通过抑制蓄电池10的电容的降低,能够抑制车辆1的续航距离的降低。其结果,能够确保车辆1的续航距离。例如,经过了目标使用年数时,车辆能够行驶目标距离。
图7是用于说明节电模式下的续航距离和普通模式下的续航距离的图。参照图7,蓄电池10的老化程度小时,蓄电池10能够蓄积较多的电量。因此,车辆1的使用年数短的情况下,普通模式下的续航距离比节电模式下的续航距离长。
但是,在对蓄电池10充电直到蓄电池10变成接近满充电状态的状态的情况下,促进了蓄电池10的老化。特别是,蓄电池10为新品时,提高蓄电池10的SOC会促进蓄电池10的老化。通过在普通模式下对蓄电池10充电,蓄电池10的电容的降低的程度变大。
另一方面,通过在节电模式下对蓄电池10充电,能够抑制蓄电池10的老化。因此,在节电模式下对蓄电池10充电的情况下,能够抑制蓄电池10的电容降低。如图7所示,车辆1的使用年数长的情况下,能够使节电模式下的续航距离比普通模式下的续航距离长。即,通过在节电模式下对蓄电池10充电,能够抑制蓄电池10的老化,同时能够确保车辆1的续航距离。
另外,根据本实施方式,车辆1具备由用户操作的开关49。用户操作开关49,从而从普通模式及节电模式中选择蓄电池10的充电模式。选择了节电模式的情况下,能够抑制蓄电池10的老化,因此即使车辆的使用年数变长也能够确保续航距离。另一方面,蓄电池10的能力充裕的情况下(使用年数短的情况下),通过选择普通模式,能够增加蓄电池10的充电量。因此,能够提高车辆1的行驶性能。例如,车辆1能够行驶比正常的续航距离长的续航距离。
根据本实施方式,用户能够从普通模式及节电模式中选择充电模式,因此能够提高用户的便利性。
另外,行驶时的SOC的控制范围与蓄电池10充电时的控制范围独立地设定。例如,车辆1制动时,由于MG20的再生发电,对蓄电池10充电的结果是SOC上升。其结果是,SOC可能比蓄电池10充电时的上限值高。但是,通过继续车辆1的行驶,SOC再次降低。即,车辆1行驶中,长时间以高SOC状态保存蓄电池10的可能性很低。因此,能够与节电模式下的控制范围及普通模式下的控制范围独立地设定行驶时的SOC的控制范围。
但是,在选择了节电模式作为充电模式的情况下,伴随蓄电池10的使用年数延长,蓄电池10也老化。因此,伴随车辆1的使用年数延长,续航距离降低。因此,在本实施方式中,在选择节电模式作为充电模式且满足与蓄电池10的老化有关的规定条件的情况下,使SOC的控制范围的上限值(UL2)上升。
图8是说明能够通过根据本实施方式的控制实现的续航距离的图。参照图8,在基于蓄电池的老化状态的规定的时机,SOC的控制范围的上限值上升。在上限值被固定的情况下,一方面续航距离降低(参照虚线201)。另一方面,通过使上限值上升,可以使蓄电池10的充电量增加(参照实线202)。因此,可延长续航距离。
因蓄电池10的老化而蓄电池10的电容降低。SOC的控制范围的上限值被固定的情况下,伴随使用年数延长,可以从蓄电池10取出的电量减少。因此,如虚线所示,使用年数越长,续航距离越低。根据本实施方式,通过在适当的时机使控制范围的上限值上升,能够延长续航距离。因此,在经过了目标的使用年数时,能够确保目标的续航距离。
蓄电池10老化的主要因素包括蓄电池10的使用年数及车辆1的行驶距离。因此,本实施方式中,基于蓄电池10的使用年数及车辆1的行驶距离的至少一方变更控制范围的上限值。下面,对基于蓄电池10的使用年数的上限值的控制、及基于行驶距离的上限值的控制进行说明。
图9是用于说明基于蓄电池的使用年数的控制范围的上限值的控制的图。参照图9,蓄电池10的使用年数每达到一定的年数(y0),上限值UL2上升。
图10是用于说明基于车辆的行驶距离的控制范围的上限值的控制的图。参照图10,车辆的行驶距离每达到一定的距离(x0),上限值UL2上升。
图9或图10所示的上限值UL2的控制模式作为映射或表存储于控制范围设定部111。根据映射或表,控制范围设定部111使控制范围的上限值UL2变化。另外,图9及图10分别表示仅基于行驶距离和使用年数的任一方使上限值UL2上升的控制模式。在本实施方式中,也可以基于行驶距离和使用年数的两者使上限值UL2上升。即,也可以在蓄电池的使用年数达到一定值的情况及行驶距离达到一定值的情况的任一情况下,使SOC的控制范围的上限值UL2上升。但是,上限值UL2比上限值UL1小。
控制范围设定部111基于由例如未图示的车速传感器检测到的车辆速度算出车辆的行驶距离。另外,控制范围设定部111测量例如车辆速度不为0的期间作为车辆的使用年数。上述的方法是用于测定车辆的行驶距离及使用年数的方法之一例。车辆的行驶距离及使用年数可利用公知的各种方法测定。
但是,在蓄电池10的老化发展的情况下,蓄电池10的电容降低程度大。如上述,SOC是当前的蓄电量相对于满蓄电状态的蓄电量的比率。因此,在蓄电池10的老化发展的状态下,即使将蓄电池10充电至SOC达到其上限值,续航距离也可能达不到目标值。
因此,充电ECU48(控制范围设定部111)使上限值UL2上升至能够确保目标的续航距离的值。上限值UL2的变化量例如通过根据车辆1的标准的行驶模式反复进行蓄电池的充电及放电的实验预先确定。存储于控制范围设定部111的映射或表基于通过该实验求得的上限值的变化量确定。另外,下面,控制范围设定部111存储用于定义上限值的表。
图11是表示存储于图3所示的控制范围设定部111的表的第1例的图。参照图11,上限值(1)为本来的上限值,上限值(2)为上限值(1)上升后的值。上限值(1)及上限值(2)的组合按规定的年数y0预先确定。
例如,在使用年数达到y0年时,SOC的上限值从ULa上升到ULb。上限值的变化量为(ULb-ULa)。随着蓄电池10老化,车辆1的续航距离逐渐降低。变化量(ULb-ULa)以使用年数达到y0年时的续航距离成为目标值以上的方式进行设定。
在y0年~2y0年的使用期间,SOC的上限值被保持在ULb。该期间,续航距离逐渐降低。在使用年数达到2y0年时,SOC的上限值从ULb上升为ULc。上限值的变化量为(ULc-ULb)。由于上限值上升,从而续航距离进一步上升。变化量(ULc-ULb)与(ULb-ULa)相同,但也可以为不同于(ULb-ULa)的值。
在2y0年~3y0年的使用期间,SOC的上限值被保持在ULc。在使用年数达到3y0年时,SOC的上限值从ULc上升到ULd。
图12是表示图3所示的控制范围设定部111所存储的表的第二例的图。参照图12,车辆的行驶距离每达到一定的距离x0时,SOC的上限值就上升。由此,与使用了图11所示的表的情况相同,能够确保目标的续航距离。
另外,图8~图12表示使上限值上升多次的控制模式。但是,使上限值上升的次数也可以是一次。可以基于车辆1的标准的使用年数、蓄电池10的电容、目标续航距离等确定上限值上升的次数。
图13是用于说明根据图11所示的表执行的控制的流程图。该流程的处理在设定了节电模式的情况下(图5中的步骤S4),每隔一定时间或每当规定的条件成立时执行。
参照图13,在步骤S101中,充电ECU48判定蓄电池10的使用年数是否达到基准值(y0)。充电ECU48(控制范围设定部111)测量例如车辆1的行驶年数。该测量值作为蓄电池10的使用年数使用。在测量值达到基准值(y0)的情况下,充电ECU48(控制范围设定部111)判定为蓄电池10的使用年数达到基准值。
在判定为蓄电池10的使用年数达到了基准值的情况下(步骤S 101中为“是”),处理进入步骤S102。另一方面,在判定为蓄电池10的使用年数未达到基准值的情况下(步骤S101中为“否”),处理进入步骤S104。
在步骤S102,充电ECU48(控制范围设定部111)使上限值UL2上升。该情况下,控制范围设定部111根据图11所示的表设定上限值UL2。由此,上限值UL2上升。接着步骤S102的处理,执行步骤S103的处理。
在步骤S103中,充电ECU48(控制范围设定部111)使车辆1的行驶年数的测量值恢复为0。步骤S103的处理一结束,整个处理返回主程序。
在步骤S104中,充电ECU48(控制范围设定部111)抑制上限值UL2的上升。即,上限值UL2不发生变化。步骤S104的处理一结束,整个处理返回主程序。
图14是用于说明根据图12所示的表执行的控制的流程图。该流程的处理在设定了节电模式的情况下(图5中的步骤S4),每隔一定时间或每当规定的条件成立时执行。
参照图14,在步骤S101A中,充电ECU48(控制范围设定部111)判定车辆1的行驶距离是否达到了基准值(x0)。在判定为车辆1的行驶距离达到了基准值的情况下(步骤S101A中为“是”),处理进入步骤S102A。另一方面,在判定为车辆1的行驶距离未达到基准值的情况下(步骤S101A中为“否”),处理进入步骤S104A。
在步骤S102A,充电ECU48(控制范围设定部111)使上限值UL2上升。该情况下,控制范围设定部111根据图12所示的表设定上限值UL2。由此,上限值UL2上升。接着步骤S102A的处理,执行步骤S103A的处理。
在步骤S103A中,充电ECU48(控制范围设定部111)使车辆1的行驶距离的测量值恢复为0。步骤S103A的处理一结束,整个处理返回主程序。
在步骤S104A中,充电ECU48(控制范围设定部111)抑制上限值UL2的上升。即,上限值UL2未发生变化。步骤S104A的处理一结束,整个处理返回主程序。
如上,根据实施方式1,充电ECU在与蓄电池的老化有关的规定的条件成立时,使节电模式下的SOC的控制范围的上限值(UL2)上升。上限值的变化量以车辆1的续航距离成为目标值以上的方式预先确定。由此,能够在行驶距离延长的情况、及使用年数延长的情况中的至少一种情况下抑制续航距离的降低。而且,该上限值(UL2)比在普通模式对蓄电池10充电的情况下的上限值(UL1)小。由此,能够得到抑制蓄电池10的老化的效果。
[实施方式2]
图15是本发明实施方式2的车辆的整体框图。参照图15及图1,车辆1A在具备充电ECU48A代替充电ECU48这一点上与车辆1不同。
充电ECU48A在设定节电模式SOC作为充电模式且与蓄电池10的老化有关的规定的条件成立的情况下,使SOC的控制范围的上限值上升。另外,充电ECU48A存储上限值UL2上升的次数。该次数为1以上的情况下,充电ECU48A使上限值UL2的本次的变化量比上次的变化量小。表示一例时,在第二次上限值UL2的上升时,上限值UL2的变化量比第一次上限值UL2的上升时的变化量小。
图16是图15所示的充电ECU的功能框图。参照图16及图3,充电ECU48A在包含控制范围设定部111A代替控制范围设定部111这一点上与充电ECU48不同。
控制范围设定部111A存储过去使上限值UL2上升的次数。如果该次数为1以上,则已执行了使上限值UL2上升的控制。控制范围设定部111A在使上限值UL2上升的次数为1以上、且与蓄电池10的老化有关的规定的条件成立时,以上限值UL2的本次的变化量比上次的变化量小的方式使上限值UL2上升。
与实施方式1相同,控制范围设定部111A在车辆的使用年数达到基准值(y0)的情况、及车辆的行驶距离达到基准值(x0)的情况中的至少一种情况下,使上限值UL2上升。下面,代表性说明车辆的使用年数达到基准值(y0)的情况下的充电ECU48A的控制。
图17是用于说明实施方式2的控制范围的上限值的控制的图。参照图17,在使用年数达到y0年时,SOC的上限值UL2上升。此时的上限值UL2的变化量为a1。在使用年数达到2y0年时,SOC的上限值UL2上升。此时的上限值UL2的变化量为a2(<a1)。在使用年数达到3y0年时,SOC的上限值UL2上升。此时的上限值UL2的变化量为a3(<a2)。
例如,充电ECU48A将图17所示的使用年数和上限值之间的关系作为映射(也可以是表)存储。
图18是用于说明通过图15所示的充电ECU执行的控制的流程图。该流程图所示的处理在每隔一定时间或每当规定的条件成立时执行。
参照图18及图13,图18所示的流程图在追加步骤S111~S113的处理这一点上与图13的流程图不同。
在判定为蓄电池10的使用年数达到基准值的情况下(步骤S101中为“是”),处理进入步骤S111。在步骤S111中,充电ECU48A(控制范围设定部111A)判定上限值UL2上升的次数是否为1以上。该次数为至当前为止的次数。
上限值UL2上升的次数为1以上的情况下(步骤S111中为“是”),处理进入步骤S112。
在步骤S112中,控制范围设定部111A使上限值的本次的变化量比上次的变化量小。例如,控制范围设定部111A将上次的变化量乘以一定的系数所得的值作为本次的变化量使用。该系数为大于0且小于1的值,例如为1/2。例如,控制范围设定部111A也可以通过从上次的变化量减去一定值来算出本次的变化量。另外,控制范围设定部111A存储本次的变化量。该变化量在下次的上限值UL2上升时使用。
另一方面,在上限值UL2上升的次数为0的情况下(步骤S111中为“否”),处理进入步骤S113。该情况下,过去使上限值UL2上升的控制未执行。因此,不存在上次的变化量。该情况下,控制范围设定部111A将初始值作为本次的变化量使用。
在执行了步骤S112或步骤S113的处理后,执行步骤S102的处理。在步骤S102中,控制范围设定部111A根据例如图17所示的映射使上限值UL2上升。
另外,也可以将图18所示的步骤S101、S102、S103、S104的处理分别替换为图14所示的S101A、S102A、S103A、S104A的处理。该情况下,在车辆的行驶距离达到基准值(x0)时,充电ECU48A使上限值UL2上升。而且,充电ECU48A(控制范围设定部111A)使上限值的本次的变化量比上次的变化量小。
在车辆1的使用年数延长的情况、或者车辆1的行驶距离延长的情况下,可能执行多次用于使上限值UL2上升的控制。在各次的变化量相同的情况下,通过反复进行上限值的上升,蓄电池10充电结束时的SOC变高。由于蓄电池10以高SOC保存,所以可能促进蓄电池10的老化。
根据实施方式2,能够得到与实施方式1相同的效果。而且,根据实施方式2,能够防止节电模式下的上限值UL2过量上升。例如,能够防止节电模式下的上限值UL2超过普通模式下的上限值UL1。由于上限值UL2比上限值UL1小,所以即使上限值UL2上升,也能够得到抑制蓄电池的老化的效果。
[实施方式3]
图19是本发明实施方式3的车辆的整体框图。参照图19及图1,车辆1B在具备充电ECU48B代替充电ECU48这一点上与车辆1不同。
充电ECU48B在设定节电模式SOC作为充电模式且与蓄电池10的老化有关的规定的条件成立的情况下,使SOC的控制范围的上限值UL2上升。需要说明的是,上限值UL2以不超过基准值的方式进行设定。该基准值是作为能够防止蓄电池10的过充电的值预先确定的值。
因蓄电池10的过充电,发生带来蓄电池10的性能老化的现象。例如,在单电池11的负极有金属锂析出。因此,需要防止蓄电池10的过充电。在单电池11的性能降低的情况下,例如可能包含该单电池11的电池模块的电压降低。
图20是图19所示的充电ECU的功能框图。参照图20及图3,充电ECU48B在还包含异常判定部121这一点上与充电ECU48不同。另外,充电ECU48B在包含控制范围设定部111B代替控制范围设定部111这一点上与充电ECU48不同。
异常判定部121基于由监视单元54检测到的蓄电池10的电压、电流及温度检测蓄电池10的异常。例如,在从监视单元54输出的电压值Vb(1)~Vb(n)的至少一个与通常的值不同的情况下,异常判定部121检测蓄电池10的异常。
另外,如上所述,用于监视单电池11的电压的监视器也可以对每个单电池11进行设置。根据这种构成,异常判定部121能够基于该监视器的监视结果检测蓄电池10的异常。
与实施方式1相同,控制范围设定部111B在车辆的使用年数达到基准值(y0)的情况、及车辆的行驶距离达到基准值(x0)的情况中的至少一种情况下,使上限值UL2上升。需要说明的是,使上限值上升的次数的最大值被预定。在使上限值上升的次数达到该最大值的情况下,上限值达到基准值。控制范围设定部111B在使上限值上升的次数达到上述的最大值后,不使上限值上升。因此,上限值被维持在基准值。下面,代表性说明车辆的使用年数达到基准值(y0)的情况下的充电ECU48B的控制。
图21是用于说明实施方式3的控制范围的上限值的控制的图。参照图21,每经过y0年时,SOC的上限值UL2上升。图21的例中,在使用年数达到4y0年时,上限值UL2达到基准值Um。即,上限值UL2上升的次数的最大值为4。在4y0年以后,上限值UL2被保持在Um。例如,充电ECU48B将图21所示的使用年数和上限值之间的关系作为映射(也可以是表)存储。
图22是用于说明通过图19所示的充电ECU执行的控制的流程图。该流程图的处理在每隔一定时间或每当规定的条件成立时执行。
参照图22及图13,图22所示的流程图在追加步骤S121的处理这一点上与图13的流程图不同。在判定为蓄电池10的使用年数达到基准值的情况下(步骤S101中为“是”),处理进入步骤S121。
在步骤S121中,充电ECU48B判定是否可以提高上限值UL2。例如,控制范围设定部111B在上限值UL2上升的次数未达到最大值的情况下,判断为可以提高上限值UL2。该情况下(步骤S121中为“是”),处理进入步骤S102。在步骤S102中,控制范围设定部111B例如根据图21所示的映射使上限值UL2上升。
另一方面,在上限值UL2上升的次数已达到最大值的情况(步骤S121中为“否”),处理进入步骤S104。该情况下,控制范围设定部111B抑制上限值UL2的上升。即,上限值UL2被保持在基准值(Um)。
另外,也可以将图22所示的步骤S101、S102、S103、S104的处理分别替换为图14所示的S101A、S102A、S103A、S104A的处理。该情况下,在车辆的行驶距离达到基准值(x0)时,充电ECU48B使上限值UL2上升。另外,充电ECU48B(控制范围设定部111B)、控制范围设定部111B以上限值UL2不超过基准值的方式限制上限值UL2。
而且,控制范围设定部111B在通过异常判定部121检测到蓄电池10的异常的情况下,为防止促进蓄电池10的老化,根据规定的控制模式设定上限值。下面,对可适用于本发明的实施方式的两个控制模式进行说明。
(第一控制模式)
图23是用于说明检测到蓄电池10的异常时执行的第一控制的图。参照图23,在车辆1B的使用年数达到y0年时,上限值UL2从Ua上升到Ub。接着,在车辆1B的使用年数达到2y0年时,上限值UL2从Ub上升到Uc。在未检测到蓄电池10的异常的情况下,在车辆1B的使用年数达到3y0年时,上限值UL2从Uc上升到Ud。
但是,在车辆1B的使用年数达到y1(2y0<y1<3y0)年时,检测蓄电池10的异常。例如,在多个单电池11的任一个中,由于金属锂析出,从监视单元54输出的电压值(或电流值)处于正常的范围外。因此,通过异常判定部121检测蓄电池10的异常。
该情况下,充电ECU48B使上限值UL2从Uc降低到Ub。上限值UL2从Uc降低至Ub后,禁止上限值UL2的上升。因此,上限值UL2被保持在Ub。在图23所示的控制中,在蓄电池10发生了异常时,上限值UL2的水平返回到当前的水平的前一个水平。但是,上限值UL2的降低量没有限定。
图24是用于说明图23所示的控制的流程图。参照图24,在步骤S 131中,充电ECU48B(异常判定部121)基于监视单元54的检测值判定蓄电池10是否发生了异常。在判定为蓄电池10发生了异常的情况下(步骤S131中为“是”),处理进入步骤S132。在步骤S132中,充电ECU48B(控制范围设定部111B)使上限值UL2降低,在步骤S133中,充电ECU48B(控制范围设定部111B)禁止上限值UL2的上升。
另一方面,在判定为蓄电池10为正常的情况下(步骤S131中为“否”),处理进入步骤S124。在步骤S134中,充电ECU48B(控制范围设定部111B)将上限值UL2维持在当前的值。步骤S133、S134的处理一结束,整个处理返回主程序。
(第二控制模式)
图25是用于说明检测到蓄电池10的异常时执行的第二控制的图。参照图25,在未检测到蓄电池10的异常的情况下,每经过y0年,上限值UL2上升。在这一点上,第二控制模式与第一控制模式(参照图23)相同。
在车辆1B的使用年数达到y2(2y0<y2<3y0)年时,检测到蓄电池10的异常。如上述,例如多个单电池11的任一个中,由于金属锂析出,从监视单元54输出的电压值(或电流值)处于正常的范围外。因此,通过异常判定部121检测蓄电池10的异常。在检测到蓄电池10的异常的情况下,充电ECU48B禁止上限值UL2的上升,并且将上限值UL2固定在当前的值。之后,上限值UL2被保持在Uc。
另外,在图23及图25所示的控制模式下,上限值上升时的上限值的变化量也可以是一定的。或者,也可以与实施方式2相同,随着上限值上升的次数增多,上限值的变化量减小。
图26是用于说明图25所示的控制的第一流程图。参照图26,在步骤S 141中,充电ECU48B(异常判定部121)基于监视单元54的检测值,判定蓄电池10是否发生了异常。在判定为蓄电池10发生了异常的情况下(步骤S141中为“是”),处理进入步骤S142。在步骤S142中,充电ECU48B(控制范围设定部111B)禁止上限值UL2的上升。
另一方面,在判定为蓄电池10为正常的情况下(步骤S141中为“否”),处理进入步骤S143。在步骤S143中,充电ECU48B(控制范围设定部111B)允许上限值UL2的上升。步骤S142、S143的处理一结束,整个处理返回主程序。
图27是用于说明图25所示的控制的第二流程图。参照图27及图13,图27的流程图在追加步骤S150的处理这一点上与图13的流程图不同。步骤S150的处理在步骤S101中判定为车辆的使用年数达到基准值的情况下执行。
在步骤S150中,充电ECU48B判定是否允许上限值UL2上升。基于图26的流程图所示的处理的结果,充电ECU48B判定是否允许上限值UL2的上升。
在判定为允许上限值UL2的上升的情况下(步骤S150中为“是”),处理进入步骤S102。因此,上限值上升。另一方面,在判定为禁止上限值UL2的上升的情况下(步骤S150中为“否”),执行步骤S104的处理。在步骤S104中,抑制上限值UL2的上升。因此,将上限值UL2的值保持在当前的值。
另外,也可以将图27所示的步骤S101、S102、S103、S104的处理分别替换为图14所示的S101A、S102A、S103A、S104A的处理。该情况下,在车辆的行驶距离达到基准值(x0)且允许上限值UL2的上升的情况下,控制范围设定部111B使上限值UL2上升。另一方面,在禁止了上限值UL2的上升的情况下,控制范围设定部111B将上限值UL2固定在当前的值。
如上,根据实施方式3,上限值被限制成不超出基准值。该基准值被以防止蓄电池的过充电的方式预先确定。因此,根据实施方式3,即使反复执行使上限值上升的控制,也能够防止蓄电池的过充电。因此,能够防止蓄电池10的老化被促进。
而且,根据实施方式3,在检测到蓄电池10的异常的情况下,充电ECU使上限值降低。由此,能够防止蓄电池10继续发生异常,能够防止蓄电池10的老化。
而且,根据实施方式3,在检测到蓄电池10的异常的情况下,充电ECU禁止上限值的上升。由此,能够防止蓄电池10的老化被促进。
[车辆的其它结构例]
在实施方式1~3中,表示了作为产生驱动力的驱动源只具备电机的车辆。但是,本发明能够适用于具备蓄电装置、和利用该蓄电装置所蓄积的电力而产生驱动力的电动机的车辆。因此,本发明能够适用于例如具备内燃机和电动机作为驱动源的混合动力车辆。
图28是表示作为本发明实施方式的车辆之一例的混合动力车辆的结构的图。参照图28及图1,车辆1C在还具备转换器(CONV)14、逆变器18、MG24、动力分割装置26及发动机28这一点上,与车辆1不同。
发动机28通过燃烧例如汽油等燃料而产生动力。转换器14基于从MG-ECU30接收的控制信号PWC,将正极线13P及负极线13N之间的直流电压和正极线15P及负极线15N之间的直流电压相互转换。
逆变器18具有与逆变器16相同的结构,例如由三相桥接电路构成。MG24为交流旋转电机,例如由具有埋设有永磁体的转子的三相交流同步电动机构成。逆变器18基于从MG-ECU30接收的控制信号PWI2驱动MG24。
MG24的驱动轴与动力分割装置26连结。动力分割装置26具备由太阳齿轮、小齿轮、行星齿轮架及齿圈构成的行星齿轮机构。与MG24的旋转轴、发动机28的曲轴、及驱动轮22连结的驱动轴与动力分割装置26连接。动力分割装置26将从发动机28输出的动力分配给MG24及驱动轮22。因此,发动机28能够驱动车辆1C。
根据图28所示的结构,能够通过设置于车辆1C的外部的电源60对蓄电池10充电。另外,通过MG20的驱动力,车辆1C能够在发动机28停止的状态下行驶。因此,本发明也能够适用于具有图28所示的结构的车辆1C。另外,车辆1C可以代替充电ECU48而具备充电ECU48A、48B的任一个。
图28表示能够通过动力分割装置26将发动机28的动力传递到驱动轮22和MG20的串联/并联型混合动力车辆。本发明也能够适用于其它形式的混合动力汽车。若表示一例,则例如本发明也能够适用于只为了驱动MG24使用发动机28、只通过MG20产生车辆的驱动力的所谓的串联型混合动力车辆。
另外,本发明还能够适用于不仅具备蓄电池10还具备燃料电池作为直流电源的燃料电池汽车。
在本发明实施方式中,作为用于向电动机供给电力的蓄电装置,适用锂离子电池。但是,本发明不限于仅能够适用于具有锂离子电池的车辆。只要车辆具备由于以高SOC状态保存可能导致老化发展的蓄电装置及通过该蓄电装置产生驱动力的电动机,本发明就能够适用于该车辆。
另外,充电模式的切换也可以通过充电ECU自动地进行。例如,在充电模式设定为普通模式且行驶年数达到规定年数之前行驶距离超过基准值的情况下,充电ECU也可以将充电模式从普通模式切换为节电模式。充电ECU用于切换充电模式的条件没有特别限定。
另外,在本实施方式中,充电ECU构成为在普通模式及节电模式之间可切换充电模式。但是,本发明的车辆也可以只具有节电模式作为充电模式。在该情况下,在与蓄电池10的老化有关的规定条件成立时,充电ECU也使SOC的控制范围的上限值上升。因此,能够抑制续航距离的降低(确保目标距离以上的续航距离),并且能够抑制蓄电池10的老化。
在充电模式只是节电模式的情况下,也能够以上限值低于规定值的方式设定上限值的变化量。该规定值是考虑例如蓄电池的过充电而规定的。在该情况下,虽然在对蓄电池充电时SOC达到上限值,但是该上限值没有超过规定值。因此,能够防止蓄电池成为过充电状态。
应该理解这次公开的实施方式在所有方面都是示例,并不是用于限制本发明的。本发明的范围并不是由上述说明而是由权利要求书表示,意在包括在与权利要求书等同的意思及范围内的所有的变更。
标号说明
1、1A~1C车辆;10蓄电池;11单电池;12系统主继电器;13N、15N负极线;13P、15P正极线;14转换器;16、18逆变器;20、24电机发电机;22驱动轮;26动力分割装置;28发动机;42充电接口;43传感器;44充电器;46继电器;48、48A~48B  充电ECU;49开关;50电流传感器;54监视单元;56(1)~56(n)传感器组;58模拟-数字转换器;60电源;62连接器;70空调;72显示装置;101SOC推定部;111、111A、111B控制范围设定部;112判定部;113信号生成部;121异常判定部;BB(1)~BB(n)电池块。

Claims (18)

1.一种车辆,其具备:
蓄电装置(10),构成为能够再充电;
电动机(20),构成为通过利用蓄积于所述蓄电装置(10)的电力产生所述车辆的驱动力;
充电机构(44),构成为将由所述车辆的外部的电源(60)输出的电力向所述蓄电装置(10)供给;
控制装置(48、48A、48B),构成为控制对所述蓄电装置(10)充电时的所述蓄电装置(10)的充电状态,
所述控制装置(48、48A、48B)包含:
状态推定部(101),构成为算出表示所述充电状态的指标值;
设定部(111、111A、111B),构成为在与所述蓄电装置(10)的老化有关的规定的条件成立时,使所述指标值的上限值上升,
所述设定部(111、111A、111B)以所述车辆的可行驶距离成为目标距离以上的方式设定所述上限值的变化量。
2.如权利要求1所述的车辆,其中,所述设定部(111A)构成为所述上限值的上升次数越增加越减小所述变化量。
3.如权利要求1或2所述的车辆,其中,所述设定部(111B)构成为,直到所述上限值达到基准值为止使所述上限值反复上升,并且,在所述上限值达到所述基准值后,将所述上限值保持在所述基准值。
4.如权利要求3所述的车辆,其中,
所述控制装置(48B)还包含检测部(121),构成为检测所述蓄电装置(10)产生的异常,
所述设定部(111B)构成为在通过所述检测部检测到所述异常的情况下,使所述上限值降低。
5.如权利要求3所述的车辆,其中,
所述控制装置(48B)还包含检测部(121),构成为检测所述蓄电装置(10)产生的异常,
所述设定部(111B)构成为在通过所述检测部(121)检测到所述异常的情况下,将所述上限值固定在当前的值。
6.如权利要求1所述的车辆,其中,所述规定的条件是基于所述车辆的使用期间预先确定的条件。
7.如权利要求1所述的车辆,其中,所述规定的条件是基于所述车辆的行驶距离预先确定的条件。
8.如权利要求1所述的车辆,其中,所述设定部(111、111A、111B)可切换固定了所述上限值的第一模式、和可调整所述上限值的第二模式,且在所述第二模式下设定所述变化量。
9.如权利要求8所述的车辆,其中,
所述车辆还具备指令生成部(49),所述指令生成部(49)构成为通过手动操作切换用于延长所述蓄电装置(10)的使用期间的指令的生成和所述指令生成的停止,
所述设定部(111、111A、111B)在所述指令生成部(49)生成了所述指令的情况下,从所述第一及第二模式中选择所述第二模式,另一方面,在所述指令生成部(49)停止所述指令的生成的情况下,从所述第一及第二模式中选择所述第一模式。
10.一种车辆的控制方法,所述车辆具备:
蓄电装置(10),构成为能够再充电;
电动机(20),构成为通过利用蓄积于所述蓄电装置(10)的电力产生所述车辆的驱动力;
充电机构(44),构成为将由所述车辆的外部的电源(60)输出的电力向所述蓄电装置(10)供给;
控制装置(48、48A、48B),构成为控制对所述蓄电装置(10)充电时的所述蓄电装置(10)的充电状态,
所述控制方法具备:
算出表示所述充电状态的指标值的步骤(S6)、和
在与所述蓄电装置(10)的老化有关的规定的条件成立时使所述指标值的上限值上升的步骤(S102、S102A),
使所述上限值上升的步骤(S102、S102A)中,以所述车辆的可行驶距离成为目标距离以上的方式设定所述上限值的变化量。
11.如权利要求10所述的车辆的控制方法,其中,
所述控制方法还具备步骤(S112),所述上限值的上升次数越增加,使所述变化量越小。
12.如权利要求10或11所述的车辆的控制方法,其中,
所述控制方法还具备在所述上限值重复上升的情况下限制所述上限值以使所述上限值不超出基准值的步骤(S121、S104)。
13.如权利要求12所述的车辆的控制方法,其中,
所述控制方法还具备:
检测所述蓄电装置(10)产生的异常的步骤(S131)、和
在检测到所述异常的情况下使所述上限值降低的步骤(S132)。
14.如权利要求12所述的车辆的控制方法,其中,
所述控制方法还具备:
检测所述蓄电装置(10)产生的异常的步骤(S141)、和
在检测到所述异常的情况下将所述上限值固定在当前的值的步骤(S142、S150、S104)。
15.如权利要求10所述的车辆的控制方法,其中,所述规定的条件是基于所述车辆的使用期间预先确定的条件。
16.如权利要求10所述的车辆的控制方法,其中,所述规定的条件是基于所述车辆的行驶距离预先确定的条件。
17.如权利要求10所述的车辆的控制方法,其中,
还具备选择固定了所述上限值的第一模式和可调整所述上限值的第二模式中任一方的步骤(S3、S4),
使所述上限值上升的步骤(S102、S102A)中,在选择了所述第二模式时设定所述变化量。
18.如权利要求17所述的车辆的控制方法,其中,
所述车辆还具备指令生成部(49),所述指令生成部(49)构成为通过手动操作切换用于延长所述蓄电装置(10)的使用期间的指令的生成和所述指令生成的停止,
所述选择的步骤(S3、S4)中,在所述指令生成部(49)生成所述指令的情况下,从所述第一及第二模式中选择所述第二模式,另一方面,在所述指令生成部(49)停止了所述指令的生成的情况下,从所述第一及第二模式中选择所述第一模式。
CN200980162492.1A 2009-11-17 2009-11-17 车辆及车辆的控制方法 Expired - Fee Related CN102648104B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069472 WO2011061811A1 (ja) 2009-11-17 2009-11-17 車両および車両の制御方法

Publications (2)

Publication Number Publication Date
CN102648104A true CN102648104A (zh) 2012-08-22
CN102648104B CN102648104B (zh) 2015-04-22

Family

ID=44059313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980162492.1A Expired - Fee Related CN102648104B (zh) 2009-11-17 2009-11-17 车辆及车辆的控制方法

Country Status (5)

Country Link
US (1) US8820446B2 (zh)
EP (1) EP2502776B1 (zh)
JP (1) JP5482798B2 (zh)
CN (1) CN102648104B (zh)
WO (1) WO2011061811A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132797A (zh) * 2014-03-27 2016-11-16 丰田自动车株式会社 混合动力车辆及控制混合动力车辆的方法
CN107472049A (zh) * 2016-06-08 2017-12-15 福特全球技术公司 在线车辆电池容量诊断系统与方法
CN108028438A (zh) * 2015-09-09 2018-05-11 日立汽车系统株式会社 蓄电池控制装置
CN110682829A (zh) * 2018-07-04 2020-01-14 奥特润株式会社 过充电防止装置及方法
CN111071038A (zh) * 2018-10-19 2020-04-28 丰田自动车株式会社 车辆及其控制方法
CN111225847A (zh) * 2017-10-23 2020-06-02 三菱电机株式会社 铁道车辆用记录装置、铁道车辆用空气调节装置及铁道车辆用记录方法
CN111746352A (zh) * 2019-03-29 2020-10-09 北京新能源汽车股份有限公司 一种确定功率混合型电动汽车的电池的方法、装置及上位机

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772952B2 (ja) * 2011-06-07 2015-09-02 トヨタ自動車株式会社 電動車両および電動車両の制御方法
JP2013005528A (ja) * 2011-06-14 2013-01-07 Toyota Motor Corp 回路異常検出装置および方法
KR20140023434A (ko) * 2011-06-17 2014-02-26 도요타 지도샤(주) 전동 차량 및 전동 차량의 제어 방법
WO2013001620A1 (ja) * 2011-06-29 2013-01-03 トヨタ自動車株式会社 車両の電源システム
JP5677917B2 (ja) * 2011-09-13 2015-02-25 本田技研工業株式会社 充電制御装置
JP5720554B2 (ja) * 2011-12-13 2015-05-20 トヨタ自動車株式会社 非水二次電池の制御装置および制御方法
JP5839047B2 (ja) * 2011-12-21 2016-01-06 トヨタ自動車株式会社 監視システムおよび車両
JP2013169036A (ja) * 2012-02-14 2013-08-29 Hitachi Automotive Systems Ltd 蓄電装置の制御装置、および電動車両
ES2903030T3 (es) * 2012-02-17 2022-03-30 Milwaukee Electric Tool Corp Cargador de batería de bahía múltiple
FR2992101A1 (fr) * 2012-06-18 2013-12-20 Peugeot Citroen Automobiles Sa Procede et dispositif de gestion automatique de l'utilisation des moyens de stockage d'energie d'un vehicule a moteur(s) electrique(s)
JP2014217115A (ja) * 2013-04-23 2014-11-17 パナソニックインテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 電子機器及び充電器
US20150028880A1 (en) * 2013-07-26 2015-01-29 Kabushiki Kaisha Toshiba Electronic Apparatus, Method of Controlling Electronic Apparatus, and Storage Medium
KR101601474B1 (ko) * 2014-08-25 2016-03-21 현대자동차주식회사 차량 주행 가능 거리 유지 시스템 및 그 방법
CN107078537B (zh) * 2014-11-04 2018-10-12 本田技研工业株式会社 充电控制装置和充电控制方法
JP2016103890A (ja) * 2014-11-27 2016-06-02 京セラ株式会社 電力制御装置および電力制御システム
JP6213511B2 (ja) 2015-03-25 2017-10-18 トヨタ自動車株式会社 電動車両及びその制御方法
US10359797B2 (en) 2015-04-30 2019-07-23 Solarcity Corporation Weather tracking in a photovoltaic energy generation system
JP6214609B2 (ja) * 2015-10-08 2017-10-18 本田技研工業株式会社 駆動装置
JP6770885B2 (ja) * 2016-12-14 2020-10-21 株式会社ジェイテクト 車両制御装置
JP7198284B2 (ja) * 2018-09-06 2022-12-28 株式会社日立製作所 鉄道車両
US11554687B2 (en) * 2018-09-27 2023-01-17 Sanyo Electric Co., Ltd. Power supply system and management device capable of determining current upper limit for supressing cell deterioration and ensuring safety
JP7243123B2 (ja) * 2018-10-19 2023-03-22 トヨタ自動車株式会社 車両
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
JP7271328B2 (ja) * 2019-06-13 2023-05-11 本田技研工業株式会社 制御装置、制御方法、及びプログラム
JP7100002B2 (ja) * 2019-09-10 2022-07-12 矢崎総業株式会社 電池制御ユニットおよび電池システム
JP7051776B2 (ja) * 2019-09-30 2022-04-11 矢崎総業株式会社 電池制御ユニットおよび電池システム
JP7377125B2 (ja) * 2020-02-19 2023-11-09 株式会社デンソーテン 電池制御装置および電池制御方法
GB2623508A (en) * 2022-10-14 2024-04-24 Perkins Engines Co Ltd Method for monitoring a state of charge of a battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157369A (ja) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd 電池の充放電制御方法
US20030094321A1 (en) * 2001-11-21 2003-05-22 Nissan Motor Co., Ltd. Capacity indicating device and method thereof
JP2003199211A (ja) * 2001-12-25 2003-07-11 Toyota Motor Corp 自動車用のバッテリ充放電制御装置
JP2006278132A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp バッテリ充放電制御装置
JP2008024124A (ja) * 2006-07-20 2008-02-07 Honda Motor Co Ltd 車両用電源の制御装置およびその制御方法
JP2009248822A (ja) * 2008-04-08 2009-10-29 Denso Corp 蓄電量制御装置
CN101641606A (zh) * 2007-03-23 2010-02-03 株式会社丰田中央研究所 二次电池的状态估计装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019734B2 (ja) * 2001-03-28 2007-12-12 株式会社ジーエス・ユアサコーポレーション 二次電池の運用方法及び二次電池装置
US6534954B1 (en) * 2002-01-10 2003-03-18 Compact Power Inc. Method and apparatus for a battery state of charge estimator
JP4089325B2 (ja) 2002-07-17 2008-05-28 アイシン・エィ・ダブリュ株式会社 ハイブリッド車両制御システム
JP2005065352A (ja) 2003-08-11 2005-03-10 Nissan Motor Co Ltd バッテリ充放電制御装置
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
JP4179330B2 (ja) * 2006-03-31 2008-11-12 トヨタ自動車株式会社 ハイブリッド車両用電池情報表示装置
JP4802945B2 (ja) * 2006-08-31 2011-10-26 トヨタ自動車株式会社 二次電池の制御システムおよびそれを搭載したハイブリッド車両
JP2008087516A (ja) * 2006-09-29 2008-04-17 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の走行制御方法
DE102008009568A1 (de) * 2008-02-16 2009-08-20 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungseinrichtung für ein Hybridfahrzeug und Verfahren zum Betrieb einer elektrischen Hochvolt-Energiespeichereinrichtung
JP4697247B2 (ja) * 2008-03-03 2011-06-08 日産自動車株式会社 ハイブリッド車両
JP5298573B2 (ja) * 2008-03-04 2013-09-25 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
CN102150320B (zh) * 2009-06-18 2015-06-17 丰田自动车株式会社 电池系统以及电池系统搭载车辆
US9285432B2 (en) * 2011-07-26 2016-03-15 GM Global Technology Operations LLC Method and system for controlling a vehicle battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157369A (ja) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd 電池の充放電制御方法
US20030094321A1 (en) * 2001-11-21 2003-05-22 Nissan Motor Co., Ltd. Capacity indicating device and method thereof
JP2003199211A (ja) * 2001-12-25 2003-07-11 Toyota Motor Corp 自動車用のバッテリ充放電制御装置
JP2006278132A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp バッテリ充放電制御装置
JP2008024124A (ja) * 2006-07-20 2008-02-07 Honda Motor Co Ltd 車両用電源の制御装置およびその制御方法
CN101641606A (zh) * 2007-03-23 2010-02-03 株式会社丰田中央研究所 二次电池的状态估计装置
JP2009248822A (ja) * 2008-04-08 2009-10-29 Denso Corp 蓄電量制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132797A (zh) * 2014-03-27 2016-11-16 丰田自动车株式会社 混合动力车辆及控制混合动力车辆的方法
US11226376B2 (en) 2015-09-09 2022-01-18 Vehicle Energy Japan Inc. Storage battery control device
CN108028438A (zh) * 2015-09-09 2018-05-11 日立汽车系统株式会社 蓄电池控制装置
CN107472049A (zh) * 2016-06-08 2017-12-15 福特全球技术公司 在线车辆电池容量诊断系统与方法
CN107472049B (zh) * 2016-06-08 2022-05-06 福特全球技术公司 在线车辆电池容量诊断系统与方法
CN111225847A (zh) * 2017-10-23 2020-06-02 三菱电机株式会社 铁道车辆用记录装置、铁道车辆用空气调节装置及铁道车辆用记录方法
CN111225847B (zh) * 2017-10-23 2022-02-08 三菱电机株式会社 铁道车辆用记录装置、铁道车辆用空气调节装置及铁道车辆用记录方法
CN110682829A (zh) * 2018-07-04 2020-01-14 奥特润株式会社 过充电防止装置及方法
CN110682829B (zh) * 2018-07-04 2023-08-08 现代摩比斯株式会社 过充电防止装置及方法
CN111071038A (zh) * 2018-10-19 2020-04-28 丰田自动车株式会社 车辆及其控制方法
US11498420B2 (en) 2018-10-19 2022-11-15 Toyota Jidosha Kabushiki Kaisha Vehicle and control method thereof
CN111746352B (zh) * 2019-03-29 2022-01-28 北京新能源汽车股份有限公司 一种确定功率混合型电动汽车的电池的方法、装置及上位机
CN111746352A (zh) * 2019-03-29 2020-10-09 北京新能源汽车股份有限公司 一种确定功率混合型电动汽车的电池的方法、装置及上位机

Also Published As

Publication number Publication date
EP2502776B1 (en) 2018-10-10
US8820446B2 (en) 2014-09-02
EP2502776A1 (en) 2012-09-26
JP5482798B2 (ja) 2014-05-07
CN102648104B (zh) 2015-04-22
WO2011061811A1 (ja) 2011-05-26
JPWO2011061811A1 (ja) 2013-04-04
EP2502776A4 (en) 2017-08-23
US20130035813A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
CN102648104B (zh) 车辆及车辆的控制方法
CN102648105B (zh) 车辆及车辆的控制方法
US8712619B2 (en) Vehicle and method for controlling vehicle
JP5570782B2 (ja) 電源装置及びこれを備える車両並びに電源装置の充放電制御方法
EP3016235B1 (en) Secondary battery system
US8692507B2 (en) Multiple stage heterogeneous high power battery system for hybrid and electric vehicle
EP3135521B1 (en) Battery system and a control method therefor
CN103460546A (zh) 电动车辆及其控制方法
US20120098501A1 (en) Efficient lead acid battery charging
JP2010220391A (ja) 充電制御装置
KR101146032B1 (ko) 전기자동차의 배터리 충전 및 방전 방법
JP2021082426A (ja) 電池の充電方法および充電システム
JP2020134355A (ja) 電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

CF01 Termination of patent right due to non-payment of annual fee