CN102637744A - Soi横向超结功率mosfet器件 - Google Patents

Soi横向超结功率mosfet器件 Download PDF

Info

Publication number
CN102637744A
CN102637744A CN2012101389516A CN201210138951A CN102637744A CN 102637744 A CN102637744 A CN 102637744A CN 2012101389516 A CN2012101389516 A CN 2012101389516A CN 201210138951 A CN201210138951 A CN 201210138951A CN 102637744 A CN102637744 A CN 102637744A
Authority
CN
China
Prior art keywords
type
soi
power mosfet
buried regions
super junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101389516A
Other languages
English (en)
Other versions
CN102637744B (zh
Inventor
王文廉
王玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201210138951.6A priority Critical patent/CN102637744B/zh
Publication of CN102637744A publication Critical patent/CN102637744A/zh
Application granted granted Critical
Publication of CN102637744B publication Critical patent/CN102637744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及功率半导体器件,具体是一种SOI横向超结功率MOSFET器件。本发明解决了现有SOI横向超结功率MOSFET器件耐压低、以及自热效应严重的问题。SOI横向超结功率MOSFET器件包括p型衬底、设于p型衬底上端面的绝缘埋层、以及由横向交替分布的超结n区和超结p区构成的超结结构;绝缘埋层的上端面设有n型埋层;n型埋层的上端面设有p型外延层;p型体区和超结结构均设于p型外延层的上端面。本发明适于作为功率集成电路(PIC,PowerIntegratedCircuit)中的关键器件,并应用于电机控制、平板显示驱动、电脑外设控制等领域。

Description

SOI横向超结功率MOSFET器件
技术领域
本发明涉及功率半导体器件,具体是一种SOI横向超结功率MOSFET器件。
背景技术
功率半导体器件在国民经济和社会生活中发挥着越来越重要的作用,其大量用于消费类电子、工业控制和国防装备。其中,以LDMOS(Lateral Double-diffused MOSFET)为代表的横向功率MOSFET器件作为功率集成电路(PIC,Power Integrated Circuit)中的关键器件,已经在电机控制、平板显示驱动、电脑外设控制等领域得到广泛应用。随着功率电子技术的发展,对功率半导体器件的高耐压、高速、低功耗性能提出了更高的要求。对此,人们将超结结构和SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术应用于功率半导体器件,形成了SOI横向超结功率MOSFET器件。如图1所示,现有SOI横向超结功率MOSFET器件包括p型衬底1、设于p型衬底1上端面的绝缘埋层2、以及由横向交替分布的超结n区9和超结p区10构成的超结结构;超结结构的一侧端面设有p型体区3;p型体区3的上端面分别设有n型源区4、p型体接触区5、以及栅氧化层7;n型源区4的上端面和p型体接触区5的上端面共同设有源电极6;栅氧化层7的上端面设有多晶硅栅8;超结结构的另一侧端面设有n型漏区12;n型漏区12的上端面设有漏电极11;p型体区3和超结结构均设于绝缘埋层2的上端面。现有SOI横向超结功率MOSFET器件的缺点在于:其一,由于横向超结结构设于具有一定电阻率的衬底上,会受到纵向电场的影响,导致超结的电荷平衡被打破,进而导致器件的耐压急剧降低,此即衬底辅助耗尽效应。其二,由于器件的耐压受到绝缘埋层厚度的限制,为了增加耐压就必须增加绝缘埋层的厚度,然而绝缘埋层一旦过厚,就会阻碍横向超结结构对衬底的热扩散,导致器件产生自热效应,且绝缘埋层越厚,自热效应就越严重。综上所述,现有SOI横向超结功率MOSFET器件由于自身结构所限,存在耐压低、以及自热效应严重的问题。基于此,有必要发明一种全新的SOI横向超结功率MOSFET器件,以解决现有SOI横向超结功率MOSFET器件存在的上述问题。
发明内容
本发明为了解决现有SOI横向超结功率MOSFET器件耐压低、以及自热效应严重的问题,提供了一种SOI横向超结功率MOSFET器件。
本发明是采用以下技术方案实现的:SOI横向超结功率MOSFET器件,包括p型衬底、设于p型衬底上端面的绝缘埋层、以及由横向交替分布的超结n区和超结p区构成的超结结构;超结结构的一侧端面设有p型体区;p型体区的上端面分别设有n型源区、p型体接触区、以及栅氧化层;n型源区的上端面和p型体接触区的上端面共同设有源电极;栅氧化层的上端面设有多晶硅栅;超结结构的另一侧端面设有n型漏区;n型漏区的上端面设有漏电极;绝缘埋层的上端面设有n型埋层;n型埋层的上端面设有p型外延层;p型体区和超结结构均设于p型外延层的上端面。
具体工作过程如下:在器件反向耐压时,超结n区和超结p区相互耗尽,超结n区同时与p型外延层耗尽。在电压值达到一定值时,耗尽区与重掺杂的n型埋层相连。此时重掺杂的n型埋层将发挥两个作用:一是将电位引到源端,在源端形成反向的纵向电场,这改善了超结的电荷平衡,有效缓解了衬底辅助耗尽效应。二是重掺杂的n型埋层形成非耗尽区,在绝缘埋层的上端面积累高密度的界面电荷,可以增强绝缘埋层的电场,提高单位厚度的耐压值。基于上述过程,与现有SOI横向超结功率MOSFET器件相比,本发明所述的SOI横向超结功率MOSFET器件具备以下优点:一、本发明所述的SOI横向超结功率MOSFET器件在绝缘埋层的上端面增设了p型外延层和重掺杂的n型埋层,相对于现有SOI横向超结功率MOSFET器件能够改变漂移区的纵向电场分布,有效缓解衬底辅助耗尽效应,改善超结的电荷平衡,从而提高器件的耐压。二、本发明所述的SOI横向超结功率MOSFET器件采用了重掺杂的n型埋层,在器件反向耐压时,重掺杂的n型埋层是非耗尽的,这可以最大程度地增强绝缘埋层的电场,在相同的绝缘埋层厚度下,器件的耐压被显著提高。因此,相对于现有SOI横向超结功率MOSFET器件,绝缘埋层可以做得更薄,从而显著减小了绝缘埋层的厚度,有效缓解了自热效应。通过进行三维器件模拟仿真,可以看出:现有SOI横向超结功率MOSFET器件受衬底辅助耗尽效应的影响,等势线分布不均匀,器件耐压不高,如图5所示。而相对于现有SOI横向超结功率MOSFET器件,本发明所述的SOI横向超结功率MOSFET器件的等势线分布更均匀,提高了器件耐压,如图6所示。综上所述,本发明所述的SOI横向超结功率MOSFET器件基于全新的器件结构,有效缓解了现有SOI横向超结功率MOSFET器件中存在的衬底辅助耗尽效应,提高了器件的耐压,同时其显著减小了绝缘埋层的厚度,有效缓解了自热效应。
本发明基于全新结构,有效解决了现有SOI横向超结功率MOSFET器件耐压低、以及自热效应严重的问题,适于作为功率集成电路(PIC,Power Integrated Circuit)中的关键器件,并应用于电机控制、平板显示驱动、电脑外设控制等领域。
附图说明
图1是现有SOI横向超结功率MOSFET器件的结构示意图。
图2是本发明的第一种结构示意图。
图3是本发明的第二种结构示意图。
图4是本发明的第三种结构示意图。
图5是现有SOI横向超结功率MOSFET器件的三维器件模拟仿真结果图。
图6是本发明的三维器件模拟仿真结果图。
图中:1-p型衬底,2-绝缘埋层,3-p型体区,4-n型源区,5-p型体接触区,6-源电极,7-栅氧化层,8-多晶硅栅,9-超结n区,10-超结p区,11-漏电极,12-n型漏区,13-p型外延层,14-n型埋层。
具体实施方式
实施例一
SOI横向超结功率MOSFET器件,包括p型衬底1、设于p型衬底1上端面的绝缘埋层2、以及由横向交替分布的超结n区9和超结p区10构成的超结结构;超结结构的一侧端面设有p型体区3;p型体区3的上端面分别设有n型源区4、p型体接触区5、以及栅氧化层7;n型源区4的上端面和p型体接触区5的上端面共同设有源电极6;栅氧化层7的上端面设有多晶硅栅8;超结结构的另一侧端面设有n型漏区12;n型漏区12的上端面设有漏电极11;绝缘埋层2的上端面设有n型埋层14;n型埋层14的上端面设有p型外延层13;p型体区3和超结结构均设于p型外延层13的上端面;
如图2所示,在本实施例中,p型衬底1的上端面与绝缘埋层2的下端面全面接触;绝缘埋层2的上端面与n型埋层14的下端面全面接触;n型埋层14的上端面与p型外延层13的下端面全面接触;
绝缘埋层2采用二氧化硅或氮化硅或蓝宝石制成;
n型埋层14为重掺杂的n型埋层;
具体实施时,本发明所述的SOI横向超结功率MOSFET器件是通过以下步骤制作而成的:一、取p型硅衬底材料,生长二氧化硅、平坦化,形成绝缘埋层,然后取另一p型硅衬底材料,n型掺杂形成n型埋层,键合减薄形成SOI衬底材料,通过p阱光刻、注入、退火形成p型体区,通过离子注入形成超结p区, 通过离子注入形成超结n区,接着进行场氧生长,调整沟道阈值电压注入,栅氧化层生长,淀积多晶硅形成多晶硅栅,通过注入形成n型源区和n型漏区,通过注入形成p型体接触区。二、刻蚀氧化层形成p型体接触区、n型源区和n型漏区的欧姆接触,形成多晶硅栅的电极引出孔,淀积金属、刻蚀金属形成源电极、漏电极和栅电极,最后进行钝化处理,压焊点。
实施例二
SOI横向超结功率MOSFET器件,包括p型衬底1、设于p型衬底1上端面的绝缘埋层2、以及由横向交替分布的超结n区9和超结p区10构成的超结结构;超结结构的一侧端面设有p型体区3;p型体区3的上端面分别设有n型源区4、p型体接触区5、以及栅氧化层7;n型源区4的上端面和p型体接触区5的上端面共同设有源电极6;栅氧化层7的上端面设有多晶硅栅8;超结结构的另一侧端面设有n型漏区12;n型漏区12的上端面设有漏电极11;绝缘埋层2的上端面设有n型埋层14;n型埋层14的上端面设有p型外延层13;p型体区3和超结结构均设于p型外延层13的上端面;
如图3所示,在本实施例中,p型衬底1的漏端上端面与绝缘埋层2的下端面接触;绝缘埋层2的上端面与n型埋层14的漏端下端面接触;p型衬底1的源端上端面与n型埋层14的源端下端面接触;n型埋层14的上端面与p型外延层13的下端面全面接触;
绝缘埋层2采用二氧化硅或氮化硅或蓝宝石制成;
n型埋层14为重掺杂的n型埋层;
具体实施时,本发明所述的SOI横向超结功率MOSFET器件是通过以下步骤制作而成的:一、取p型硅衬底材料,生长二氧化硅、对二氧化硅在源端刻蚀,淀积硅,平坦化,然后取另一p型硅衬底材料,n型掺杂形成n型埋层,键合减薄形成SOI衬底材料,通过p阱光刻、注入、退火形成p型体区,通过离子注入形成超结p区, 通过离子注入形成超结n区,接着进行场氧生长,调整沟道阈值电压注入,栅氧化层生长,淀积多晶硅形成多晶硅栅,通过注入形成n型源区和n型漏区,通过注入形成p型体接触区。二、刻蚀氧化层形成p型体接触区、n型源区和n型漏区的欧姆接触,形成多晶硅栅的电极引出孔,淀积金属、刻蚀金属形成源电极、漏电极和栅电极,最后进行钝化处理,压焊点。
实施例三
SOI横向超结功率MOSFET器件,包括p型衬底1、设于p型衬底1上端面的绝缘埋层2、以及由横向交替分布的超结n区9和超结p区10构成的超结结构;超结结构的一侧端面设有p型体区3;p型体区3的上端面分别设有n型源区4、p型体接触区5、以及栅氧化层7;n型源区4的上端面和p型体接触区5的上端面共同设有源电极6;栅氧化层7的上端面设有多晶硅栅8;超结结构的另一侧端面设有n型漏区12;n型漏区12的上端面设有漏电极11;绝缘埋层2的上端面设有n型埋层14;n型埋层14的上端面设有p型外延层13;p型体区3和超结结构均设于p型外延层13的上端面;
如图4所示,在本实施例中,p型衬底1的上端面与绝缘埋层2的下端面全面接触;绝缘埋层2的漏端上端面与n型埋层14的下端面接触;n型埋层14的上端面与p型外延层13的漏端下端面接触;绝缘埋层2的源端上端面与p型外延层13的源端下端面接触;
绝缘埋层2采用二氧化硅或氮化硅或蓝宝石制成;
n型埋层14为重掺杂的n型埋层;
具体实施时,本发明所述的SOI横向超结功率MOSFET器件是通过以下步骤制作而成的:一、取p型硅衬底材料,n型掺杂形成n型埋层,在源端刻蚀n型埋层,生长二氧化硅、平坦化,形成绝缘埋层,然后取另一p型硅衬底材料,键合减薄形成SOI衬底材料,通过p阱光刻、注入、退火形成p型体区,通过离子注入形成超结p区, 通过离子注入形成超结n区,接着进行场氧生长,调整沟道阈值电压注入,栅氧化层生长,淀积多晶硅形成多晶硅栅,通过注入形成n型源区和n型漏区,通过注入形成p型体接触区。二、刻蚀氧化层形成p型体接触区、n型源区和n型漏区的欧姆接触,形成多晶硅栅的电极引出孔,淀积金属、刻蚀金属形成源电极、漏电极和栅电极,最后进行钝化处理,压焊点。

Claims (7)

1.一种SOI横向超结功率MOSFET器件,包括p型衬底(1)、设于p型衬底(1)上端面的绝缘埋层(2)、以及由横向交替分布的超结n区(9)和超结p区(10)构成的超结结构;超结结构的一侧端面设有p型体区(3);p型体区(3)的上端面分别设有n型源区(4)、p型体接触区(5)、以及栅氧化层(7);n型源区(4)的上端面和p型体接触区(5)的上端面共同设有源电极(6);栅氧化层(7)的上端面设有多晶硅栅(8);超结结构的另一侧端面设有n型漏区(12);n型漏区(12)的上端面设有漏电极(11);其特征在于:绝缘埋层(2)的上端面设有n型埋层(14);n型埋层(14)的上端面设有p型外延层(13);p型体区(3)和超结结构均设于p型外延层(13)的上端面。
2.根据权利要求1所述的SOI横向超结功率MOSFET器件,其特征在于:p型衬底(1)的上端面与绝缘埋层(2)的下端面全面接触;绝缘埋层(2)的上端面与n型埋层(14)的下端面全面接触;n型埋层(14)的上端面与p型外延层(13)的下端面全面接触。
3.根据权利要求1所述的SOI横向超结功率MOSFET器件,其特征在于:p型衬底(1)的漏端上端面与绝缘埋层(2)的下端面接触;绝缘埋层(2)的上端面与n型埋层(14)的漏端下端面接触;p型衬底(1)的源端上端面与n型埋层(14)的源端下端面接触;n型埋层(14)的上端面与p型外延层(13)的下端面全面接触。
4.根据权利要求1所述的SOI横向超结功率MOSFET器件,其特征在于:p型衬底(1)的上端面与绝缘埋层(2)的下端面全面接触;绝缘埋层(2)的漏端上端面与n型埋层(14)的下端面接触;n型埋层(14)的上端面与p型外延层(13)的漏端下端面接触;绝缘埋层(2)的源端上端面与p型外延层(13)的源端下端面接触。
5.根据权利要求1或2或3或4所述的SOI横向超结功率MOSFET器件,其特征在于:绝缘埋层(2)采用二氧化硅或氮化硅或蓝宝石制成。
6.根据权利要求1或2或3或4所述的SOI横向超结功率MOSFET器件,其特征在于:n型埋层(14)为重掺杂的n型埋层。
7.根据权利要求5所述的SOI横向超结功率MOSFET器件,其特征在于:n型埋层(14)为重掺杂的n型埋层。
CN201210138951.6A 2012-05-08 2012-05-08 Soi横向超结功率mosfet器件 Expired - Fee Related CN102637744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210138951.6A CN102637744B (zh) 2012-05-08 2012-05-08 Soi横向超结功率mosfet器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210138951.6A CN102637744B (zh) 2012-05-08 2012-05-08 Soi横向超结功率mosfet器件

Publications (2)

Publication Number Publication Date
CN102637744A true CN102637744A (zh) 2012-08-15
CN102637744B CN102637744B (zh) 2014-08-20

Family

ID=46622064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210138951.6A Expired - Fee Related CN102637744B (zh) 2012-05-08 2012-05-08 Soi横向超结功率mosfet器件

Country Status (1)

Country Link
CN (1) CN102637744B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745996A (zh) * 2013-12-31 2014-04-23 上海新傲科技股份有限公司 带有部分绝缘埋层的横向功率器件及制作方法
CN104617139A (zh) * 2013-11-05 2015-05-13 上海华虹宏力半导体制造有限公司 Ldmos器件及制造方法
CN105489594A (zh) * 2014-09-16 2016-04-13 旺宏电子股份有限公司 半导体结构
CN107359195A (zh) * 2017-07-31 2017-11-17 电子科技大学 一种高耐压横向超结器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201445A (zh) * 2011-04-14 2011-09-28 中北大学 一种psoi横向超结功率半导体器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201445A (zh) * 2011-04-14 2011-09-28 中北大学 一种psoi横向超结功率半导体器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WENLIAN WANG等: "High-Voltage SOI SJ-LDMOS With a Nondepletion Compensation Layer", 《IEEE ELECTRON DEVICE LETTERS》, vol. 30, no. 1, 1 January 2009 (2009-01-01) *
罗小蓉: "基于介质电场增强理论的501横向高压器件与耐压模型", 《中国博士学位论文全文数据库信息科技辑》, no. 4, 15 April 2009 (2009-04-15) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617139A (zh) * 2013-11-05 2015-05-13 上海华虹宏力半导体制造有限公司 Ldmos器件及制造方法
CN104617139B (zh) * 2013-11-05 2017-08-08 上海华虹宏力半导体制造有限公司 Ldmos器件及制造方法
CN103745996A (zh) * 2013-12-31 2014-04-23 上海新傲科技股份有限公司 带有部分绝缘埋层的横向功率器件及制作方法
CN103745996B (zh) * 2013-12-31 2016-06-01 上海新傲科技股份有限公司 带有部分绝缘埋层的横向功率器件及制作方法
CN105489594A (zh) * 2014-09-16 2016-04-13 旺宏电子股份有限公司 半导体结构
CN107359195A (zh) * 2017-07-31 2017-11-17 电子科技大学 一种高耐压横向超结器件
CN107359195B (zh) * 2017-07-31 2020-12-29 电子科技大学 一种高耐压横向超结器件

Also Published As

Publication number Publication date
CN102637744B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
CN101916728B (zh) 可完全消除衬底辅助耗尽效应的soi超结ldmos结构的制作工艺
CN101969074B (zh) 一种高压ldmos器件
CN101300679B (zh) 制造半导体器件的方法
CN102201445B (zh) 一种psoi横向超结功率半导体器件
CN103579353B (zh) 一种具有p型辅助埋层的半超结vdmos
CN103178093B (zh) 高压结型场效应晶体管的结构及制备方法
CN102376762A (zh) 超级结ldmos器件及制造方法
CN101916779A (zh) 可完全消除衬底辅助耗尽效应的soi超结ldmos结构
CN103219386A (zh) 一种具有高k绝缘区的横向功率器件
CN103413830A (zh) 一种横向高压mosfet及其制造方法
CN102637744B (zh) Soi横向超结功率mosfet器件
CN109196655A (zh) 半导体装置及半导体装置的制造方法
CN103515443B (zh) 一种超结功率器件及其制造方法
CN106298926A (zh) 一种垂直双扩散金属氧化物半导体晶体管及其制作方法
CN208028069U (zh) 具有埋层结构的新型双面阶梯埋氧型soi ldmos
CN102184894B (zh) 半导体器件及形成方法、vdmos晶体管及形成方法
CN103413831A (zh) 一种横向高压器件及其制造方法
CN108091684A (zh) 超结金属氧化物场效应晶体管
CN104201203B (zh) 高耐压ldmos器件及其制造方法
CN104157690B (zh) 一种带槽型结构的应变nldmos器件及其制作方法
CN102646712A (zh) 一种ldmos器件及其制造方法
CN102790092A (zh) 一种横向高压dmos器件
CN101447432A (zh) 双扩散场效应晶体管制造方法
CN102593007A (zh) 一种内嵌多p岛n沟道超结器件及其制备方法
KR20110078861A (ko) 수평형 디모스 트랜지스터

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140820

Termination date: 20150508

EXPY Termination of patent right or utility model