CN102608607B - 天气雷达波束锐化和逆量化 - Google Patents

天气雷达波束锐化和逆量化 Download PDF

Info

Publication number
CN102608607B
CN102608607B CN201210041465.2A CN201210041465A CN102608607B CN 102608607 B CN102608607 B CN 102608607B CN 201210041465 A CN201210041465 A CN 201210041465A CN 102608607 B CN102608607 B CN 102608607B
Authority
CN
China
Prior art keywords
estimation
untreated
reflectivity data
value
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210041465.2A
Other languages
English (en)
Other versions
CN102608607A (zh
Inventor
B·P·班奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of CN102608607A publication Critical patent/CN102608607A/zh
Application granted granted Critical
Publication of CN102608607B publication Critical patent/CN102608607B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

用于在距离上提高较小天线尺寸雷达天气系统的天气数据的显示质量的方法和系统。处理器(42)从雷达系统(40)接收与天线关联的一列量化的反射率数据。该处理器基于估计的量化反射率数据来调整该列量化反射率数据,该估计的量化反射率数据与比该接收的一列量化反射率数据相关联的天线更大的天线的波束图相关联。

Description

天气雷达波束锐化和逆量化
背景技术
由于机载天气雷达天线的最大物理尺寸限制,经常无法获得期望的窄天线波束,由此导致显示的天气数据没有预期的详细。这在垂直显示方面(在该行业相对较新)特别明显且与(例如那些用在商用喷气机上的)较小天线一起时更差。
著名的多普勒波束锐化技术在飞行器的直前向或垂直方向上效果不好。而且,天气的自然多普勒噪声可能是另一个挑战。
小型飞行器只能适合小型的、宽波束天线,因此限制了它们的波束锐化能力。
图1和2示出了由于15∶1的垂直比例放大而导致的在垂直显示时展现的一些问题。问题如下:
-由于天线波束宽度引起的低分辨率;
-由于立体数据的量化引起的块状外观;和
-平滑显示输出的尝试导致在平滑度和进一步的分辨率损失之间的折衷。
直接的方法是转换到频域,并乘以波束图(可以是真的或“软化的”概念天线)的反转,这种方法对真实数据不适用,因为它需要除以很小的数并由此导致数据不稳定。
发明内容
处理器从雷达系统接收与天线相关的一列量化反射率数据。该处理器基于估计的量化反射率数据调整该列量化反射率数据,该估计的量化率反射数据与比该接收的一列量化反射数据相关的天线更大的天线的波束图相关。
本发明利用了概念上的“期望天线”来解除限制(例如,模拟具有更窄波束的“大天线”)。这使得算法能够更快收敛至最优解,同时降低了存储器需求。本发明还利用了与期望的天线响应匹配的平滑(例如高斯)扰动函数。这提供了最佳平滑输出,有助于算法更快地收敛,降低了存储器需求,并且可在不影响(smear)输出的情况下进行量化。
附图说明
以下将参考附图详细描述本发明的优选和替换实施例:
图1和2示出了由现有技术的机载天气雷达天线产生的结果;
图3示出了根据本发明形成的示例性系统;
图4示出了来自立体缓存器的一垂直列的理想数据;
图5示出了图4中示出的数据的反射率值;
图6说明了现有技术系统的模型;
图7说明了根据本发明形成的系统的模型;
图8说明了根据本发明形成的示例性过程的流程图。
具体实施方式
本发明是一种系统、方法和计算机程序,用于在距离上提高天气雷达显示的细节。图1说明了根据本发明形成的示例性系统30。该系统30包括天气雷达系统40、处理器42、存储器43、显示设备44、其它飞行器系统46和用户接口48。处理器42电耦合至该天气雷达系统40、显示设备44、其它系统46、用户接口48和存储器43。示例性的天气雷达系统40包括雷达控制器50、发送器52、接收器54和天线56。该雷达控制器50控制发送器52和接收器54基于从一个或多个其它飞行器系统46接收的飞行器数据(例如:位置、航向、滚转、偏航、倾斜度等)通过天线56来执行发送和接收信号。
天气雷达系统40接收由来自外部环境的发射脉冲的散射而产生的信号,外部环境主要包括天气和地形。该接收到的信号被送至处理器42,处理器42使用接收到的信号来更新在存储器43(例如:立体(3-D)缓存器)中存储的天气反射率估计。处理器42基于从用户接口48发送的任何控制信号或基于处理器42内的设置来产生呈现在显示设备44上的图象。
本发明重点在于来自于立体天气缓存器的一维的反射率的垂直列和与该列数据相关的最优曲线;参考图4和5。
图6示出了现有技术系统的模型。立体缓存器的最优输出是“未处理”反射率数据(波束函数r(x)),该反射率数据是高度的函数。该未处理反射率数据r(x)与波束图函数B(x)进行卷积。然后与噪声相加以创建a(x)。a(x)信号被量化以产生高度上量化的反射率,q(n)。高度上量化的反射率q(n)是可测量的且被存储到存储器43的3-D缓存器中。
图7说明了由本发明设想的波束锐化模型。实际天线的波束函数B(x)被分割成两部分BL(x),Bc(x),使得:
-这两个部分的卷积等于原始波束函数B(x);并且
-第一部分相当于波束锐化的期望量(例如,“60英寸”天线)。
将“真实的真”未处理反射率数据(最优)r(x)和对应于具有该波束宽度一半(或者等同地,为其直径两倍)的天线的波束形状加权函数BL(x)进行卷积来确定伪真信号t(x)。也可以使用对应于其它尺寸的天线的加权函数。BL(x)是具有更小(但不是无限小)波束宽度的概念上“更大”天线的波束宽度函数。当该“未处理”反射率与BL(x)卷积时,产生“更平滑”(较不详细)的函数。锐化过程(图8)试图来收敛于这个卷积函数t(x)。这使得收敛更迅速。r(x)是基于理论反射率数据的。
然后,图7中的模型与图6中的模型执行的相同。Bc(x)是“补偿”波束宽度函数,它从该“更大”(例如60英寸)天线中取出数据并在卷积时提供更加“较不详细”的函数,其理论上等同于从更小的“真实”(例如30英寸)天线获得的函数。
如图8所示,使用迭代均方差(MSE)技术来使模型输出和立体缓存器中的实际量化数据之间的MSE最小。如图7所示,为t(x)产生连续“猜测”以三种不同方式与Bc(x)进行卷积:
B(x)函数的例子一般起作用为:
Ba ( x ) = e - k ( x / θ s ) 2
其中 k = 4 ln 2
θa=波束宽度
θ30=3度
θ60=θL=1.5度
θc=2.6度
-第一种方式具有加法偏移扰动函数;
-第二种方式具有减法偏移扰动函数;和
-第三种方式不具有任何偏移扰动函数。
每个卷积被量化成N个高度水平以得到N的选择取决于设计决定,该设计决定在体元(存储单元)的数量和“光滑度”之间进行折。对于Honeywell公司生产的RDR-4000,N是距离的函数并且将N个高度水平拟合到0至60,0000ft的范围内,例如:
20NM缓存器:N=32
40NM缓存器:N=16
80NM缓存器:N=8
160NM缓存器:N=4
320NM缓存器:N=2
然后,确定每个量化结果和反射率信号q(n)的MSE。基于哪个猜测具有最低MSE,高斯扰动函数被移位。该移位的高斯函数与Δ因子组合。该组合在下一次迭代调整增加到或从减去的值。在已经达到预定次数的迭代或“目标”MSE后,该过程完成。
采用了经验变分法的方式,概括如下:
-扰动t(x)的最新猜测;和
-如果MSE降低,则保持扰动函数,否则回到之前低的MSE。
使用平滑扰动函数,该平滑扰动函数匹配反射率数据的期望波束形状(参考图5),即高斯的。该高斯函数沿着连续猜测上的独立变量而移位。
虽然估计值并不完全与理想值r(x)匹配,该估计值当然比该量化结果或非量化结果更接近真值。可使用类似的最优化。
在不需要进一步从移动、平均或者插值型平滑中“扩展”的情况下,本发明还提供最优平滑输出。
在图8所示的过程被确定完成之后,基于具有最低MSE的来改变q(n)(存储在3D缓存器)。当根据新的q(n)数据产生用于垂直侧视图显示的图像时,该图像将可与产生自更大天线的图像进行比较。这样,当t(x)与更大的60英寸天线相关时,具有30英寸天线的系统表现得更接近于60英寸天线的系统。
在一个实施例中,只将图8所示的迭代过程应用到超过预定义距离的q(n)数据。该预定义距离可以基于天线的尺寸。例如,如果该系统包括30英寸天线,则只对超过40nm的数据应用该迭代过程。然而,如果该系统包括20英寸天线,则只对超过更近距离的数据应用该迭代过程。
要求了排他属性或特权的本发明的实施例被定义如下。

Claims (10)

1.一种用于提高天气雷达显示的细节的方法,所述方法包括:
由处理器接收由天线采样的一垂直列量化反射率数据;并且
基于估计的未处理反射率数据,由处理器调整该垂直列量化反射率数据,该估计的未处理反射率数据与具有比该接收的垂直列量化反射率数据相关联的天线更小的波束宽度的天线的波束图相关联,其中,调整该垂直列量化反射率数据包括迭代地修改该估计的未处理反射率数据,以减小在该估计的未处理反射率数据与该量化反射率数据之间的均方差。
2.根据权利要求1所述的方法,其中迭代地修改该估计的未处理反射率数据包括:
a)基于估计的最优未处理反射率信号和与该接收的垂直列量化反射率数据相关联的天线相关联的第一波束宽度函数的卷积来提供估计的大天线反射率信号,该估计的大天线未处理反射率信号作为第一值;
b)通过向该估计的大天线未处理反射率信号加上预定义调整值来创建第二值;
c)通过从该估计的大天线未处理反射率信号减去预定义调整值来创建第三值;
d)将该第一至第三值和与具有更小波束宽度的天线相关联的第二波束宽度函数进行卷积;
e)通过将该第一至第三值的卷积结果量化成预先定义数目的高度水平来生成第一、第二和第三量化的估计反射率值;
f)将该第一、第二和第三量化的估计反射率值与该接收的量化反射率值进行比较;
g)基于该比较确定该第一、第二和第三量化的估计反射率值中的哪一个最接近该接收的量化反射率值;
h)基于该确定的结果调整该第一、第二和第三值;
i)重复d)-h)直到获得最优结果;和
j)将该最接近的量化的估计反射率值存储到三维存储器内。
3.根据权利要求2所述的方法,其中比较包括计算第一、第二和第三量化的估计反射率值中的每一个与该接收的量化反射率值之间的均方差。
4.根据权利要求3所述的方法,其中该最优结果包括低于预定义水平的均方差结果。
5.根据权利要求3所述的方法,其中该最优结果包括步骤d)-h)的预定义次数的重复。
6.根据权利要求1所述的方法,其中调整包括仅调整超过预定义范围的量化反射率数据。
7.一种用于提高天气雷达显示的细节的系统,所述系统包括:
雷达系统,被配置为产生由天线采样的一垂直列量化反射率数据;
存储器,包括三维缓存器;和
处理器,与该雷达系统和该存储器进行信号通信,该处理器被配置为基于估计的未处理反射率数据调整该垂直列量化反射率数据,该估计的未处理反射率数据与具有比该接收的垂直列量化反射率数据相关联的天线更小的波束宽度的天线的波束图相关联,其中,该处理器被配置为通过至少迭代地修改该估计的未处理反射率数据以减小在该估计的未处理反射率数据与该量化反射率数据之间的均方差来调整该垂直列量化反射率数据。
8.根据权利要求7所述的系统,其中该处理器被配置为通过至少以下步骤来迭代地修改该估计的未处理反射率数据:
a)基于估计的最优未处理反射率信号和与该接收的垂直列量化反射率数据相关联的天线相关联的第一波束宽度函数的卷积提供估计的大天线未处理反射率信号,该估计的大天线未处理反射率信号作为第一值;
b)通过向该估计的大天线未处理反射率信号加上预定义调整值来创建第二值;
c)通过从该估计的大天线未处理反射率信号减去预定义调整值来创建第三值;
d)将该第一至第三值和与具有更小波束宽度的天线相关联的第二波束宽度函数进行卷积;
e)通过将该第一至第三值的卷积结果量化成预定义数目的高度水平来生成第一、第二和第三量化的估计反射率值;
f)将该第一、第二和第三量化的估计反射率值与该接收的量化反射率值进行比较;
g)基于该比较确定该第一、第二和第三量化的估计反射率值中的哪一个最接近该接收的量化反射率值;
h)基于该确定的结果调整该第一、第二和第三值;
i)重复d)-h)直到获得最优结果;和
j)将该最接近的量化的估计反射率值存储在该存储器中。
9.根据权利要求8所述的系统,其中该处理器被配置为至少通过计算第一、第二和第三量化的估计反射率值中的每一个与该接收的量化反射率值之间的均方差来进行比较。
10.根据权利要求9所述的系统,其中该最优结果包括低于预定义水平的均方差结果或步骤d)-h)的预定义次数的重复,其中该处理器被配置为通过至少仅调整超过预定义范围的量化的反射率数据来进行调整。
CN201210041465.2A 2011-01-05 2012-01-05 天气雷达波束锐化和逆量化 Expired - Fee Related CN102608607B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161430009P 2011-01-05 2011-01-05
US61/430,009 2011-01-05
US61/430009 2011-01-05
US13/051769 2011-03-18
US13/051,769 2011-03-18
US13/051,769 US8618977B2 (en) 2011-01-05 2011-03-18 Weather radar beam-sharpening and de-quantization

Publications (2)

Publication Number Publication Date
CN102608607A CN102608607A (zh) 2012-07-25
CN102608607B true CN102608607B (zh) 2015-11-25

Family

ID=45497815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210041465.2A Expired - Fee Related CN102608607B (zh) 2011-01-05 2012-01-05 天气雷达波束锐化和逆量化

Country Status (4)

Country Link
US (1) US8618977B2 (zh)
EP (1) EP2474837B1 (zh)
JP (1) JP2012168164A (zh)
CN (1) CN102608607B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182482B2 (en) * 2011-10-25 2015-11-10 Navico Holding As Radar beam sharpening system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387373A (en) * 1977-04-21 1983-06-07 Westinghouse Electric Corp. Synthetic monopulse radar
US7109912B1 (en) * 2004-05-04 2006-09-19 Rockwell Collins, Inc. Weather radar hazard detection system and method
US7372394B1 (en) * 2005-03-08 2008-05-13 Rockwell Collins, Inc. Variable loop gain and resolution pulse system and method with point target editing capability
CN101203774A (zh) * 2005-06-01 2008-06-18 荷兰应用自然科学研究组织 飞行器的雷达系统
CN102117227A (zh) * 2011-03-09 2011-07-06 南京恩瑞特实业有限公司 天气雷达数据的多核并行计算方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614778A (en) * 1965-11-18 1971-10-19 Conductron Corp Fine resolution radar for foliage penetration
US4851848A (en) * 1988-02-01 1989-07-25 The United States Of America As Represented By The Secretary Of The Navy Frequency agile synthetic aperture radar
US4978961A (en) * 1989-12-21 1990-12-18 Hughes Aircraft Company Synthetic aperture radar with dead-ahead beam sharpening capability
US5202690A (en) * 1992-06-02 1993-04-13 Frederick Philip R Automatic horizontal and vertical scanning radar
US5442364A (en) * 1993-07-22 1995-08-15 The United States Of America As Represented By The Secretary Of The Navy Alignment and beam spreading for ground radial airborne radar
US5469167A (en) * 1993-10-18 1995-11-21 The United States Of America As Represented By The Secretary Of The Army Synthetic aperture radar for nonlinear trajectories using range relative doppler processing and invariant mapping
US5502447A (en) * 1993-10-28 1996-03-26 Hazeltine Corporation Beam sharpened pencil beam antenna systems
ATE244895T1 (de) * 1996-05-14 2003-07-15 Honeywell Int Inc Autonomes landeführungssystem
US5847673A (en) * 1996-07-11 1998-12-08 Northrop Grumman Corporation System and method for determining a position of an object using output from a radar system
EP1095290B1 (en) * 1998-07-06 2005-02-16 AlliedSignal Inc. Method and apparatus for implementing automatic tilt control of a radar antenna on an aircraft
US7076227B1 (en) * 1998-12-03 2006-07-11 Apex/Eclipse Systems, Inc. Receiving system with improved directivity and signal to noise ratio
DE19927395A1 (de) * 1999-06-16 2001-01-04 Daimler Chrysler Ag Vorrichtung und Verfahren zur Erhöhung der Winkelauflösung einer Antennenanordnung
US20030139662A1 (en) * 2001-10-16 2003-07-24 Seidman Abraham Neil Method and apparatus for detecting, identifying and performing operations on microstructures including, anthrax spores, brain cells, cancer cells, living tissue cells, and macro-objects including stereotactic neurosurgery instruments, weapons and explosives
US7218268B2 (en) * 2003-05-14 2007-05-15 Veridian Systems Self-calibrating interferometric synthetic aperture radar altimeter
US7106250B2 (en) 2003-09-03 2006-09-12 The United States Of America As Represented By The Secretary Of The Navy Robust predictive deconvolution system and method
US7333047B2 (en) * 2004-05-28 2008-02-19 Time Domain Corporation System and method for spatially diverse radar signal processing
ES2314487T3 (es) * 2004-11-26 2009-03-16 Saab Ab Rechazo del lobulo trasero de antena.
US7145497B2 (en) * 2005-01-07 2006-12-05 Raytheon Company Robust detection technique of fixed and moving ground targets using a common waveform
DE602005001113T2 (de) * 2005-03-29 2008-01-10 Saab Ab Verfahren zur Abbildung einer Zielszene mittels Abtastradar
US7417586B2 (en) * 2006-02-07 2008-08-26 Honeywell International Inc. Methods and systems for interferometric cross track phase calibration
US20120056780A1 (en) * 2006-04-28 2012-03-08 Paul Antonik Method and apparatus for simultaneous synthetic aperture radar and moving target indication
US7535412B1 (en) 2007-01-25 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Single pulse imaging radar system and method
US20080297405A1 (en) * 2007-04-06 2008-12-04 Morrison Jr Robert L Synthetic Aperture focusing techniques
US7616150B1 (en) * 2007-09-27 2009-11-10 Rockwell Collins, Inc. Null steering system and method for terrain estimation
US20100194628A1 (en) * 2009-02-05 2010-08-05 Honeywell International Inc. Systems and methods for displaying radar-measured turbulence intensity on a vertical display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387373A (en) * 1977-04-21 1983-06-07 Westinghouse Electric Corp. Synthetic monopulse radar
US7109912B1 (en) * 2004-05-04 2006-09-19 Rockwell Collins, Inc. Weather radar hazard detection system and method
US7372394B1 (en) * 2005-03-08 2008-05-13 Rockwell Collins, Inc. Variable loop gain and resolution pulse system and method with point target editing capability
CN101203774A (zh) * 2005-06-01 2008-06-18 荷兰应用自然科学研究组织 飞行器的雷达系统
CN102117227A (zh) * 2011-03-09 2011-07-06 南京恩瑞特实业有限公司 天气雷达数据的多核并行计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Radar Synthetic Vision System for Adverse Weather Aircraft Landing;FIROOZ SADJADI等;《IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS》;19990101;第35卷(第1期);2-14 *

Also Published As

Publication number Publication date
EP2474837A1 (en) 2012-07-11
US20120169531A1 (en) 2012-07-05
CN102608607A (zh) 2012-07-25
JP2012168164A (ja) 2012-09-06
US8618977B2 (en) 2013-12-31
EP2474837B1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
CN106569181A (zh) 基于协方差矩阵重构稳健Capon波束形成的算法
CN104392034B (zh) 一种基于l1/2范数的稀疏线性阵列优化方法
CN104270179A (zh) 基于协方差重构和导向矢量补偿的自适应波束形成方法
CN105306123A (zh) 一种抗阵列系统误差的稳健波束形成方法
CN112596022B (zh) 低轨星载多波束正六边形相控阵天线的波达角估计方法
CN107024681A (zh) 基于杂波知识未确知条件下mimo雷达收发联合优化方法
CN105354171B (zh) 一种改进特征矢量的投影子空间估计自适应波束合成方法
CN102608607B (zh) 天气雷达波束锐化和逆量化
CN111276822B (zh) 一种天线方向图主瓣可控的天线阵列设计方法
CN101915906B (zh) 自适应波束形成副瓣整形方法
CN114137476A (zh) 一种基于极化修正的短波测向方法
CN107342836A (zh) 脉冲噪声下的加权稀疏约束稳健波束形成方法及装置
CN104539331A (zh) 一种基于改进的混合入侵杂草算法阵列天线波束合成方法
CN113376584A (zh) 基于改进对角加载的稳健自适应波束形成方法
CN110895327B (zh) 基于直接凸优化建模的鲁棒性自适应波束形成方法
CN110083923B (zh) 一种基于高阶泰勒展开的低副瓣阵列天线的优化布局方法
CN109639332B (zh) 一种基于导向矢量模型的稳健波束成形优化方法
CN111257863A (zh) 一种高精度多点线性约束的自适应单脉冲测向方法
CN110907925B (zh) 一种高频地波雷达双站模型下的权重定位方法
CN106599551A (zh) 一种用于阵列天线足球机器人的快速自适应波束形成算法
CN109633563B (zh) 基于多径信息的自适应相干波束形成方法
CN114563764A (zh) 一种自适应波束生成方法及系统
CN109901132B (zh) 一种多径利用的自适应相干波束形成方法
CN114280546B (zh) 一种对阵列结构和波束形状稳健的快速方向图综合方法
CN117200845B (zh) 一种基于低频信号位置感知的毫米波波束对齐方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170105