CN102584308B - 碳纤维/氧化锆纳米线混杂增强材料的制备方法 - Google Patents

碳纤维/氧化锆纳米线混杂增强材料的制备方法 Download PDF

Info

Publication number
CN102584308B
CN102584308B CN 201210024567 CN201210024567A CN102584308B CN 102584308 B CN102584308 B CN 102584308B CN 201210024567 CN201210024567 CN 201210024567 CN 201210024567 A CN201210024567 A CN 201210024567A CN 102584308 B CN102584308 B CN 102584308B
Authority
CN
China
Prior art keywords
carbon fiber
preparation
carbon
reinforced material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201210024567
Other languages
English (en)
Other versions
CN102584308A (zh
Inventor
李克智
李翠艳
张雨雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Bozhi Composite Materials Co.,Ltd.
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN 201210024567 priority Critical patent/CN102584308B/zh
Publication of CN102584308A publication Critical patent/CN102584308A/zh
Application granted granted Critical
Publication of CN102584308B publication Critical patent/CN102584308B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种碳纤维/氧化锆纳米线混杂增强材料的其制备方法,用于解决现有的增强材料的制备方法制备过程复杂的技术问题。技术方案是将碳纤维预制体置于含锆离子水溶液中,经微波水热合成反应、洗涤、干燥,得到碳纤维/氧化锆纳米线混杂增强材料。该混杂增强材料兼顾了碳纤维和氧化锆纳米线两种增强体的特点使之起到相互弥补的作用,特别是由于产生的混杂效应提高了单一碳纤维增强材料的力学性能和抗烧蚀性能;该混杂增强材料中氧化锆纳米线均匀生长在碳纤维表面,满足了对复合材料结构和功能兼备的要求。通过控制锆盐溶液浓度、pH值及微波水热反应温度、时间,制备过程反应时间短、反应温度低、操作简单。

Description

碳纤维/氧化锆纳米线混杂增强材料的制备方法
技术领域
本发明涉及一种增强材料的其制备方法,特别是涉及一种碳纤维/氧化锆纳米线混杂增强材料的其制备方法。 
背景技术
混杂增强材料由于各种增强材料不同性质的相互补充,特别是由于产生混杂效应将明显提高或改善原单一增强材料的某些性能。碳纤维具有优异的力学性能,如高比强度、高比模量,特别是在2000℃以上高温惰性环境中,是唯一强度不下降的耐高温材料,因此在复合材料领域,碳纤维被广泛用于复合材料增强体。氧化锆是一种具有高熔点、导热系数小、化学稳定性好、抗腐蚀性能优良的无机非金属材料,广泛应用于复合材料增强增韧及基体改性研究。 
碳纤维/氧化锆混杂增强材料是近年来提出的复合材料增强体,其中氧化锆多为纳米颗粒。文献1“公开号是CN1724473的中国发明专利”公开了一种碳纳米管/氧化锆复合增强体的制备方法,该方法将碳纳米管/氧化锆混杂增强体应用于氧化铝陶瓷中可以明显提高其断裂韧性。 
文献2“Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites[Composites:Part B(2011),Article in press]”公开了一种碳纤维和纳米氧化锆颗粒混杂增强聚合物基复合材料,研究结果表明纳米氧化锆颗粒和碳纤维的结合可有效提高复合材料拉伸性能。 
文献3“Fracture behaviour of hybrid glass matrix composites:thermal ageing effects[Composites:Part A 34(2003)1177-1185]”公开了一种短切碳纤维和氧化锆混杂增强玻璃基复合材料,研究结果表明混杂增强体可改善复合材料的断裂行为。 
但是以上文献公开的制备方法反应时间长、反应温度高,操作复杂。 
发明内容
为了克服现有的增强材料的制备方法制备过程复杂的不足,本发明提供一种碳纤维/氧化锆纳米线混杂增强材料的其制备方法。该方法将碳纤维预制体置于含锆离子水溶液中,经微波水热合成反应、洗涤、干燥,得到碳纤维/氧化锆纳米线混杂增强材料。该混杂增强材料兼顾碳纤维和氧化锆纳米线两种增强体的特点使之起到相互弥补的作 用,特别是由于产生的混杂效应可以提高单一碳纤维增强材料的力学性能和抗烧蚀性能;该混杂增强材料中氧化锆纳米线均匀生长在碳纤维表面,可以满足对复合材料结构和功能兼备的要求。通过控制锆盐溶液浓度、pH值及微波水热反应温度、时间,进而控制混杂材料中碳纤维和氧化锆纳米线的比例及氧化锆纳米线的分布状态。可以达到制备过程反应时间短、反应温度低、操作简单、重复性好的效果。 
本发明解决其技术问题所采用的技术方案是:一种碳纤维/氧化锆纳米线混杂增强材料的其制备方法,其特点是包括以下步骤: 
步骤一,将碳纤维预制体在真空高温烧结炉中进行1600℃热处理,以去除碳纤维表面杂质; 
步骤二,选用高纯度水溶性锆盐溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为1~2.5mol/L,溶液pH值为5~11; 
步骤三,将步骤二制备的溶液陈化1h,与经步骤1处理的碳纤维预制体置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为20~50min,微波水热合成反应温度为160~190℃,微波水热合成反应压力为1~4MPa,反应结束后自然冷却到室温; 
步骤四,将经步骤三处理的碳纤维预制体分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,得到碳纤维/氧化锆纳米线混杂增强材料。 
所述碳纤维预制体是短切碳纤维、碳毡、碳布或碳纤维编制体的任一种。 
所述水溶性锆盐是ZrOCl2·8H2O、ZrCl4或ZrO(NO3)2·2H2O的任一种。 
本发明的有益效果是:由于将碳纤维预制体置于含锆离子水溶液中,经微波水热合成反应、洗涤、干燥,得到碳纤维/氧化锆纳米线混杂增强材料。该混杂增强材料兼顾了碳纤维和氧化锆纳米线两种增强体的特点使之起到相互弥补的作用,特别是由于产生的混杂效应提高了单一碳纤维增强材料的力学性能和抗烧蚀性能;该混杂增强材料中氧化锆纳米线均匀生长在碳纤维表面,满足了对复合材料结构和功能兼备的要求。通过控制锆盐溶液浓度、pH值及微波水热反应温度、时间,进而控制混杂材料中碳纤维和氧化锆纳米线的比例及氧化锆纳米线的分布状态。制备过程反应时间短、反应温度低、操作简单、重复性好。 
下面结合附图和实施例对本发明作详细说明。 
附图说明
图1是由本发明方法实施例4制备的碳纤维/氧化锆纳米线混杂增强材料中氧化锆纳米线的X-射线衍射(XRD)图谱; 
图2是本发明方法实施例4制备的碳纤维/氧化锆纳米线混杂增强材料的扫描电镜(SEM)照片。 
具体实施方式
实施例1: 
步骤1:将短切碳纤维在真空高温烧结炉中进行1600℃热处理,以去除碳纤维表面杂质; 
步骤2:选用高纯度水溶性ZrOCl2·8H2O溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为1mol/L,溶液pH=5; 
步骤3:将步骤2制备的溶液陈化1h后,与经步骤1处理的短切碳纤维置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为20min,微波水热合成反应温度为160℃,微波水热合成反应压力为1MPa,反应结束后自然冷却到室温; 
步骤4:将经步骤3处理的短切碳纤维分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,得到碳纤维/氧化锆纳米线混杂增强材料。 
实施例2: 
步骤1:将碳毡在真空高温烧结炉中进行1600℃热处理,以去除碳毡表面杂质; 
步骤2:选用高纯度水溶性ZrOCl2·8H2O溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为1.5mol/L,溶液pH=7; 
步骤3:将步骤2制备的溶液陈化1h后,与经步骤1处理的碳毡置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为30min,微波水热合成反应温度为170℃,微波水热合成反应压力为2MPa,反应结束后自然冷却到室温; 
步骤4:将经步骤3处理的碳毡分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,后即得到碳纤维/氧化锆纳米线混杂增强材料。 
实施例3: 
步骤1:将碳布在真空高温烧结炉中进行1600℃热处理,以去除碳布表面杂质; 
步骤2:选用高纯度水溶性ZrCl4溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为2mol/L,溶液pH=9; 
步骤3:将步骤2制备的溶液陈化1h后,与经步骤1处理的碳布置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为40min,微波水热合成反应温度为180℃,微波水热合成反应压力为3MPa,反应结束后自然冷却到室温; 
步骤4:将经步骤3处理的碳布分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,得到碳纤维/氧化锆纳米线混杂增强材料。 
实施例4: 
步骤1:将碳纤维编制体在真空高温烧结炉中进行1600℃热处理,以去除碳纤维编制体表面杂质; 
步骤2:选用高纯度水溶性ZrO(NO3)2·2H2O溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为2.5mol/L,溶液pH=11; 
步骤3:将步骤2制备的溶液陈化1h后,与经步骤1处理的碳纤维编制体置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为50min,微波水热合成反应温度为190℃,微波水热合成反应压力为4MPa,反应结束后自然冷却到室温; 
步骤4:将经步骤3处理的碳纤维编制体分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,得到碳纤维/氧化锆纳米线混杂增强材料。 
由图1可以看出:实施例4制备的氧化锆纳米线晶相为单斜相和四方相氧化锆。 
由图2可以看出:实施例4制备的碳纤维/氧化锆纳米线混杂增强材料中氧化锆纳米线均匀分布在碳纤维表面及碳纤维之间。 

Claims (2)

1.一种碳纤维/氧化锆纳米线混杂增强材料的制备方法,其特征在于包括以下步骤: 
步骤一,将碳纤维预制体在真空高温烧结炉中进行1600℃热处理,以去除碳纤维表面杂质; 
步骤二,选用高纯度水溶性锆盐溶于去离子水,配置成溶液,用浓度为15%的氨水调节溶液pH值,并置于恒温磁力搅拌器在50℃充分搅拌,溶液中锆离子的浓度为1~2.5mol/L,溶液pH值为5~11;所述水溶性锆盐是ZrOCl2·8H2O、ZrCl4或ZrO(NO3)2·2H2O的任一种; 
步骤三,将步骤二制备的溶液陈化1h,与经步骤一处理的碳纤维预制体置于微波消解罐中,将微波消解罐移入微波合成仪中进行合成反应,微波水热合成反应时间为20~50min,微波水热合成反应温度为160~190℃,微波水热合成反应压力为1~4MPa,反应结束后自然冷却到室温; 
步骤四,将经步骤三处理的碳纤维预制体分别经质量浓度为10%盐酸溶液、去离子水及无水乙醇洗涤,60℃烘干,得到碳纤维/氧化锆纳米线混杂增强材料。 
2.根据权利要求1所述的碳纤维/氧化锆纳米线混杂增强材料的制备方法,其特征在于:所述碳纤维预制体是短切碳纤维、碳毡、碳布或碳纤维编制体的任一种。 
CN 201210024567 2012-02-03 2012-02-03 碳纤维/氧化锆纳米线混杂增强材料的制备方法 Active CN102584308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210024567 CN102584308B (zh) 2012-02-03 2012-02-03 碳纤维/氧化锆纳米线混杂增强材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210024567 CN102584308B (zh) 2012-02-03 2012-02-03 碳纤维/氧化锆纳米线混杂增强材料的制备方法

Publications (2)

Publication Number Publication Date
CN102584308A CN102584308A (zh) 2012-07-18
CN102584308B true CN102584308B (zh) 2013-04-24

Family

ID=46473645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210024567 Active CN102584308B (zh) 2012-02-03 2012-02-03 碳纤维/氧化锆纳米线混杂增强材料的制备方法

Country Status (1)

Country Link
CN (1) CN102584308B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965533B (zh) * 2012-09-17 2015-03-11 哈尔滨工业大学 纳米氧化锆/陶瓷增强体预制件的制备方法及利用该预制件制备轻金属基复合材料的方法
CN103771893B (zh) * 2013-08-19 2015-05-27 深圳市商德先进陶瓷有限公司 一种氧化锆复合陶瓷及其制备方法
CN103922727B (zh) * 2014-04-21 2016-09-21 北京中联盛世科技开发有限公司 掺杂ZrO2纳米线的CaTiO3陶瓷电极材料及其制备方法与应用
CN107282005A (zh) * 2017-08-09 2017-10-24 苏州汉力新材料有限公司 一种改性碳纤维‑氧化锆复合材料及其制备方法
KR20210142601A (ko) * 2019-03-27 2021-11-25 니폰 제온 가부시키가이샤 섬유상 탄소 나노 구조체, 섬유상 탄소 나노 구조체의 제조 방법, 및 표면 개질 섬유상 탄소 나노 구조체의 제조 방법
CN111792933B (zh) * 2020-07-30 2022-05-03 安徽同和晶体新材料股份有限公司 一种碱法制备环保氧化锆晶体纤维的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433467B2 (ja) * 1993-04-22 2003-08-04 三菱化学株式会社 炭素繊維強化炭素複合材の製造方法
CN1931785A (zh) * 2006-09-06 2007-03-21 哈尔滨工业大学 短碳纤维增强BaAl2Si2O8复合材料及其制备方法
CN101659563A (zh) * 2009-09-22 2010-03-03 西北工业大学 一种由炭晶须和炭纤维双增强的炭/炭复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624094B1 (ko) * 2004-05-28 2006-09-19 주식회사 데크 탄소섬유 강화 세라믹 복합체 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433467B2 (ja) * 1993-04-22 2003-08-04 三菱化学株式会社 炭素繊維強化炭素複合材の製造方法
CN1931785A (zh) * 2006-09-06 2007-03-21 哈尔滨工业大学 短碳纤维增强BaAl2Si2O8复合材料及其制备方法
CN101659563A (zh) * 2009-09-22 2010-03-03 西北工业大学 一种由炭晶须和炭纤维双增强的炭/炭复合材料的制备方法

Also Published As

Publication number Publication date
CN102584308A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102584308B (zh) 碳纤维/氧化锆纳米线混杂增强材料的制备方法
CN104810509B (zh) 四氧化三铁/石墨烯三维复合结构及其制备方法和应用
CN104988604B (zh) 一种碳化锆微纳米纤维的制备方法
CN102965764B (zh) 一种氧化铝陶瓷连续纤维的制备方法
CN102923770B (zh) 一种钇稳定纳米二氧化锆粉体的制备方法
CN104529500B (zh) 一种Cf/C-MC超高温陶瓷基复合材料及其制备方法
CN109206146A (zh) 碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法
CN101172882A (zh) 一种高强度抗震隔热多孔陶瓷的制备方法
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
CN102198510B (zh) 一种液相法制备纳米铜/碳纳米管复合粉体的方法
CN106319934A (zh) 碳化硅纳米线原位增强的碳化硅纤维材料及其制备方法
CN107266077A (zh) 一种超细碳化锆陶瓷纤维及其制备方法
CN104415399A (zh) 一种羟基磷灰石/石墨烯纳米复合粉末制备方法及其产品
CN101368301B (zh) 一种碳纳米管掺杂氧化铝前驱纺丝溶胶的制备方法
CN102126752A (zh) 一种制备四方相氧化锆纳米棒的方法
CN113846482A (zh) 一种碳纤维/稀土氧化物纳米线混合增强体的制备方法及其所得材料和应用
CN102230223B (zh) 一种直接利用氧化镁制备钛酸钾镁的方法
CN108539181A (zh) 一种锂离子负极复合材料及其制备方法
CN108178648A (zh) 三维碳纤维增强氧化铝-氧化锆复合材料及其制备方法
CN109422539A (zh) 一种氧化铝-氧化石墨烯复合陶瓷的制备方法
CN107473737B (zh) 用于固体氧化物燃料电池的复合氧化锆粉及其制备方法
Corradi et al. Role of praseodymium on zirconia phases stabilization
CN103664218B (zh) 一种高韧高强远红外陶瓷及其制备方法
CN106558720A (zh) 钪锆氧化物复合体、电解质材料及固体氧化物燃料电池
CN114890467B (zh) 一种低结晶度钇稳定立方相氧化锆粉体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221102

Address after: No. 25, Yangbei Road, Luoshe Town, Huishan District, Wuxi City, Jiangsu Province, 214154

Patentee after: Wuxi Bozhi Composite Materials Co.,Ltd.

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University

TR01 Transfer of patent right