CN102544542B - 具低穿透率的有机无机混成的复合质子交换膜 - Google Patents

具低穿透率的有机无机混成的复合质子交换膜 Download PDF

Info

Publication number
CN102544542B
CN102544542B CN201010623829.9A CN201010623829A CN102544542B CN 102544542 B CN102544542 B CN 102544542B CN 201010623829 A CN201010623829 A CN 201010623829A CN 102544542 B CN102544542 B CN 102544542B
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
organic
sulfonated
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010623829.9A
Other languages
English (en)
Other versions
CN102544542A (zh
Inventor
蔡丽端
简宏仲
廖永宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN102544542A publication Critical patent/CN102544542A/zh
Application granted granted Critical
Publication of CN102544542B publication Critical patent/CN102544542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种具低穿透率的有机无机混成的复合质子交换膜,其为通过将修饰过的石墨烯与具质子传导性的高分子混掺使之形成而作为燃料组绝材料的复合质子交换膜。所述复合质子交换膜,包括0.001wt%~10wt%无机材料以及99.999wt%~90wt%有机材料。无机材料为具二维结构的石墨烯衍生物。有机材料包括具磺酸根的高分子材料。本发明将质子交换树脂中混掺具二维结构的石墨烯衍生物,能利用其明显的片状结构来阻绝甲醇穿透的问题。

Description

具低穿透率的有机无机混成的复合质子交换膜
技术领域
本发明涉及一种质子交换膜,尤其涉及一种具有低穿透率(permeability)的有机无机混成(organic-inorganic hybrid)的复合质子交换膜。
背景技术
燃料电池(Fuel Cell,FC)是一种利用化学能直接转换为电能的发电装置,与传统发电方式比较之下,燃料电池具有低污染、低噪音、高能量密度以及较高的能量转换效率等优点,是极具未来前瞻性的干净能源,可应用的范围包括携带式电子产品、家用发电系统、运输工具、军用设备、太空工业以及小型发电系统等各种领域。
各类燃料电池依其运作原理及操作环境之不同而有不同的应用市场,在可移动式能源上的应用主要是以氢气质子交换膜燃料电池(Proton ExchangeMembrane fuel Cell,PEMFC)及直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)为主,两者都属于使用质子交换膜进行质子传导机制之低温启动型燃料电池。
直接甲醇燃料电池的操作原理,为甲醇与水在阳极触媒层进行氧化反应,产生氢离子(H+)、二氧化碳(CO2)以及电子(e-),其中氢离子可以经由质子传导膜传递至阴极,而电子则经由外部电路传输至负载作功之后再传递至阴极,此时供给阴极端的氧气会与氢离子及电子于阴极触媒层进行还原反应并产生水。此类质子交换膜燃料电池的性能决定于触媒三相反应效率,牵涉电子传导、离子传导及燃料传输效率,在燃料电池设计中三者同等重要,任何一条传导路径遭到阻碍,燃料电池的性能即受到影响。其中主导离子传导速率者为质子交换膜。
然而,直接甲醇燃料电池的膜电极组(membrane electrode assembly,MEA)因为甲醇穿透(methanol crossover)现象,因而使其面临电池寿命短、发电效率衰退等问题。在现有燃料电池中,阳极结构存在着液态、胶态、固态、或气态的有机燃料(如甲醇等醇类、醛类、或酸类)穿透的问题,如部份燃料与水经过阳极未与触媒产生反应,而直接穿越质子交换膜到达阴极,导致阴极催化反应能力降低。此外,燃料在阴极触媒进行氧化反应,与其周围氧气的还原反应共同形成混合电位(mixed potential)现象,使得燃料电池输出电压下降。这不但使燃料电池的输出功率降低,也使得燃料使用效率降低。此外,穿透的燃料也会导致质子交换膜与阴极的电极粘着剂膨润而加速阴极结构老化。
有鉴于甲醇穿透的问题是造成阴极触媒毒化而影响电池的耐久性(durability),与发生混合电位(mixed potential)使得输出功率下降的主要因素。因此亟需一种可以降低甲醇穿透的质子交换膜。此外如质子交换膜具有低膨润(swelling)的行为也将大幅降低因质子交换膜与电极粘着剂膨润所造成之剥离(peeling)脱落的情形。
发明内容
本发明提供一种有机无机混成的复合质子交换膜,可以降低甲醇穿透。
本发明提出一种有机无机混成的复合质子交换膜,包括0.001wt%~10wt%无机材料以及99.999wt%~90wt%有机材料。无机材料为具二维结构的石墨烯衍生物。有机材料包括具磺酸根的高分子材料。
在本发明的一实施例中,所述石墨烯衍生物是选自由氧化石墨烯、硫化石墨烯、氢氧化石墨烯、碳酸化石墨烯、氮化石墨烯与磺酸化石墨烯所组成的族群。
在本发明的一实施例中,所述有机材料包括磺酸化聚氟共聚高分子(PTFE-PFSA copolymer)或磺酸化碳氢型高分子。
在本发明的一实施例中,所述磺酸化碳氢型高分子包括磺化聚醚醚酮(sulfonated poly(ether ether ketone),s-PEEK)、磺化聚亚酰胺(sulfonatedpolyimides,s-PI)、磺化聚氧化二甲苯(sulfonated poly(phenylene oxide),s-PPO)、磺化聚芳醚砜(sulfonated poly(arylene ether sulfone),s-PES)、或磺化聚(4-苯氧基1,4苯基芐基酯)(sulfonated poly(4-phenoxybenzoyl-1,4-phenylene),s-PPBP)。
在本发明的一实施例中,所述石墨烯衍生物是氧化石墨烯时,其添加量例如0.001wt%~5wt%。
在本发明的一实施例中,所述石墨烯衍生物是硫化石墨烯时,其添加量例如0.001wt%~5wt%。
在本发明的一实施例中,所述石墨烯衍生物是磺酸化石墨烯时,其添加量例如0.001wt%~5wt%。
基于上述,本发明是将质子交换树脂中混掺具二维结构的石墨烯衍生物,所以能利用其明显的片状结构来阻绝甲醇穿透的问题。
附图说明
图1是实验四的质子交换膜对于时间以及甲醇浓度之间的关系图。
具体实施方式
本实施例所提出的质子交换膜,是由有机材料与无机材料混成的一种有机无机混成的复合质子交换膜,其中包括约0.001wt%~10wt%的二维结构的石墨烯衍生物作为无机材料、以及99.999wt%~90wt%的具磺酸根的高分子材料作为有机材料。本文中的石墨烯衍生物是选自由氧化石墨烯、硫化石墨烯、氢氧化石墨烯、碳酸化石墨烯、氮化石墨烯与磺酸化石墨烯所组成的族群。而有机材料例如磺酸化聚氟共聚高分子(PTFE-PFSA copolymer)或如s-PEEK、s-PPO、s-PI、s-PES或s-PPBP之类的磺酸化碳氢型高分子。
在本发明的一实施例中,上述有机无机混成的质子交换膜中的磺酸化石墨烯的含量为0.005wt%,有机材料的含量为99.995wt%。在另一实施例中,上述有机无机混成的质子交换膜中磺酸化石墨烯的含量为0.05wt%,有机材料的含量为99.95wt%。在又一实施例中,上述有机无机混成的质子交换膜中磺酸化石墨烯的含量为0.5wt%,有机材料的含量为99.5wt%。在又一实施例中,上述有机无机混成的质子交换膜中氧化石墨烯的含量为1wt%,有机材料的含量为99wt%。在又一实施例中,上述有机无机混成的质子交换膜中氧化石墨烯的含量为2wt%,有机材料的含量为98wt%在又一实施例中,上述有机无机混成的质子交换膜中氧化石墨烯的含量为5wt%,有机材料的含量为95wt%。
以下列举几个实验例来验证本发明的效果。
首先,在以下实验一至实验三中针对混掺不同石墨烯衍生物的质子交换膜之甲醇穿透率进行量测。
实验一
氧化石墨的合成:
氧化石墨的合成方式是将石墨放置在浓硫酸下利用过锰酸钾(KMnO4)与硝酸钠(NaNO3)来进行氧化。此氧化反应是将10克石墨分散在250毫升的浓硫酸当中接着再将5克的硝酸钠(NaNO3)缓慢的加入溶液当中,随后通过冰浴将该液体冷却至0℃左右,随后在5个小时内缓慢的加入30克的过锰酸钾(KMnO4),当添加完毕,移除冰浴,使该溶液回到室温再进行5个小时的反应。反应后将该溶液再度放置于冰浴中并通过加入5%过氧化氢(H2O2)的水溶液来去除过量过锰酸钾(KMnO4)的活性,随后将该溶液过滤而得到氧化石墨并利用盐酸水溶液与纯水多次清洗至中性,而所得氧化石墨的固体将其放置于真空下干燥。
实验二
氧化石墨烯(exfoliated graphite oxide):
将100毫克的氧化石墨分散在100毫升的纯水中并且将该溶液通过数小时的超音波震荡,震荡到整体溶液澄清为止,即可得到氧化石墨烯(graphene oxide,简称GO)的分散溶液。
实验三
磺酸化氧化石墨烯:
将1克干燥的氧化石墨烯粉末放置于30毫升的发烟硫酸中,将该溶液搅拌混合并维持在50℃下反应3天,反应结束后,将该溶液冷却过滤并用纯水洗涤,洗至该粉末呈中性,该粉末使用前仍需通过一小时的超音波震荡来将之分散于水中,即可得到磺酸化氧化石墨烯(简称GO-SO3H)的分散溶液。
实验四
利用烷基磺酸盐来修饰氧化石墨烯:
将50毫克的氧化石墨烯加入到0.06M的对氨基苯磺酸溶液并加热到70℃,在持续搅拌中缓慢逐滴的加入2毫升6x10-3M的亚硝酸钠(NaNO2)溶液,并在持续在70℃下反应12小时。反应结束后,将该溶液冷却过滤并用纯水洗涤,洗至该粉末呈中性,即可得到苯磺酸化氧化石墨烯(简称GO-Ph-SO3H)的分散溶液。
实验五
将95wt%(以固态的重量计)的NAF(由杜邦公司制造的DE2020CS商品)分散而二甲基乙胺(DMAc)中,再将5wt%(以固态的重量计)的氧化石墨烯分散于溶液中,以形成一浆料(ink),通过超音波震荡与搅拌,经过12小时熟化之后,将所得的浆料涂布在玻璃基材上并将溶剂挥发,随后取下即可得到一质子交换膜。
实验六、七
以相同于实验五的方法制膜,但氧化石墨烯的含量分别改变为2wt%,1wt%。
实验八~十
以相同于实验五的方法制膜,但所添加的无机物改为苯磺酸化氧化石墨烯而其含量分别改变为0.5wt%、0.05wt%以及0.5wt%。
实验十一、十二
以相同于实验五的方法制膜,但将NAF(由杜邦公司制造的DE2020CS商品)改成磺化聚醚醚酮(sulfonated poly(ether ether ketone),并将添加的无机物改为苯磺酸化氧化石墨烯而其含量为0.05wt%
甲醇穿透率的量测方式
甲醇穿透率的测量方式是利用两对称的玻璃连通管状槽体,而两连通管体接缝处夹有质子交换膜(一端装有纯水而另一端装有20%的甲醇水溶液),在恒温25℃之下随着实验的进行,甲醇将会由甲醇水溶液的槽体经由质子交换膜穿透到装有纯水的槽体,通过时间与纯水槽体内的甲醇浓度变化,公式P=[CB(t)TVB]/[(t-t0)ACA]利用进而求得该质子交换膜的甲醇穿透率。而P即为甲醇穿透率,而CA与CB则分别为甲醇水溶液槽体内的甲醇浓度与纯水槽体内的甲醇浓度,T为质子交换膜的厚度,而A为质子交换膜的测试面积。VB是纯水槽体的体积,t、t0是时间。
表一
Figure GDA0000402402470000051
其中,
Figure GDA0000402402470000061
是杜邦质子交换膜,商品名称Nafion,型号是N-117。
从表一可知,实验五到十的例子中可以归纳出有混掺有氧化石墨烯或苯磺酸化氧化石墨烯的质子交换膜能有效阻绝甲醇穿透的问题,尤其是仅需少量(约0.01%以上)即有明显的效果。
在图1所表示的是针对各种添加量的复合质子交换膜做甲醇(MeOH)穿透率的实验数据,由图1可以得知当有添加适量的无机材料进入质子交换膜里,在较薄的厚度即可得到与N-117相当的甲醇穿透率。
在以下表二中则是针对有无混掺氧化氧化石墨烯及其衍生物的质子交换膜(实验五~实验十)在对两种不同浓度的甲醇水溶液中的膨胀比(swelling ratio)。本组实验的做法上是将不同的复合质子交换膜剪裁成5公分平方的面积后再将之放于不同浓度、摄氏四十度的甲醇水溶液浸泡一小时后,随后取出测量其面积即可得到面积上的膨润百分比。
实验结果显示于表二。
表二
Figure GDA0000402402470000062
从表二可知,实验五到实验十中有混掺氧化石墨烯及其衍生物的质子交换膜无论在较低浓度(20vol%)或较高浓度(50vol%)的甲醇溶液中,都能大幅降低膨胀比,因此可借以减少电池的结构变形。
在以下表三则针对有无混掺氧化石墨烯的质子交换膜在吸水率以及甲醇吸取率上的观察。而这系列相关实验方式为:将不同的复合质子交换膜置于不同浓度摄氏四十度的甲醇水溶液,经过一小时的平衡,随随后将之取出秤量出所谓的湿重,随后再将之加热彻底除干可得干重,当湿重减干重即可得该质子交换膜的溶液含量,将溶液含量除以湿膜重即可得得到溶液吸取率。
表三
Figure GDA0000402402470000071
从表三可知,混掺氧化石墨烯及其衍生物的质子交换膜其仍维持一定的吸溶液的比水率较低,与该系列的质子交换膜的面积膨润率较低的现象有相互支持的结果。
在表四则针对有混掺氧化石墨烯及其衍生物的复合质子交换膜的导电度变化。由表中的数据可发现除了添加量大到5wt%时会导致质子导电度大幅下降以外,其余较低添加量则是在质子导电度上没有太大的差异。
表四
Figure GDA0000402402470000072
从表四可知,混掺氧化石墨烯及其衍生物的复合质子交换膜在低无机物添加量时(小于2wt%)仍维持一定的导电率。
表五
质子交换膜材料 甲醇穿透率(10-8cm2s-1)
s-PEEK 1.0
s-PEEK+0.05%GO-Ph-SO3H 0.5
从表五可知,混掺磺化石墨烯于磺化聚醚醚酮的质子交换膜能有效阻绝甲醇穿透的问题,仅需少量磺化石墨烯(约0.05wt%)即有明显的效果。
从实验结果证实,本发明实施例的复合质子交换膜在降低甲醇穿透率,减少膨润,有显著的改进。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (3)

1.一种有机无机混成的复合质子交换膜,其特征在于,包括:
0.001wt%~0.5wt%无机材料,该无机材料为具二维结构的石墨烯衍生物,该石墨烯衍生物选自磺酸化石墨烯,该磺酸化石墨烯选自磺酸化氧化石墨烯;以及
99.999wt%~99.5wt%有机材料,该有机材料包括具磺酸根的高分子材料。
2.根据权利要求1所述的有机无机混成的复合质子交换膜,其特征在于,该有机材料包括磺酸化聚氟共聚高分子或磺酸化碳氢型高分子。
3.根据权利要求2所述的有机无机混成的复合质子交换膜,其特征在于,该磺酸化碳氢型高分子包括磺化聚醚醚酮、磺化聚亚酰胺、磺化聚氧化二甲苯、磺化聚芳醚砜或磺化聚(4-苯氧基1,4苯基芐基酯)。
CN201010623829.9A 2010-12-30 2010-12-31 具低穿透率的有机无机混成的复合质子交换膜 Active CN102544542B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099146926 2010-12-30
TW099146926A TWI525881B (zh) 2010-12-30 2010-12-30 具低穿透率之有機無機混成之複合質子交換膜

Publications (2)

Publication Number Publication Date
CN102544542A CN102544542A (zh) 2012-07-04
CN102544542B true CN102544542B (zh) 2014-04-23

Family

ID=46350917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010623829.9A Active CN102544542B (zh) 2010-12-30 2010-12-31 具低穿透率的有机无机混成的复合质子交换膜

Country Status (3)

Country Link
US (1) US8552075B2 (zh)
CN (1) CN102544542B (zh)
TW (1) TWI525881B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527043B2 (en) 2012-05-17 2016-12-27 Samsung Electronics Co., Ltd. Gas separation membrane and method of preparing the same
KR101920716B1 (ko) * 2012-05-17 2019-02-13 삼성전자주식회사 기체 분리막 및 그 제조방법
TWI577078B (zh) 2012-06-29 2017-04-01 財團法人工業技術研究院 雙層複合質子交換膜及膜電極組
GB201212229D0 (en) * 2012-07-10 2012-08-22 Johnson Matthey Plc Ion-conducting membrance
CN102827386B (zh) * 2012-08-21 2015-02-04 江苏大学 一种聚醚醚酮/氧化石墨烯纳米复合薄膜的制备方法
JP2014107026A (ja) * 2012-11-22 2014-06-09 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体
CN103012824B (zh) * 2012-12-27 2015-03-04 复旦大学 氧化石墨烯-聚合物杂化质子交换膜及其制备方法
US10221289B2 (en) 2013-04-12 2019-03-05 Bl Technologies, Inc. Ion exchange membranes containing inorganic particles
WO2014168628A1 (en) 2013-04-12 2014-10-16 General Electric Company Ion exchange membranes containing inorganic particles
CN103219533B (zh) * 2013-04-12 2015-09-30 清华大学深圳研究生院 一种液流电池用石墨烯复合离子交换膜及其制备方法
CN103367773B (zh) * 2013-06-24 2016-04-27 天津大学 一种阻醇质子导电复合膜及其制备方法
CN103337649B (zh) * 2013-06-27 2016-08-10 暨南大学 一种改性石墨烯/磺化聚苯醚质子交换膜及其制备方法
CN104464888B (zh) * 2013-09-25 2017-01-11 宸鸿光电科技股份有限公司 磺化高分子/石墨烯纳米复合材料及其制备方法和应用
CN106876154B (zh) * 2013-12-02 2018-10-09 天津大学 聚苯胺—磺化石墨烯复合电极材料的制备方法
CN106847542B (zh) * 2013-12-02 2018-08-28 天津大学 具有优异倍率性能复合电极材料的制备方法
CN104332576B (zh) * 2014-11-03 2016-10-12 刘奇 一种电池用非对称性speek/pp/fcb复合隔膜的制备方法
CN104927225B (zh) * 2015-05-06 2017-08-11 苏州高通新材料科技有限公司 基于磺化石墨烯的耐高温质子交换膜及其制备方法
CN104953072A (zh) * 2015-07-24 2015-09-30 中南大学 一种锂离子电池隔膜的制备方法
GB201513288D0 (en) 2015-07-28 2015-09-09 Univ Manchester Graphene membrane
CN106887628A (zh) * 2017-01-13 2017-06-23 杭州聚力氢能科技有限公司 聚酰胺/磺化聚醚醚酮复合质子交换膜
CN108134118A (zh) * 2017-12-25 2018-06-08 宁波卡尔新材料科技有限公司 一种三唑石墨烯改性磺化聚苯醚质子膜的制备方法与配套成膜工艺
KR20190124960A (ko) 2018-04-27 2019-11-06 한국과학기술연구원 나노홀 그래핀 시트가 코팅된 연료전지용 복합 고분자 전해질막 및 그 제조 방법
KR102271430B1 (ko) 2018-04-27 2021-07-01 한국과학기술연구원 나노홀 그래핀 시트가 코팅된 연료전지용 복합 고분자 전해질막 및 그 제조 방법
AU2019263389B2 (en) * 2018-05-02 2022-05-19 Nitto Denko Corporation Selectively permeable graphene oxide element
GB201900646D0 (en) * 2019-01-17 2019-03-06 Johnson Matthey Fuel Cells Ltd Membrane
CN109867762B (zh) * 2019-01-23 2020-07-28 西安交通大学 一种具有含氮微孔结构的中高温质子传导材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561525A (zh) * 2001-10-11 2005-01-05 索尼株式会社 质子导体及其制备方法以及电化学装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993503A (en) * 1976-01-30 1976-11-23 Ford Motor Company Secondary battery or cell with composite electrode
KR100407793B1 (ko) 2001-09-04 2003-12-01 한국과학기술연구원 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그제조방법 및 이를 포함하는 연료전지
JP4038685B2 (ja) 2003-12-08 2008-01-30 独立行政法人科学技術振興機構 アクチュエータ素子
KR100696521B1 (ko) 2005-05-25 2007-03-19 삼성에스디아이 주식회사 수소 이온 전도성 무기물, 이를 포함한 고분자 나노 복합막및 이를 채용한 연료 전지
US7629285B2 (en) 2006-10-31 2009-12-08 University Of South Carolina Carbon-based composite electrocatalysts for low temperature fuel cells
US8758957B2 (en) 2008-07-29 2014-06-24 GM Global Technology Operations LLC Graphene coated SS bipolar plates
CN101531765B (zh) 2009-04-10 2011-03-30 天津大学 一种磺化聚合物膜的制备方法
KR101779771B1 (ko) * 2009-06-15 2017-09-19 알케마 인코포레이티드 나노입자-함유, 고분자 전해질 블렌드의 유/무기 복합 블렌드 막 조성물
WO2012061607A2 (en) * 2010-11-03 2012-05-10 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
KR101292151B1 (ko) * 2010-12-29 2013-08-09 한국과학기술연구원 그라핀-산화철 복합체 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561525A (zh) * 2001-10-11 2005-01-05 索尼株式会社 质子导体及其制备方法以及电化学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
麻琪.氧化石墨烯纳米复合膜研究.《中国优秀硕士学位论文全文数据库(工程科技I辑)》.2009,(第8期), *

Also Published As

Publication number Publication date
TWI525881B (zh) 2016-03-11
US20120172461A1 (en) 2012-07-05
TW201228072A (en) 2012-07-01
CN102544542A (zh) 2012-07-04
US8552075B2 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
CN102544542B (zh) 具低穿透率的有机无机混成的复合质子交换膜
Bae et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells
CN102687328B (zh) 具有低降解性的复合质子传导膜以及包含其的燃料电池用膜电极组件
JP3897059B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
KR100717745B1 (ko) 연료전지용 바인더, 이를 이용한 촉매층 형성용 조성물, 및 이를 이용한 연료전지용 막-전극 어셈블리와 이의 제조방법
Devrim et al. Composite membrane by incorporating sulfonated graphene oxide in polybenzimidazole for high temperature proton exchange membrane fuel cells
US8313873B2 (en) Polymer membrane for a fuel cell, a method of preparing the same, and a membrane-electrode assembly fuel cell system comprising the same
Jamil et al. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells
JP2006506472A (ja) スルホン化コポリマー
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
KR20180005854A (ko) 무 가습 연료전지 촉매 및 제조방법
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP5062722B2 (ja) 無水・高温下に作動可能なプロトン導電性燃料電池用膜、及びその製造方法
JP2007031718A5 (zh)
CN105514466B (zh) 一种负载多元催化剂的甲醇燃料电池质子交换膜的制备方法
KR100975357B1 (ko) 맞춤형 비불소계 촉매 바인더, 막-전극 어셈블리 및 이를포함하는 연료전지
KR20170127250A (ko) 전해질막 및 이를 포함하는 연료전지
CN102117920B (zh) 有机无机混成的质子交换膜
AU2002356654A1 (en) Fuel cell and membrane-electrode assembly thereof
Aliabadi et al. Nanocomposite proton exchange membranes based on sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) with enhanced performance for fuel cell applications
Zhou et al. Poly (vinyl alcohol) modified by KE reactive dyes as a novel proton‐exchange membrane for potential fuel‐cell applications
JP2003068327A (ja) 燃料電池用膜
WO2008041667A1 (fr) Membrane électrolytique pour une pile à combustible, ensemble membrane électrode et pile à combustible
CN101185191A (zh) 含有离子导电共聚物和非离子聚合物的聚合物共混物
JP2009187799A (ja) 膜電極複合体および燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant