CN102498451B - 处理器的静态保留模式 - Google Patents

处理器的静态保留模式 Download PDF

Info

Publication number
CN102498451B
CN102498451B CN201080026181.5A CN201080026181A CN102498451B CN 102498451 B CN102498451 B CN 102498451B CN 201080026181 A CN201080026181 A CN 201080026181A CN 102498451 B CN102498451 B CN 102498451B
Authority
CN
China
Prior art keywords
power
clock
low
processor
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080026181.5A
Other languages
English (en)
Other versions
CN102498451A (zh
Inventor
M·拉齐瓦尼
D·勃贝索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amazon Technologies Inc
Original Assignee
Amazon Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amazon Technologies Inc filed Critical Amazon Technologies Inc
Publication of CN102498451A publication Critical patent/CN102498451A/zh
Application granted granted Critical
Publication of CN102498451B publication Critical patent/CN102498451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3237Power saving characterised by the action undertaken by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3278Power saving in modem or I/O interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Power Sources (AREA)

Abstract

静态保留模式(QSRM)允许电子设备在空闲时的最小功率消耗和热散发,并同时不对用户产生不利的等待期或引起系统的不稳定性。一旦呼叫进入QSRM,处理可经冻结,时钟可经选通,开关稳压器可被置于低功率模式,SDRAM可被置于自刷新模式,缓存可经清洗,IRQ可经无效,以及系统等待中断以唤醒。在QSRM中,加电组件包括开关稳压器,经配置向处理器提供功率的所述开关稳压器保持在低功率模式,同时SDRAM处于自刷新模式。

Description

处理器的静态保留模式
背景技术
诸如电子书阅读器(“e-book阅读器”)、蜂窝电话、便携式媒体播放器、写字板计算机、上网本、个人数字助理的电子设备以及其他电子设备都依赖电源运行。
在这些电子设备中,多个组件在运行期间利用大量的电源,包括处理器和外围设备。这些外围设备包括外部存储接口(EMI)、通用串行总线(USB)控制器、串行外围接口(SPI)、内部集成电路(I2C)总线控制器、音频设备、图像处理单元(IPU)、输入设备、实时时钟、同步串行接口(SSI)、NOR闪存控制器、NAND闪存控制器(NFC)、智能直接存储访问控制器(SDMA)、多媒体卡(MMC)存储控制器,等等。在某些实施中,USB、NFC、IPU、SDMA和其他外围可借助EMI移动数据来往于SDRAM。这些外围设备可驻留在相同“芯片”上或压模为处理器、或位于另一晶片上,或其组合。
不能有效使用且在运行模式中闲置的处理器消耗大量的电源。该闲置浪费能源并增加电子设备散发的热量。减少功率消耗可以增加依靠电池运行地便携式设备的使用时间。减少功率消耗也可以减少电子设备散发的热量,允许电子设备以较冷的温度运行并因此增加装置的寿命并简化冷化设计。
已经提出各种方案用于通过将设备和外围的处理器置于“休眠”模式而减少便携式用户设备的功率消耗。常规地,进入休眠模式包括关闭未利用的部分和/或减少微处理器的时钟速度。
然而,这些技术只产生了一定程度的电源节约。而且,用于进入并退出眠模式的当前技术经常对于执行命令引入不希望的等待期以及引起一旦重新进入运行模式的系统不稳定性。
附图简述
参考相应附图提出详细描述。在图中,附图标记最左边的数字表示附图标记首次出现的附图。不同附图中相同的附图标记表示类似或相同的项。
图1是处于静态保留模式(QSRM)的示例性计算机系统的示意图。
图2是表示从运行模式过渡到QSRM并返回运行模式的示例性整体处理以及表示这两种模式的相对功率消耗的流程图。
图3是进入QSRM的示例性处理的流程图。
图4是和开始于关闭状态的开关稳压器和开始于低功率状态的开关稳压器的可用电流相比,处理器在退出QSRM直到进入运行模式期间电源需求随着时间改变的图形。
发明详述
如上所述,电子设备利用低功率模式以减少功率消耗和热量散发。电子设备可以是电子书阅读器(“e-book阅读器”)、蜂窝电话、便携式媒体播放器、写字板计算机、上网本、个人数字助理、嵌入式设备,等等。
现有的低功率模式只在一定程度上减少了功率消耗,对于执行命令引入了不希望的等待期,并引起重新进入运行模式的系统不稳定性。
公开的处理和系统影响并改进电子设备的状态保留模式,使得设备进入称为“静态保留模式”(QSRM)的新的低功率模式。电子设备现在可进入该QSRM并极大地减少功率消耗,并同时保持可以快速可靠地重新开始稳定运行操作。
在一个实施方式中,QSRM可以由利用处理器的电子设备执行,该处理器具有离散选通时钟、提供等待中断指令并具有板上或外部电源管理集成电路(PMIC)的能力。选通是关闭电路的所选一个部分或多个部分的能力。PMIC可包括能在运行、低功率和关闭状态之间切换的线性稳压器和开关稳压器。例如,来自美国德克萨斯州Austin的FreescaleTM半导体公司的i.MX体系和Atlas PMIC MC13783是一个适合的处理器和PMIC系列。也可以使用其他的片上系统(SOC)。
处理器执行操作系统,诸如但不限于LinuxUNIXMicrosoftCorporation of Redmond,Washington′s Microsoft WindowsMicrosoftCorporation′s Windows MobileApple Corporation of Cupertino,California′sMac OSApple Corporation′s Mac OS X和Wind River Systems Inc.ofAlameda California′s Vx Works
例如,电子书阅读器或其他电子设备可以包含具有i.MX体系并执行Linux内核的FreescaleTM处理器。内核使用设备驱动以与诸如电源管理集成电路(PMIC)、串行外围接口(SPI)、外部存储器接口(EMI)、通用串行总线(USB)控制器、图像处理单元(IPU)、智能直接存储访问控制器(SDMA)、多媒体卡(MMC)存储控制器等的设备进行通信。这些外围设备可驻留在相同“芯片”上或压模为例如i.MX体系的处理器、或位于另一晶片上,或其组合。
在一个实施方式中,一旦由用户空间处理发起,处理器过渡到QSRM中。在成功进入QSRM后,继续使用电源的组件包括处于低功率等待模式的PMIC以及当存储器需要更新时处于自刷新模式的外部存储器,所述PMIC具有向保持为低功率模式的CPU供电的开关稳压器。在其他实施方式中,显示器和/或WWAN在QSRM期间也保持在有效或等待模式。QSRM也可以结合静态休眠模式(QDM)使用,如由相同发明人于2008年10月30日提交的申请号为12/261,980的待决申请中所述。
唤醒源可以触发重新开始常规操作。唤醒源可以包括电源按钮、充电器检测(诸如一旦外部电源附连由PMIC产生)、或产生中断的PMIC中的实时时钟。一旦从唤醒源接收中断,则处理器未选通或激活时钟、激活中断或否则恢复系统状态。输入/输出设备的设备驱动利用良好保存的状态将输入/输出设备带回之前已知的良好状态。处理器现在处于运行模式并准备执行触发中断的任务。当处理器返回到空闲时,设备可以再次进入QSRM。
处于静态保留模式的示例性环境
图1是处于QSRM的计算机系统100的示例性示意图。在一个实施例中,计算机系统102可以是电子书阅读器。然而,计算机系统100也可以用在蜂窝电话、便携式媒体播放器、上网本、个人数字助理等中。
诸如电池、电源、充电器、太阳能电池板等的电源102向计算机系统100提供功率。电源管理集成电路(PMIC)104使用来自电源102的电量提供合适地操作计算机系统100中其他设备特有的功率。PMIV 104耦合到微控制器110,该微控制器110在某些实施方式中可使用SPI或I2C实现。PMIC 104可以包括一个或多个开关稳压器106和/或线性稳压器108。开关稳压器106提供从高输入电压或低输入电压产生所需输出电压的能力。当输出电压超过输入电压时,就是“增压:boost”。当输出电压小于输入电压时,就是“减压:buck”。线性稳压器108提供降低输入电压的能力,即产生比输入电压更低的输出电压。考虑到他们的增压或减压、转换电压等的能力,开关稳压器106和线性稳压器108相比一般提供更高的功率转换性能和增加的开发灵活性。
在如下示例中示出由PMIC 104的电量发送:假设计算机系统具有1.5F伏的电池(当完全充电时),处理器需要1.65伏,以及另一设备需要1.1伏。PMIC 104可经配置以使用开关稳压器将从电池提供的1.5伏增压到处理器需要的1.65伏。线性稳压器可经配置以将1.5伏电池电压减压到其他设备需要的1.1伏。在另一示例中,来自3.8伏电池的输出可由开关稳压器减压以向处于运行模式的SDRAM提供1.8伏以及处于QSRM时提供1.7V。
微控制器110如所示在计算机系统100中。微控制器110包括中央处理单元(CPU)112、CPU时钟114、CPU寄存器116、门控时钟寄存器(CGR)118、包括主缓存和/或二级缓存的缓存存储器120、缓存时钟122和时钟控制模块(CCM)124。
同样在微控制器110中是输入/输出设备126,该输入/输出设备126包括如下组件:
·串行外围接口(SPI)总线128和相关SPI时钟130。
·外部存储接口(EMI)132和相关EMI时钟134,这两个组件可以可操作地耦合到如下所述的外部存储器144。
·通用串行总线(USB)控制器136和相关USB时钟138。
控制器136遵守任何USB标准,包括由USB实施论坛提出的USB1.0,1.1,2.0,3.0。USB136控制器可以经划分为耦合到WWAN无线电的USB主控制器和USB配件控制器。
·在微控制器110内,可以有具有相关时钟142的其他设备140。这些其他设备140可以包括IEEE 1394总线、摄像机、全球定位系统、BluetoothTM、音频、PC卡设备、MMC控制器、NFC、MMC存储器,等等。
EMI132可以耦合到外部存储器144,所述外部存储器144可包括静态随机访问存储器(SRAM)、虚静态随机访问存储器(PSRAM)、同步动态随机访问存储器(SDRAM)、双数据率SDRAM(DDR)、NAND闪存、磁阻随机访问存储器(MRAM)、忆阻器随机访问存储器(MemRAM)等。
在某些实施方式中,输入/输出设备126也可以经由EMI 132连接到外部存储器144。例如,USB控制器、音频设备、IPU、MMC存储控制器以及其他设备可以经由EMI 132连接到外部存储器144。
外部存储器144可存储包括内核148的操作系统146,所述内核148可操作地耦合到设备驱动150。QSRM指令可以驻留在内核148中。对PMIC104的QSRM指令可驻留在设备驱动150中。设备驱动150可操作地将输入/输出设备126耦合到内核148。
诸如内核148和设备驱动150之间的操作耦合如所示用于强调。图1所示的所有设备都是可操作地耦合,为了清楚示意省略了他们的各个箭头。
在QSRM期间,加电的组件152包括处于低功率模式的PMIC 104和处于自刷新模式的外部存储器144。在自刷新模式中,外部存储器可以在没有存储控制器或其他组件的外部输入情况下更新存储单元。在某些实施方式中,外部存储器可以是SDRAM、DDR,等等。
图2表示从运行模式过渡到QSRM并返回运行模式的过度的整体处理200以及表示这两种模式的相对功率消耗。处理200(以及下文图3的处理)经所示为逻辑流程图中的块的集合,其表示可以硬件、软件或其组合实施的操作系列。在软件情况下,块表示计算机可执行指令,当由一个或多个处理器执行时,计算机可执行指令执行记载的操作。除非另外指出,其中所述的操作顺序并不用于理解为限制,以及其他组合也可以实施处理。为了便于解释,参考图1的环境描述处理200(以及下文的处理300)。
在202,计算机系统100如所示以运行模式操作。在运行模式中,图形204表示计算机系统100具有最大功率利用率100%。在所示的电子书阅读器中,当诸如翻页的任务在微控制器上运行时,观察到大约200毫安(mA)的电流消耗。当打开或关闭广域网(WAN)模块时,峰值功率消耗可以增加到大约400mA,以及当访问在线商店时,设备可使用大约300-350mA。
一旦已翻页或使用WAN模块传送数据,计算机系统100等待用户采取操作,诸如完成阅读显示的该页并翻到下一页。在206,计算机系统100可以进入QSRM并同时等待用户输入或某些其他唤醒事件。可以响应于用户输入、响应于执行处理或响应于另一确定对进入QSRM初始化。下面在图3中更深度地解释进入QSRM。
当处于QSRM时,图形208表示示例性电子书阅读器的功率消耗大约为0.67mA,或是在运行模式202期间200mA功率消耗的大约0.3%。比较而言,如由相同发明人于2008年10月30日提交的申请号为12/261,980的待决申请中所述,静态休眠模式(QDM)将功率消耗减少到大约17.4mA。因此,QSRM相比于QDM仅消耗约3.8%的功率。QSRM可以结合QDM使用。例如,QDM包括在设备驱动和内核之间协调以使得功率消耗最小化以及动态增加计时器中断间隔。因此,计算机系统100可以在合适时在运行模式、QDM、QSRM之间过渡。
在210,接收唤醒中断,并在212,唤醒计算机系统100。唤醒212激活时钟和中断并将系统恢复到运行模式202。在示例的电子书阅读器中,从QSRM的唤醒事件一般相对较短(在200-300ms范围内),并不会引起其他的开销或等待期。通过提供稳定可靠的过渡来往于QSRM,以及保持PMIC上的所选功率稳压器处于低功率模式,实现快速的唤醒事件成为可能。使用该范围的唤醒时间,更高频率地将计算机系统置于QSRM中并保持合理用户响应成为可能。因此,显著的功率减少是可能的。
进入QSRM的示例性处理
图3是进入图1所示的QSRM的处理206的示例性流程图。在一个实施例中,为了实现唤醒逻辑期间的低等待期,当选通时钟时电路保持加电。
在302,冻结CPU上执行的处理和线程。该操作包括冻结所有的内核线程和用户空间处理。当用户处理的内核线程拒绝冻结时,冻结处理被异常中断以及内核重新开始运行。在一个实施例中,内核执行如下指令:
pm_suspend();
enter_state();
suspend_prepare();
∥See kernel/power/main.c
C样本代码1
在304,将输入/输出设备置于低功率模式。设备驱动将设备状态保存到外部存储器144中。一旦保存设备状态,设备被置于低功率模式或关闭,以及驱动设备的时钟被选通。在唤醒期间,设备驱动重新保存该保存良好的状态以及输入/输出设备操作重新开始。在一个实施例中,内核可以执行如下指令:
suspend_devices_and_enter()
∥See kernel/power/main.c
C样本代码2
在306,对唤醒源进行配置。这些唤醒源可以包括电源管理事件、网络接口、实时时钟或电源按钮。电源管理事件可以由PMIC 104产生并包括充电器的附连或取出,多余电源的可用性,等等。在一个实施例中,内核可以执行如下指令:
_raw_writel(~((1<<23)|(1<<16)|7),MXC_CCM_WIMR);
∥in function mxc_pm_lowpower()
∥See arch/arm/mach-mx3/mxc_pm.c                        C
样本代码3
在308,可以对在门控时钟寄存器(CGR)中定义的时钟进行选通。通过举例而非限制,在i.MX系列的处理器中CGR中可以出现的时钟包括:CGR0、CGR1、CGR2、MXC_CCM_CGR0、MXC_CCM_CGR1、MXC_CCM_CGR2,等等。
在310,关闭PMIC 104上不需要的线性稳压器。不需要的线性稳压器是向已选通的时钟或设备提供电量的线性稳压器。将剩余的线性稳压器置于低功率模式。
在312,将PMIC 104上的开关稳压器106置于低功率模式。如参考图4的下文详细所述,当从关闭状态重新激发时,开关稳压器不能足够快地提供功率。因此,使开关稳压器106保持在低功率模式允许唤醒时减少等待期并同时增加稳定性。在一个实施例中,例如当使用Atlas PMICMC13783时,内核可以执行如下的在函数mx31_pm_prepare()中的指令:
C样本代码4
开关稳压器可经配置为启动时的低功率。在一个实施方式中,再次例如当使用Atlas PMIC MC13783的示例,内核可以执行如下指令:
C样本代码5
在314,现在选通serial_pll和usb_pll时钟。在某些实施方式中,可以检查广域网(WAN)、局域网(LAN)、或利用USB与处理器进行通信的其他设备的状态。当任何WAN或其他USB连接设备的状态是“OFF”而非“ON”时,选通USB和相关时钟。在一个实施方式中,内核可执行如下指令:
C样本代码6
在316,准备PMIC 104进入低功率模式。例如,在MX31处理器中,VSTBY引脚连接到PMIC 104的VSTBY引脚。当时钟控制模块124经配置以对于等待中断(WFI)下拉VSTBY时,它下拉VSTBY引脚,并依次下拉PMIC 104的VSTBY引脚,使得PMIC进入低功率模式。在一个实施方式中,内核可执行如下指令:
C样本代码7
在318,SDRAM或需要更新的其他存储器144被置于自刷新模式,在该模式中,存储器对其自己更新而不需要外部输入。向存储器144提供功率的开关稳压器106可被置于低功率模式。在一个实施方式中,诸如其中SDRAM由开关稳压器SW2加电的MX31体系,内核可执行如下指令:
volt.sw2b=SW2B_1_7V;
pmic_power_switcher_set_stby(SW_SW2B,volt);
pmic_power_switcher_set_mode(SW_SW2B,LOW_POWER,1);
∥See function pmic_voltage_init()in arch/arm/mach-mx3/dvfs_v2.c
C样本代码8
在320,在时钟控制模块124中设置状态保留模式。在一个实施方式中,内核可以执行如下指令:
C示例样本9
在322,清洗主缓存和二级缓存。清洗缓存使得它们与外部存储器144同步并避免当重新开始运行模式时出现错误的数据。在一个实施方式中,内核可以执行如下指令:
flush_cache_all()
C样本代码10
在324,除了来自唤醒源的中断请求之外,无效所有的中断请求(IRQ)。例如,来自电源按钮或PMIC电源事件等的中断仍保持有效。在一个实施方式中,内核可执行如下指令:
C样本代码11
在326,无效CPU调整。CPU调整允许动态改变处理器频率,一般使得功率消耗最小化。例如,执行大量任务的CPU以最高处理器频率运行以使得吞吐量最大化。相反,当处理非常简单的任务时的相同CPU以较低处理器频率运行以使得功率消耗最小化。为了使得唤醒等待期最小化,处理器可经设置以最大可支持的运行频率重新开始操作。
在328,执行等待中断(WFI)指令。在一个实施方式中,内核可以执行如下指令:
C样本代码12
在330,选通主CPU时钟,以及PMIC完成到低功率模式的过渡。此时,计算机系统100中的加电组件包括处于低功率等待模式的PMIC 104和处于自刷新模式的外部存储器144。在该示例中,无效组件包括CPU 112、缓存存储器120、CPU时钟114、缓存时钟122、EMI 132,等等。
图4是和开始于关闭状态的开关稳压器和开始于低功率状态的开关稳压器的可用电流相比,处理器在退出QSRM直到进入运行模式期间电源需求随着时间改变的示例性图形400。沿着水平轴402示出逝去的时间,范围从时间零至时间“T”。垂直轴404表示功率,范围从零到“W”。使用实线的曲线406表示开始于QSRM的CPU 112的功率需求(如点408所示)和继续实现运行模式的CPU的功率需求(如点410所示)。
使用点线的曲线412表示已从关闭状态加电的开关稳压器的可用功率。如所示,该曲线低于CPU功率需求406。当这种情况发生时,CPU具有不足的运行功率,以及性能异常,导致系统不稳定。
使用虚线的曲线414表示从低功率状态开始的开关稳压器的可用功率。如所示,该曲线在CPU功率需求406之上,表示该开关稳压器可以提供足够的功率用于CPU的可靠稳定地操作。
因此,使得向CPU提供功率的开关稳压器保持在低功率状态导致更快更稳定地从QSRM恢复到运行模式。
条款1.一种将处理器置于静态保留模式(QSRM)的计算机实施方法,该方法包括:
在配置由可执行指令的一个或多个计算机系统的控制下:
冻结在所述处理器上执行的运行用户空间处理和内核线程;
将耦合到所述处理器的输入/输出设备置于延缓模式;
配置耦合到所述处理器的唤醒源以产生唤醒中断;
选通在所述处理器的门控时钟寄存器中定义的时钟;
将电源管理集成电路(PMIC)上的线性稳压器置于关闭状态,所述电源管理集成电路耦合到所述处理器;
将所述PMIC上的开关稳压器置于低功率状态;
准备所述PMIC进入低功率模式;
在时钟控制模块中设置处理器状态为保留模式,所述时钟控制模块耦合到所述处理器;
清洗耦合到所述处理器的缓存;
除了来自所述唤醒源的中断,无效对于所述处理器的中断请求;
无效所述处理器的处理器调整;
执行等待中断指令,所述等待中断指令经配置以从所述唤醒源接收所述唤醒中断;
选通所述处理器的主时钟;以及
将所述PMIC置于所述低功率模式。
条款2.如条款1的方法,进一步包括在将所述PMIC上的开关稳压器置于低功率状态之后选通串行外围接口时钟和通用串行总线时钟。
条款3.如条款1的方法,其中所述清洗包括清洗耦合到所述处理器的主缓存和耦合到所述处理器的二级缓存。
条款4.如条款1的方法,进一步包括在准备所述PMIC进入所述低功率模式之后将外部存储器置于自刷新模式。
条款5.如条款1的方法,其中将所述输入/输出设备置于所述延缓模式包括在存储器中保存输入/输出设备状态,将所述输入/输出设备置于低功率模式,并选通驱动所述输入/输出设备的时钟。
条款6.如条款1的方法,其中所述处理器包括能离散选通时钟的应用处理器。
条款7.如条款1的方法,其中所述唤醒源包括如下中的至少之一:PMIC事件、网络接口、实时时钟唤醒或电源按钮。
条款8.如条款1的方法,其中所述无效处理器调整包括将所述处理器设置为由所述处理器支持的最大运行频率。
条款9.如条款1的方法,进一步包括选通或关闭所述处理器外部的设备。
条款10.一种在便携式电子设备中用于减少功率消耗的系统,所述系统包括:
存储器;
耦合到所述存储器的处理器;
存储在所述存储器中并经配置以在所述处理器上执行的内核,所述内核经配置以在进入静态保留模式(QSRM)之后保持电源管理集成电路(PMIC)的开关稳压器处于低功率状态。
条款11.如条款10的系统,进一步包括耦合到所述处理器的外围设备以及其中所述内核经配置以通过执行如下操作进入所述QSRM:
将所述外围设备置于低功率状态;以及
配置所述外围设备中的唤醒源以产生唤醒中断。
条款12.如条款10的系统,其中所述内核进一步经配置以在进入所述QSRM之后保持存储器处于自刷新状态。
条款13.如条款10的系统,其中所述开关稳压器经配置以向所述处理器提供功率。
条款14.如条款10的系统,其中所述内核进一步经配置以执行等待中断(WFI)指令。
条款15.如条款10的系统,其中所述内核经配置以通过执行如下操作进入所述QSRM:
冻结在所述处理器上执行的运行的用户空间处理和内核线程;
配置唤醒源以产生唤醒中断;
选通在门控时钟寄存器中定义的时钟,所述门控时钟寄存器耦合到所述处理器;
将PMIC的线性稳压器置于关闭状态,所述线性稳压器经配置以向选通设备提供功率,所述选通设备耦合到所述处理器;
将PMIC的所述开关稳压器置于低功率状态,所述开关稳压器经配置以向所述处理器提供功率;
选通串行外围接口时钟或通用串行总线时钟或耦合到所述处理器的两者;
为时钟控制模块中的所述处理器设置状态保留模式,所述时钟控制模块耦合到所述处理器;
无效来自非唤醒源的中断产生;
无效所述处理器上的处理器调整;以及
选通所述处理器的主时钟。
条款16.如条款15的系统,其中所述内核进一步经配置以在无效处理器调整之后将所述PMIC置于低功率模式。
条款17.一种存储指令的一种或多种计算机可读存储介质,当由处理器执行所述指令时使得所述处理器执行如下操作,包括:
冻结在中央处理单元(CPU)上执行的运行处理和线程;
将输入设备或输出设备或输入及输出设备置于低功率或延缓状态;
配置唤醒源以产生唤醒中断;
选通在门控时钟寄存器中定义的时钟;
将线性稳压器置于关闭状态,所述线性稳压器经配置以向选通设备提供功率;
将开关稳压器置于低功率状态,所述开关稳压器经配置以向所述CPU提供功率;
选通串行外围接口时钟或通用串行总线时钟或两者;
为时钟控制模块中的所述CPU设置状态保留模式;
无效非唤醒源的中断;以及
无效CPU调整。
条款18.如条款17的计算机可读存储介质,其中将输入或输出或输入及输出设备置于低功率或延缓状态包括在存储器中保存设备状态,将所述设备置于低功率模式以及选通驱动所述设备的时钟。
条款19.如条款17的计算机可读存储介质,进一步包括在选通串行外围接口时钟或通用串行总线时钟或两者之后将电源管理集成电路(PMIC)置于低功率功率模式。
条款20.如条款17的计算机可读存储介质,其中无效处理器调整进一步包括配置所述CPU为由所述CPU支持的最大运行频率。
条款21.如条款17的计算机可读存储介质,进一步包括在设置时钟控制模块中的状态保留模式之后清洗CPU主缓存或二级缓存。
条款22.如条款17的计算机可读存储介质,进一步包括在无效CPU调整之后执行等待中断指令。
条款23.如条款17的计算机可读存储介质,进一步包括将存储器置于自刷新模式。
条款24.如条款17的计算机可读存储介质,其中所述唤醒源包括如下的至少之一:电源管理事件、网络接口、实时时钟或电源按钮。
虽然已经以结构特征和/或方法操作专用的语言描述了主题,但可以理解的是在随后的权利要求中定义的主题并不必然受限于所述的具体特征或操作。而是,具体特征和操作经公开作为实施权利要求的示例性形式。例如,方法操作不需要以本文所述的顺序或组合执行,而可以以一个或多个操作的任何组合执行。

Claims (14)

1.一种在便携式电子设备中用于减少功率消耗的系统,所述系统包括:
存储器;
耦合到所述存储器的处理器;
存储在所述存储器中并经配置以在所述处理器上执行的内核,所述内核经配置以在所述系统处于低功率模式时维持电源管理集成电路(PMIC)的开关稳压器处于低功率状态且所述PMIC的线性稳压器处于关闭状态,
所述开关稳压器经配置以向所述处理器提供功率,
其中,在所述低功率模式中,所述开关稳压器继续向无效的处理器供电,
其中所述内核经配置以通过执行如下操作进入所述低功率模式:
停止在所述处理器上执行的运行处理和线程;
保存所述处理和线程的状态至存储器;
将输入设备或输出设备或输入及输出设备置于低功率或延缓状态;
配置唤醒源以产生中断;
选通在门控时钟寄存器中定义的时钟;
将所述PMIC的线性稳压器置于关闭状态,所述线性稳压器经配置以向选通设备提供功率;
将所述PMIC的开关稳压器置于低功率状态,所述开关稳压器经配置以向所述处理器提供功率;
选通串行外围接口时钟或通用串行总线时钟或两者;
在时钟控制模块中为所述处理器设置状态保留模式;
无效来自非唤醒源的中断;以及
无效处理器调整。
2.如权利要求1的系统,进一步包括耦合到所述处理器的外围设备,并且其中所述内核进一步经配置以通过执行如下操作进入所述低功率模式:
将所述外围设备置于低功率状态;以及
配置所述外围设备中的唤醒源以产生唤醒中断。
3.如权利要求1的系统,其中所述内核进一步经配置以在进入所述低功率模式之后维持存储器处于自刷新状态。
4.如权利要求1的系统,其中所述内核进一步经配置以执行等待中断(WFI)指令。
5.如权利要求1的系统,其中所述内核进一步经配置以选通所述处理器的主时钟。
6.如权利要求1的系统,其中所述内核进一步经配置以在无效处理器调整之后将所述PMIC置于所述低功率状态。
7.一种使便携式电子设备进入低功率模式的方法,包括:
停止在中央处理单元(CPU)上执行的运行处理和线程;
保存所述处理和线程的状态至存储器;
将输入设备或输出设备或输入及输出设备置于低功率或延缓状态;
配置唤醒源以产生中断;
选通在门控时钟寄存器中定义的时钟;
将电源管理集成电路(PMIC)的线性稳压器置于关闭状态,所述线性稳压器经配置以向选通设备提供功率;
将所述PMIC的开关稳压器置于低功率状态,所述开关稳压器经配置以向所述CPU提供功率;
选通串行外围接口时钟或通用串行总线时钟或两者;
在时钟控制模块中为所述CPU设置状态保留模式;
无效来自非唤醒源的中断;以及
无效CPU调整,
其中,在所述低功率模式中,所述开关稳压器继续向无效的处理器供电。
8.如权利要求7的方法,其中将输入或输出或输入及输出设备置于低功率或延缓状态包括在所述存储器中保存设备状态,将所述设备置于低功率模式以及选通驱动所述设备的时钟。
9.如权利要求7的方法,进一步包括在选通串行外围接口时钟或通用串行总线时钟或两者之后将所述PMIC的所述开关稳压器置于低功率状态。
10.如权利要求7的方法,其中无效处理器调整进一步包括将所述CPU配置为由所述CPU支持的最大运行频率。
11.如权利要求7的方法,进一步包括在设置时钟控制模块中的状态保留模式之后清洗CPU主缓存或二级缓存。
12.如权利要求7的方法,进一步包括在无效CPU调整之后执行等待中断指令。
13.如权利要求7的方法,进一步包括将所述存储器置于自刷新模式。
14.如权利要求7的方法,其中所述唤醒源包括如下的至少之一:电源管理事件、网络接口、实时时钟或电源按钮。
CN201080026181.5A 2009-06-22 2010-06-18 处理器的静态保留模式 Active CN102498451B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/488,814 US8601302B2 (en) 2009-06-22 2009-06-22 Processor system in low power state retention mode with linear regulator off and switch regulator low in power management IC
US12/488,814 2009-06-22
PCT/US2010/039194 WO2010151494A1 (en) 2009-06-22 2010-06-18 Quiescent state retention mode for processor

Publications (2)

Publication Number Publication Date
CN102498451A CN102498451A (zh) 2012-06-13
CN102498451B true CN102498451B (zh) 2015-02-04

Family

ID=43355330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080026181.5A Active CN102498451B (zh) 2009-06-22 2010-06-18 处理器的静态保留模式

Country Status (7)

Country Link
US (1) US8601302B2 (zh)
EP (1) EP2446338B1 (zh)
JP (1) JP5632466B2 (zh)
KR (1) KR101668507B1 (zh)
CN (1) CN102498451B (zh)
CA (1) CA2763236C (zh)
WO (1) WO2010151494A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766919B1 (en) * 2010-03-02 2014-07-01 Manish Lachwani Fast awake from low power mode
US8615672B2 (en) 2010-06-30 2013-12-24 Via Technologies, Inc. Multicore processor power credit management to allow all processing cores to operate at elevated frequency
WO2012018733A2 (en) * 2010-08-03 2012-02-09 Spx Corporation Vehicle diagnostic, communication and signal delivery system
US8463970B2 (en) * 2011-01-04 2013-06-11 Qualcomm Incorporated Method and system for managing sleep states of interrupt controllers in a portable computing device
CN102692984B (zh) * 2011-03-24 2014-12-10 国基电子(上海)有限公司 电子装置
US20130042132A1 (en) * 2011-08-09 2013-02-14 Samsung Electronics Co., Ltd. Image forming appratus, microcontroller, and methods for controlling image forming apparatus and microcontroller
US9104420B2 (en) 2011-08-09 2015-08-11 Samsung Electronics Co., Ltd. Image forming apparatus, microcontroller, and methods for controlling image forming apparatus and microcontroller
WO2014032610A1 (zh) * 2012-09-03 2014-03-06 东南大学 一种面向cpu流水线的错误恢复电路
CN103631299B (zh) * 2013-05-21 2015-07-29 中国科学院电子学研究所 一种恒定压差、可变输出电压低压差线性稳压器
TWI507873B (zh) * 2013-07-29 2015-11-11 Hon Hai Prec Ind Co Ltd 電源適配器及電子裝置
JP2015064676A (ja) 2013-09-24 2015-04-09 株式会社東芝 情報処理装置、半導体装置、情報処理方法およびプログラム
US10234932B2 (en) * 2015-07-22 2019-03-19 Futurewei Technologies, Inc. Method and apparatus for a multiple-processor system
US9658671B2 (en) * 2015-09-28 2017-05-23 Qualcomm Incorporated Power-aware CPU power grid design
US10168760B2 (en) * 2015-12-01 2019-01-01 Intel Corporation Power management of user interfaces with coordinated ultra-low power states
CN107577189B (zh) * 2017-10-20 2023-12-19 中国电建集团成都勘测设计研究院有限公司 一种自动监测系统的精确定时唤醒方法
KR102003721B1 (ko) * 2018-01-10 2019-07-26 성균관대학교산학협력단 Gpu 커널 트랜잭션화 방법 및 컴퓨팅 장치
US10983840B2 (en) 2018-06-21 2021-04-20 International Business Machines Corporation Consolidating read-copy update types having different definitions of a quiescent state
US10916274B2 (en) 2019-04-19 2021-02-09 Samsung Electronics Co., Ltd. Power management integrated circuits and semiconductor memory modules including power management integrated circuits
TWI727509B (zh) * 2019-11-20 2021-05-11 瑞昱半導體股份有限公司 具有省電模式且能夠在省電模式盡量省電的通訊裝置
US11658571B2 (en) 2020-04-01 2023-05-23 Analog Devices International Unlimited Company Low power regulator circuit
CN113220105A (zh) * 2021-03-19 2021-08-06 珠海全志科技股份有限公司 基于Android的电子书及其阅读控制方法
CN114020139A (zh) * 2021-11-05 2022-02-08 珠海全志科技股份有限公司 Cpu功耗管理方法、计算机装置及计算机可读存储介质
CN114527861A (zh) * 2022-02-21 2022-05-24 山东岱微电子有限公司 一种指令处理方法、装置、设备及存储介质
CN115840499B (zh) * 2023-02-15 2023-05-26 天津智芯半导体科技有限公司 电源管理系统和芯片设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871576A (zh) * 2003-09-18 2006-11-29 纬尔肯入口股份有限公司 用于移动电子设备的辅助显示模块的用户界面

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245332A (ja) * 1991-01-30 1992-09-01 Hitachi Ltd データ処理装置
JPH0776894B2 (ja) 1991-02-25 1995-08-16 インターナショナル・ビジネス・マシーンズ・コーポレイション プロセッサ用クロック信号の制御方法及び情報処理システム
JPH0588775A (ja) * 1991-09-30 1993-04-09 Toshiba Corp クロツク切替え方式
GB2264794B (en) 1992-03-06 1995-09-20 Intel Corp Method and apparatus for automatic power management in a high integration floppy disk controller
JPH07143741A (ja) * 1993-11-15 1995-06-02 Hitachi Ltd スイッチング電源
JP3411396B2 (ja) * 1994-06-22 2003-05-26 シチズン時計株式会社 コンピュータシステム
JPH0944417A (ja) * 1995-07-21 1997-02-14 Internatl Business Mach Corp <Ibm> 情報処理システム及びその制御方法
US6571333B1 (en) * 1999-11-05 2003-05-27 Intel Corporation Initializing a memory controller by executing software in second memory to wakeup a system
JP2001256067A (ja) 2000-03-08 2001-09-21 Mitsubishi Electric Corp プロセッサ省電力制御方法、記憶媒体、およびプロセッサ省電力制御装置
US6715091B1 (en) 2000-04-10 2004-03-30 Intel Corporation System for rearranging plurality of memory storage elements in a computer process to different configuration upon entry into a low power mode of operation
US7032119B2 (en) 2000-09-27 2006-04-18 Amphus, Inc. Dynamic power and workload management for multi-server system
US7000130B2 (en) 2000-12-26 2006-02-14 Intel Corporation Method and apparatus for thermal throttling of clocks using localized measures of activity
JP4686065B2 (ja) 2001-07-05 2011-05-18 富士通セミコンダクター株式会社 クロック制御装置およびクロック制御方法
US6816977B2 (en) 2001-12-03 2004-11-09 Hewlett-Packard Development Company, L.P. Power reduction in computing devices using micro-sleep intervals
JP2005523510A (ja) * 2002-04-19 2005-08-04 インターナショナル・ビジネス・マシーンズ・コーポレーション マイクロプロセッサおよびその電力を管理する方法
JP4175096B2 (ja) 2002-11-22 2008-11-05 日本電気株式会社 クロック制御方式及び方法
US7051222B2 (en) 2002-12-31 2006-05-23 Intel Corporation Robust computer subsystem power management with or without explicit operating system support
US7500127B2 (en) * 2003-09-18 2009-03-03 Vulcan Portals Inc. Method and apparatus for operating an electronic device in a low power mode
US7042263B1 (en) 2003-12-18 2006-05-09 Nvidia Corporation Memory clock slowdown synthesis circuit
KR101136036B1 (ko) * 2003-12-24 2012-04-18 삼성전자주식회사 유휴 모드에서의 전력 소모가 감소된 프로세서 시스템 및그 방법
US7183825B2 (en) * 2004-04-06 2007-02-27 Freescale Semiconductor, Inc. State retention within a data processing system
US7401241B2 (en) * 2004-06-22 2008-07-15 Intel Corporation Controlling standby power of low power devices
US7302600B2 (en) 2004-06-30 2007-11-27 Marvell International Ltd. Power supply detection method, apparatus, and system
JP2006201948A (ja) * 2005-01-19 2006-08-03 Seiko Epson Corp 割込み信号受け付け装置および割込み信号受け付け方法
US7441131B2 (en) 2005-09-30 2008-10-21 Silicon Laboratories Inc. MCU with power saving mode
US7574613B2 (en) 2006-03-14 2009-08-11 Microsoft Corporation Scaling idle detection metric for power management on computing device
US7536570B2 (en) 2006-10-02 2009-05-19 Silicon Laboratories Inc. Microcontroller unit (MCU) with suspend mode
US7870407B2 (en) * 2007-05-18 2011-01-11 Advanced Micro Devices, Inc. Dynamic processor power management device and method thereof
CN101802749B (zh) * 2007-06-04 2012-10-03 Nxp股份有限公司 电源管理集成电路
US20080307240A1 (en) 2007-06-08 2008-12-11 Texas Instruments Incorporated Power management electronic circuits, systems, and methods and processes of manufacture
US8015428B2 (en) 2007-06-12 2011-09-06 Renesas Electronics Corporation Processing device and clock control method
JP4958723B2 (ja) * 2007-10-19 2012-06-20 株式会社リコー 仮想記憶制御装置、仮想記憶制御方法、仮想記憶制御プログラム及び記録媒体
US9088176B2 (en) * 2007-12-17 2015-07-21 Nvidia Corporation Power management efficiency using DC-DC and linear regulators in conjunction
US20090193230A1 (en) 2008-01-30 2009-07-30 Ralf Findeisen Computer system including a main processor and a bound security coprocessor
US20100060078A1 (en) * 2008-09-08 2010-03-11 Micrel, Incorporated Dual Input LDO Regulator With Controlled Transition Between Power Supplies
US8195887B2 (en) * 2009-01-21 2012-06-05 Globalfoundries Inc. Processor power management and method
US9405347B2 (en) 2009-02-26 2016-08-02 Microsoft Technology Licensing, Llc Power-saving operating system for virtual environment
US8412967B2 (en) 2009-07-28 2013-04-02 Stmicroelectronics S.R.L. Method of enhancing power saving in an integrated electronic system with distinctly powered islands of functional circuitries and related device architecture
US8635469B2 (en) 2009-12-22 2014-01-21 Intel Corporation Method and apparatus for I/O devices assisted platform power management
US8713338B2 (en) 2010-05-28 2014-04-29 Lsi Corporation Methods and apparatus for low power out-of-band communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1871576A (zh) * 2003-09-18 2006-11-29 纬尔肯入口股份有限公司 用于移动电子设备的辅助显示模块的用户界面

Also Published As

Publication number Publication date
CA2763236C (en) 2018-12-04
KR20120047859A (ko) 2012-05-14
US20100325457A1 (en) 2010-12-23
EP2446338B1 (en) 2017-08-09
US8601302B2 (en) 2013-12-03
WO2010151494A1 (en) 2010-12-29
CN102498451A (zh) 2012-06-13
KR101668507B1 (ko) 2016-10-21
CA2763236A1 (en) 2010-12-29
EP2446338A1 (en) 2012-05-02
JP5632466B2 (ja) 2014-11-26
EP2446338A4 (en) 2016-05-25
JP2012530973A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
CN102498451B (zh) 处理器的静态保留模式
US9471121B2 (en) Microprocessor based power management system architecture
US8826047B1 (en) Self governing power management architecture that allows independent management of devices based on clock signals and a plurality of control signals written to control registers
US7430673B2 (en) Power management system for computing platform
US9568983B1 (en) Power cut off mode for conserving power in electronic devices
CN111433709A (zh) 用于低功率和低占空比设备的分层功率管理单元
CN104024980A (zh) 连接的待机睡眠状态
US8402291B2 (en) Method, device, and system for guaranteed minimum processor power state dwell time
CN102566739A (zh) 多核处理器系统及其动态电源管理方法与控制装置
US20210405892A1 (en) Memory management to improve power performance
US11762450B2 (en) USB Type-C subsystem power management
CN104204988B (zh) 活动显示的处理器睡眠状态
TWI470410B (zh) 電子系統及其電源管理方法
CN114902158A (zh) 长空闲状态系统和方法
CN113253824B (zh) 一种基于risc-v内核的mcu系统、供电方法以及终端设备
US20220197364A1 (en) Power management for universal serial bus (usb) type-c port
US20220262427A1 (en) Memory power management method and apparatus
KR101896494B1 (ko) 컴퓨팅 디바이스들에서의 전력 관리
CN117581189A (zh) 降低远存储器中的存储器功率使用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant