CN102494741A - 一种静态进样正压漏孔校准装置及方法 - Google Patents

一种静态进样正压漏孔校准装置及方法 Download PDF

Info

Publication number
CN102494741A
CN102494741A CN 201110396697 CN201110396697A CN102494741A CN 102494741 A CN102494741 A CN 102494741A CN 201110396697 CN201110396697 CN 201110396697 CN 201110396697 A CN201110396697 A CN 201110396697A CN 102494741 A CN102494741 A CN 102494741A
Authority
CN
China
Prior art keywords
valve
helium
pump
molecular pump
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110396697
Other languages
English (en)
Other versions
CN102494741B (zh
Inventor
刘赐贤
张涤新
赵澜
冯焱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
510 Research Institute of 5th Academy of CASC
Original Assignee
510 Research Institute of 5th Academy of CASC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 510 Research Institute of 5th Academy of CASC filed Critical 510 Research Institute of 5th Academy of CASC
Priority to CN 201110396697 priority Critical patent/CN102494741B/zh
Publication of CN102494741A publication Critical patent/CN102494741A/zh
Application granted granted Critical
Publication of CN102494741B publication Critical patent/CN102494741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种静态进样正压漏孔校准装置及方法,属于测量领域。本发明所述装置及方法利用了非蒸散型吸气剂泵的抽气性能,将被校正压漏孔累积的氦气静态引入到校准室中,在四极质谱计上产生氦离子流信号;再配制已知量氦气同样的方法引入校准室,在四极质谱计上产生氦离子流信号,通过简单的计算可获得被校正压漏孔的漏率。该方法大大的缩短了正压漏孔累积需要的时间,同时提高了校准室中的氦气分压力值,提高了校准效率,延伸了校准下限,使得漏率值小于1×10-7Pa m3/s的正压漏孔能够准确校准。

Description

一种静态进样正压漏孔校准装置及方法
技术领域
本发明涉及一种静态进样正压漏孔校准装置及方法,特别是采用静态进样技术实现漏率值小于1×10-7Pa m3/s的正压漏孔准确校准的装置及方法,属于测量领域。
背景技术
正压标准漏孔(简称正压漏孔)的校准是真空计量领域的一个重要研究方向。我国真空计量一级站采用定量气体动态比较法校准正压漏孔,其校准范围为(1×10-7~1×10-4)Pa m3/s。在实际应用中,还需要用到一些的漏率值小于1×10-7Pa m3/s的正压漏孔,应用定量气体动态比较法不能准确的校准此类小漏率正压漏孔。
文献“张涤新.正压漏孔校准.真空与低温4(4),1998.”介绍了目前校准正压漏孔所采用的定量气体动态比较法。该方法是:正压漏孔流出的示漏气体在定容室进行累积,将定容室中的混合气体压力衰减,再通过动态进样的方法引入到质谱分析室中用四极质谱计测量示漏气体的离子流;然后用标准小体积配制定量示漏气体,与定容室中的一个大气压的空气混合后膨胀,以动态进样的方法引入质谱分析室,用四极质谱计测量示漏气体的离子流。通过比较两次测得的示漏气体离子流,可以计算出被校正压漏孔的漏率。这种方法的不足之处是当校准漏率为1×10-7Pa m3/s的正压漏孔时,所需要的累积时间过长(通常需要8小时的累积时间),导致校准效率低下,而且此时四极质谱计测量到的氦气分压力低,会引起较大的测量不确定度。
发明内容
本发明的目的是提供一种静态进样正压漏孔校准装置及方法,所述装置及方法避免了过长的累积时间和校准室氦气分压力过低而无法校准的问题,提高了校准效率,延伸了校准下限,使得漏率值小于1×10-7Pa m3/s的正压漏孔能够准确校准。
本发明的目的由以下技术方案实现:
一种静态进样正压漏孔校准装置,所述装置包括:被校正压漏孔、阀门一、电容薄膜规一、氦气瓶、阀门二、电容薄膜规二、阀门三、标准容积一、阀门四、阀门五、监测规、四极质谱计、校准室、阀门六、吸气剂泵、阀门七、分子泵抽气机组一、阀门八、标准容积二、分子泵抽气机组二、阀门九、氮气瓶、阀门十。
其中,被校正压漏孔通过阀门一和阀门五与校准室相连;氮气瓶通过阀门十和阀门一与被校正压漏孔相连,为被校正压漏孔的出口端提供一个大气压的干燥氮气;电容薄膜规一与阀门一和阀门十相连,用于测量被校正压漏孔出口端的压力;氦气瓶通过阀门二和阀门三与标准容积一相连;电容薄膜规二位于阀门二和阀门三之间,用于配制已知压力的定量氦气;标准容积一通过阀门四和阀门八与标准容积二相连,用于配制定量氦气和采集进样;标准容积二通过阀门九与分子泵抽气机组二相连,标准容积二用于压力衰减,分子泵抽气机组二用于对标准容积二和管道抽气;标准容积一通过阀门四和阀门五与校准室相连;监测规接在校准室上,用于校准室压力测量;四极质谱计与校准室相连,用于测量氦气离子流;吸气剂泵通过阀门六与校准室相连,用于抽除校准室中的非惰性气体;分子泵抽气机组一通过阀门七与校准室相连,用于将校准室抽至极限真空。
所述被校正压漏孔为自带气室的正压漏孔;阀门一、阀门三、阀门四、阀门五、阀门八和阀门十为金属球阀;电容薄膜规一量程为1000Torr;电容薄膜规二量程为10Torr;标准容积一为采样标准小体积,容积经称重法标定为10ml;监测规为监测用复合真空规;阀门六为超高真空金属角阀;吸气剂泵为非蒸散型吸气剂泵;阀门七为超高真空闸板阀;分子泵抽气机组一的主泵为磁悬浮涡轮分子泵,前级泵为干泵;标准容积二为静态膨胀用标准大体积,容积为10L;分子泵抽气机组二的主泵为涡轮分子泵,前级泵为机械泵;阀门九为高真空闸板阀;校准室容积为20L;
所述装置的校准方法步骤如下:
①将被校正压漏孔接入阀门一处,打开电容薄膜规一和电容薄膜规二,在电容薄膜规一和电容薄膜规二稳定12小时后开始校准工作;
②打开总电源,对分子泵抽气机组一和分子泵抽气机组二中的分子泵通冷却水;
③保持阀门二、阀门五和阀门十为关闭状态,打开其余各阀门,启动分子泵抽气机组二的机械泵和分子泵抽气机组一的干泵对系统抽真空,当真空度小于1Pa时,启动分子泵抽气机组一和分子泵抽气机组二中的分子泵,使得分子泵抽气机组一和分子泵抽气机组二都正常工作;
④被校正压漏孔、阀门一、阀门三、标准容积一、阀门四、阀门八、标准容积二和阀门九所在管路系统很快就能达到工作需要的真空度,即低于10-1Pa;真空度达到需要以后,依次关闭阀门一、阀门三、阀门四、阀门八和阀门九,等待后续操作;
⑤经过一段时间待校准室达到极限真空,即10-6Pa时,对吸气剂泵进行激活,激活2~4h后停止,关闭吸气剂泵,关闭阀门六,打开四极质谱计,记录此时氦离子流读数IHe,保持校准室的极限真空状态,等待后续操作;
⑥打开阀门十和阀门一,当电容薄膜规一显示为一个标准大气压时,依次关闭阀门一和阀门十,即在被校正压漏孔与阀门一之间的管道小体积v1中充入了一个大气压的干燥氮气;关闭阀门一后,被校正压漏孔流出的氦气在管道小体积v1中开始累积,开始计时,根据被校正压漏孔的漏率范围可以估算累积时间Δt,其中,管道小体积v1为10ml;
⑦在步骤⑥氦气在管道小体积v1中累积的同时,打开阀门八和阀门九,抽空管道和标准容积二,当真空度低于10-1Pa时,关闭阀门九,待步骤⑥管道小体积v1中氦气分压力达到要求后,打开阀门一和阀门四,管道小体积v1中混合气体静态膨胀至标准容积一和标准容积二中,压力平衡后关闭阀门一;
⑧关闭阀门四,打开阀门九,抽空管道和标准容积二,然后用干燥氮气冲洗管道,即关闭阀门九,打开阀门十,电容薄膜规一显示为一个大气压时,关闭阀门十,打开阀门九,当真空度低于10-1Pa时,关闭阀门九和阀门八,等待后续操作准备进样;
⑨关闭阀门七,使得分子泵机组一不再对校准室抽气,启动吸气剂泵,打开阀门六,准备进样;
⑩打开阀门四和阀门五,将标准容积一中的混合气体样品膨胀至校准室,吸气剂泵选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计显示氦离子流稳定后,读取校准室中氦离子流信号数值I;
Figure BDA0000115889900000041
读取校准室中氦离子流信号数值后,关闭阀门五,关闭吸气剂泵,打开阀门七把校准室抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六,维持并等待后续操作;同时打开阀门一、阀门八和阀门九,使用分子泵抽气机组二抽空各管道和标准容积一和标准容积二,真空度低于10-1Pa时,关闭阀门四和阀门八;
Figure BDA0000115889900000042
打开阀门十,当电容薄膜规一显示为一个标准大气压时,关闭阀门一,关闭阀门十;打开阀门八,真空度低于10-1Pa时,关闭阀门九,打开阀门一和阀门四,压力平衡后关闭阀门一;
Figure BDA0000115889900000043
关闭阀门四,打开阀门九,抽空管道和标准容积二,当真空度低于10-1Pa时,关闭阀门八和阀门九,等待后续操作准备进样;
Figure BDA0000115889900000044
关闭阀门七,使得分子泵抽气机组一不再对校准室抽气,启动吸气剂泵,打开阀门六,准备进样;
Figure BDA0000115889900000045
打开阀门四和阀门五,将标准容积一中的气体样品膨胀至校准室,吸气剂泵选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计显示氦离子流稳定后,读取系统氦本底离子流信号数值I0
读取系统氦本底离子流信号数值后,关闭阀门五,关闭吸气剂泵,打开阀门七把校准室抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六,维持并等待后续操作;同时打开阀门一、阀门八和阀门九,使用分子泵抽气机组二抽空各管道、标准容积一和标准容积二,真空度低于10-1Pa时,关闭阀门四和阀门八;
Figure BDA0000115889900000047
打开阀门二和阀门三,使用电容薄膜规二在标准体积一中配制已知压力Ps的纯氦气,关闭阀门二和阀门三;打开阀门十,当电容薄膜规一显示为一个标准大气压时,关闭阀门一,关闭阀门十,然后打开阀门八,真空度低于10-1Pa时,关闭阀门九,打开阀门一和阀门四,使得配制的氦气和氮气充分混合后,关闭阀门一和阀门四,打开阀门九,当真空度低于10-1Pa时,关闭阀门九和阀门八,等待后续操作准备进样;
Figure BDA0000115889900000048
关闭阀门七,使得分子泵机组一不再对校准室抽气,启动吸气剂泵,打开阀门六,准备进样;
Figure BDA0000115889900000049
打开阀门四和阀门五,将标准体积一中的混合气体样品膨胀至校准室,吸气剂泵选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计显示氦离子流稳定后,读取此时校准室中氦离子流信号Is
读取校准室中氦离子流信号后,关闭阀门五,关闭吸气剂泵,打开阀门七把校准室抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六,然后关闭四极质谱计,关闭监测规,关闭阀门七,依次关闭分子泵机组抽气机组一的分子泵和前级泵;
Figure BDA0000115889900000052
与此同时打开阀门一、阀门三、阀门八和阀门九,使用分子泵抽气机组二抽空各管道、标准容积一和标准容积二,真空度低于10-1Pa时关闭阀门九,打开阀门十,充入一个大气压干燥氮气后,关闭阀门一、阀门三、阀门四、阀门八和阀门十,依次关闭分子泵机组二的分子泵和前级泵,关闭循环水,关闭总电源;
Figure BDA0000115889900000053
根据测量数据,可以计算被校正压漏孔的漏率。
合理的选择标量氦气的压力Ps可使得两次氦离子流信号尽可能接近,减小四极质谱计的线性误差,降低校准结果的不确定度。
有益效果
(1)本发明所述的静态进样正压漏孔校准装置及方法,利用了非蒸散型吸气剂泵的抽气性能(即对惰性气体氦气无抽速,可有效抽除非惰性气体成分例如氮气等),校准室中氦气相当于处在静止状态,在不损失样品中氦气含量的情况下完成了氦气的静态进样;同时非蒸散型吸气剂泵还降低了校准室的压力,使得四极质谱计能够在线性范围之内安全地工作。
(2)本发明所述的静态进样正压漏孔校准装置及方法,由于非蒸散型吸气剂泵的使用,使得静态进样成为了可能,大大的缩短了正压漏孔累积需要的时间,同时提高了校准室中氦气分压力值,因而正压漏孔的校准准确度和校准效率都得到了提高。以校准漏率值为1×10-7Pa·m3/s的正压漏孔为例,定量气体动态比较法需要累积约8小时,校准室室中的氦气分压力约为10-7Pa量级;本发明静态进样正压漏孔校准方法仅需要半小时的累积时间,校准室中的氦气分压为10-5Pa量级。
(3)本发明所述的静态进样正压漏孔校准装置及方法,可以有效的延伸正压漏孔的校准下限,理论上可以准确校准漏率值为1×10-8Pa·m3/s的正压漏孔。
附图说明
图1是本发明的一种静态进样正压漏孔校准装置的示意图;
其中,1-被校正压漏孔、2-阀门一、3-电容薄膜规一、4-氦气瓶、5-阀门二、6-电容薄膜规二、7-阀门三、8-标准容积一、9-阀门四、10-阀门五、11-监测规、12-四极质谱计、13-校准室、14-阀门六、15-吸气剂泵、16-阀门七、17-分子泵抽气机组一、18-阀门八、19-标准容积二、20-分子泵抽气机组二、21-阀门九、22-氮气瓶、23-阀门十。
具体实施方式
下面结合附图和具体实施例来详述本发明,但不限于此。
实施例1
如图1所示,一种静态进样正压漏孔校准装置,所述装置包括:被校正压漏孔1、阀门一2、电容薄膜规一3、氦气瓶4、阀门二5、电容薄膜规二6、阀门三7、标准容积一8、阀门四9、阀门五10、监测规11、四极质谱计12、校准室13、阀门六14、吸气剂泵15、阀门七16、分子泵抽气机组一17、阀门八18、标准容积二19、分子泵抽气机组二20、阀门九21、氮气瓶22、阀门十23。
其中,被校正压漏孔1通过阀门一2和阀门五10与校准室13相连;氮气瓶22通过阀门十23和阀门一2与被校正压漏孔1相连,为被校正压漏孔1的出口端提供一个大气压的干燥氮气;电容薄膜规一3与阀门一2和阀门十23相连,用于测量被校正压漏孔1出口端的压力;氦气瓶4通过阀门二5和阀门三7与标准容积一8相连;电容薄膜规二6位于阀门二5和阀门三7之间,用于配制已知压力的定量氦气;标准容积一8通过阀门四9和阀门八18与标准容积二19相连,用于配制定量氦气和采集进样;标准容积二19通过阀门九21与分子泵抽气机组二20相连,标准容积二19用于压力衰减,分子泵抽气机组二20用于对标准容积二19和管道抽气;标准容积一8通过阀门四9和阀门五10与校准室13相连;监测规11接在校准室13上,用于校准室13压力测量;四极质谱计12与校准室13相连,用于测量氦气离子流;吸气剂泵15通过阀门六14与校准室13相连,用于抽除校准室13中的非惰性气体;分子泵抽气机组一17通过阀门七16与校准室13相连,用于将校准室13抽至极限真空。
所述被校正压漏孔1为自带气室的正压漏孔;阀门一2、阀门三7、阀门四9、阀门五10、阀门八18和阀门十23为金属球阀;电容薄膜规一3量程为1000Torr;电容薄膜规二6量程为10Torr;标准容积一8为采样标准小体积,容积经称重法标定为10ml;监测规11为监测用复合真空规;阀门六14为超高真空金属角阀;吸气剂泵15为非蒸散型吸气剂泵15;阀门七16为超高真空闸板阀;分子泵抽气机组一17的主泵为磁悬浮涡轮分子泵,前级泵为干泵;标准容积二19为静态膨胀用标准大体积,容积为10L;分子泵抽气机组二20的主泵为涡轮分子泵,前级泵为机械泵;阀门九21为高真空闸板阀;校准室13容积为20L;
所述装置的校准方法步骤如下:
①将被校正压漏孔1接入阀门一2处,打开电容薄膜规一3和电容薄膜规二6,在电容薄膜规一3和电容薄膜规二6稳定12小时后开始校准工作;
②打开总电源,对分子泵抽气机组一17和分子泵抽气机组二20中的分子泵通冷却水;
③保持阀门二5、阀门五10和阀门十23为关闭状态,打开其余各阀门,启动分子泵抽气机组二20的机械泵和分子泵抽气机组一17的干泵对系统抽真空,当真空度小于1Pa时,启动分子泵抽气机组一17和分子泵抽气机组二20中的分子泵,使得分子泵抽气机组一17和分子泵抽气机组二20都正常工作;
④被校正压漏孔1、阀门一2、阀门三7、标准容积一8、阀门四9、阀门八18、标准容积二19和阀门九21所在管路系统很快就能达到工作需要的真空度,即低于10-1Pa;真空度达到需要以后,依次关闭阀门一2、阀门三7、阀门四9、阀门八18和阀门九21,等待后续操作;
⑤经过一段时间待校准室13达到极限真空,即10-6Pa时,对吸气剂泵15进行激活,激活2~4h后停止,关闭吸气剂泵15,关闭阀门六14,打开四极质谱计12,记录此时氦离子流读数IHe,保持校准室13的极限真空状态,等待后续操作;
⑥打开阀门十23和阀门一2,当电容薄膜规一3显示为一个标准大气压时,依次关闭阀门一2和阀门十23,即在被校正压漏孔1与阀门一2之间的管道小体积v1中充入了一个大气压的干燥氮气;关闭阀门一2后,被校正压漏孔1流出的氦气在管道小体积v1中开始累积,开始计时,根据被校正压漏孔1的漏率范围可以估算累积时间Δt,其中,管道小体积v1为10ml;
设累积结束时管道小体积v1中氦气分压力为p1,被校正压漏孔1的漏率由(1)式计算:
Q = p 1 v 1 Δt - - - ( 1 )
式中:Q-被校正压漏孔1漏率,Pa·m3/s;
p1-氦气分压力,Pa;
v1-累积小体积,m3
Δt-累积时间,s。
⑦在步骤⑥氦气在管道小体积v1中累积的同时,打开阀门八18和阀门九21,抽空管道和标准容积二19,当真空度低于10-1Pa时,关闭阀门九21,待步骤⑥管道小体积v1中氦气分压力达到要求后,打开阀门一2和阀门四9,管道小体积v1中混合气体静态膨胀至标准容积一8和标准容积二19中,压力平衡后关闭阀门一2;
设膨胀后的氦气分压力为p2,膨胀后的氦气分压力由(2)式计算:
p1v1=p2(v1+v8+v19)    (2)
式中:p1-膨胀前的氦气分压力,Pa;
v1-累积小体积,m3
p2-膨胀后的氦气分压力,Pa;
v8-采样标准小体积的容积,m3
v19-标准大体积加上部分管道的容积,m3
⑧关闭阀门四9,打开阀门九21,抽空管道和标准容积二19,然后用干燥氮气冲洗管道,即关闭阀门九21,打开阀门十23,电容薄膜规一3显示为一个大气压时,关闭阀门十23,打开阀门九21,当真空度低于10-1Pa时,关闭阀门九21和阀门八18,等待后续操作准备进样;
⑨关闭阀门七16,使得分子泵机组一不再对校准室13抽气,启动吸气剂泵15,打开阀门六14,准备进样;
⑩打开阀门四9和阀门五10,将标准容积一8中的混合气体样品膨胀至校准室13,吸气剂泵15选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计12显示氦离子流稳定后,读取校准室13中氦离子流信号数值I;
设此时校准室13中的氦气分压力为P3,P3由(3)式计算:
p2v8=p3(v8+V)    (3)
式中:p2-采样标准小体积中的氦气分压力,Pa;
v9-采样标准小体积的容积,m3
p3-校准室13中的氦气分压力,Pa;
V-校准室13加上部分管道的容积,m3
Figure BDA0000115889900000091
读取校准室13中氦离子流信号数值后,关闭阀门五10,关闭吸气剂泵15,打开阀门七16把校准室13抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六14,维持并等待后续操作;同时打开阀门一2、阀门八18和阀门九21,使用分子泵抽气机组二20抽空各管道和标准容积一8和标准容积二19,真空度低于10-1Pa时,关闭阀门四9和阀门八18;
Figure BDA0000115889900000092
打开阀门十23,当电容薄膜规一3显示为一个标准大气压时,关闭阀门一2,关闭阀门十23;打开阀门八18,真空度低于10-1Pa时,关闭阀门九21,打开阀门一2和阀门四9,压力平衡后关闭阀门一2;
Figure BDA0000115889900000093
关闭阀门四9,打开阀门九21,抽空管道和标准容积二19,当真空度低于10-1Pa时,关闭阀门八18和阀门九21,等待后续操作准备进样;
关闭阀门七16,使得分子泵抽气机组一17不再对校准室13抽气,启动吸气剂泵15,打开阀门六14,准备进样;
Figure BDA0000115889900000095
打开阀门四9和阀门五10,将标准容积一8中的气体样品膨胀至校准室13,吸气剂泵15选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计12显示氦离子流稳定后,读取系统氦本底离子流信号数值I0
读取系统氦本底离子流信号数值后,关闭阀门五10,关闭吸气剂泵15,打开阀门七16把校准室13抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六14,维持并等待后续操作;同时打开阀门一2、阀门八18和阀门九21,使用分子泵抽气机组二20抽空各管道、标准容积一8和标准容积二19,真空度低于10-1Pa时,关闭阀门四9和阀门八18;
Figure BDA0000115889900000097
打开阀门二5和阀门三7,使用电容薄膜规二6在标准体积一中配制已知压力Ps的纯氦气,关闭阀门二5和阀门三7;打开阀门十23,当电容薄膜规一3显示为一个标准大气压时,关闭阀门一2,关闭阀门十23,然后打开阀门八18,真空度低于10-1Pa时,关闭阀门九21,打开阀门一2和阀门四9,使得配制的氦气和氮气充分混合后,关闭阀门一2和阀门四9,打开阀门九21,当真空度低于10-1Pa时,关闭阀门九21和阀门八18,等待后续操作准备进样;
设此时采样标准小体积中的氦气分压力为Ps1,Ps1由(4)式计算:
psv8=ps1(v1+v8+v19)    (4)
式中:ps-混合前采样小体积中的氦气压力,Pa;
ps1-混合膨胀后的氦气分压力,Pa;
v1-累积小体积,m3
v8-采样标准小体积的容积,m3
v19-标准大体积加上部分管道的容积,m3
18关闭阀门七16,使得分子泵机组一不再对校准室13抽气,启动吸气剂泵15,打开阀门六14,准备进样;
19打开阀门四9和阀门五10,将标准体积一中的混合气体样品膨胀至校准室13,吸气剂泵15选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计12显示氦离子流稳定后,读取此时校准室13中氦离子流信号IS
设此时校准室13中的氦气分压力为Ps2,Ps2由(5)式计算:
ps1v8=ps2(v8+V)    (5)
式中:ps1-进样前采样标准小体氦气分压力,Pa;
v8-标准小体积的容积,m3
ps2-进样后校准室13中的氦气分压力,Pa;
V-校准室13加上部分管道的容积,m3
20读取校准室13中氦离子流信号后,关闭阀门五10,关闭吸气剂泵15,打开阀门七16把校准室13抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六14,然后关闭四极质谱计12,关闭监测规11,关闭阀门七16,依次关闭分子泵机组抽气机组一的分子泵和前级泵;
21与此同时打开阀门一2、阀门三7、阀门八18和阀门九21,使用分子泵抽气机组二20抽空各管道、标准容积一8和标准容积二19,真空度低于10-1Pa时关闭阀门九21,打开阀门十23,充入一个大气压干燥氮气后,关闭阀门一2、阀门三7、阀门四9、阀门八18和阀门十23,依次关闭分子泵机组二的分子泵和前级泵,关闭循环水,关闭总电源;
22根据测量数据,可以计算被校正压漏孔1的漏率。
利用四极质谱计12的线性关系存在式(6):
p 3 p s 2 = I - I 0 I s - I 0 - - - ( 6 )
联立(1)(2)(3)(4)(5)(6)式,可得被校正压漏孔1漏率的计算公式(7):
Q = p s v 8 Δt · I - I 0 I s - I 0 - - - ( 7 )
式中:Q-被校正压漏孔1漏率,Pa·m3/s;
Δt-漏孔累积时间,s;
Ps-配制的纯氦气压力,Pa;
v8-采样标准小体积的容积,m3
I-正压漏孔流出累积的氦气引入校准室13产生氦离子流信号,A;
Is-定量氦气引入校准室13产生氦离子流信号,A;
I0-校准系统的本底氦离子流信号,A。
本发明包括但不限于以上实施例,凡是在本发明精神的原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

Claims (4)

1.一种静态进样正压漏孔校准装置,其特征在于:所述装置包括:被校正压漏孔(1)、阀门一(2)、电容薄膜规一(3)、氦气瓶(4)、阀门二(5)、电容薄膜规二(6)、阀门三(7)、标准容积一(8)、阀门四(9)、阀门五(10)、监测规(11)、四极质谱计(12)、校准室(13)、阀门六(14)、吸气剂泵(15)、阀门七(16)、分子泵抽气机组一(17)、阀门八(18)、标准容积二(19)、分子泵抽气机组二(20)、阀门九(21)、氮气瓶(22)、阀门十(23);
其中,被校正压漏孔(1)通过阀门一(2)和阀门五(10)与校准室(13)相连,氮气瓶(22)通过阀门十(23)和阀门一(2)与被校正压漏孔(1)相连,电容薄膜规一(3)与阀门一(2)和阀门十(23)相连,氦气瓶(4)通过阀门二(5)和阀门三(7)与标准容积一(8)相连,电容薄膜规二(6)位于阀门二(5)和阀门三(7)之间,标准容积一(8)通过阀门四(9)和阀门八(18)与标准容积二(19)相连,标准容积二(19)通过阀门九(21)与分子泵抽气机组二(20)相连,标准容积一(8)通过阀门四(9)和阀门五(10)与校准室(13)相连,监测规(11)接在校准室(13)上,四极质谱计(12)与校准室(13)相连,吸气剂泵(15)通过阀门六(14)与校准室(13)相连,分子泵抽气机组一(17)通过阀门七(16)与校准室(13)相连。
2.根据权利要求1所述的一种静态进样正压漏孔校准装置,其特征在于:所述被校正压漏孔(1)为自带气室的正压漏孔;阀门一(2)、阀门三(7)、阀门四(9)、阀门五(10)、阀门八(18)和阀门十(23)为金属球阀;电容薄膜规一(3)量程为1000Torr;电容薄膜规二(6)量程为10Torr;标准容积一(8)为采样标准小体积,容积经称重法标定为10ml;监测规(11)为监测用复合真空规;阀门六(14)为超高真空金属角阀;吸气剂泵(15)为非蒸散型吸气剂泵(15);阀门七(16)为超高真空闸板阀;分子泵抽气机组一(17)的主泵为磁悬浮涡轮分子泵,前级泵为干泵;标准容积二(19)为静态膨胀用标准大体积,容积为10L;分子泵抽气机组二(20)的主泵为涡轮分子泵,前级泵为机械泵;阀门九(21)为高真空闸板阀;校准室(13)容积为20L。
3.根据权利要求1所述的一种静态进样正压漏孔校准装置的校准方法,其特征在于:所述校准方法步骤如下:
①将被校正压漏孔(1)接入阀门一(2)处,打开电容薄膜规一(3)和电容薄膜规二(6),在电容薄膜规一(3)和电容薄膜规二(6)稳定12小时后开 始校准工作;
②打开总电源,对分子泵抽气机组一(17)和分子泵抽气机组二(20)中的分子泵通冷却水;
③保持阀门二(5)、阀门五(10)和阀门十(23)为关闭状态,打开其余各阀门,启动分子泵抽气机组二(20)的机械泵和分子泵抽气机组一(17)的干泵对系统抽真空,当真空度小于1Pa时,启动分子泵抽气机组一(17)和分子泵抽气机组二(20)中的分子泵,使得分子泵抽气机组一(17)和分子泵抽气机组二(20)都正常工作;
④被校正压漏孔(1)、阀门一(2)、阀门三(7)、标准容积一(8)、阀门四(9)、阀门八(18)、标准容积二(19)和阀门九(21)所在管路系统很快就能达到工作需要的真空度,即低于10-1Pa;真空度达到需要以后,依次关闭阀门一(2)、阀门三(7)、阀门四(9)、阀门八(18)和阀门九(21),等待后续操作;
⑤经过一段时间待校准室(13)达到极限真空,即10-6Pa时,对吸气剂泵(15)进行激活,激活2~4h后停止,关闭吸气剂泵(15),关闭阀门六(14),打开四极质谱计(12),记录此时氦离子流读数IHe,保持校准室(13)的极限真空状态,等待后续操作;
⑥打开阀门十(23)和阀门一(2),当电容薄膜规一(3)显示为一个标准大气压时,依次关闭阀门一(2)和阀门十(23),即在被校正压漏孔(1)与阀门一(2)之间的管道小体积v1中充入了一个大气压的干燥氮气;关闭阀门一(2)后,被校正压漏孔(1)流出的氦气在管道小体积v1中开始累积,开始计时,根据被校正压漏孔(1)的漏率范围可以估算累积时间Δt;
⑦在步骤⑥氦气在管道小体积v1中累积的同时,打开阀门八(18)和阀门九(21),抽空管道和标准容积二(19),当真空度低于10-1Pa时,关闭阀门九(21),待步骤⑥管道小体积v1中氦气分压力达到要求后,打开阀门一(2)和阀门四(9),管道小体积v1中混合气体静态膨胀至标准容积一(8)和标准容积二(19)中,压力平衡后关闭阀门一(2);
⑧关闭阀门四(9),打开阀门九(21),抽空管道和标准容积二(19),然后用干燥氮气冲洗管道,即关闭阀门九(21),打开阀门十(23),电容薄膜规一(3)显示为一个大气压时,关闭阀门十(23),打开阀门九(21),当真空度 低于10-1Pa时,关闭阀门九(21)和阀门八(18),等待后续操作准备进样;
⑨关闭阀门七(16),使得分子泵机组一不再对校准室(13)抽气,启动吸气剂泵(15),打开阀门六(14),准备进样;
⑩打开阀门四(9)和阀门五(10),将标准容积一(8)中的混合气体样品膨胀至校准室(13),吸气剂泵(15)选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计(12)显示氦离子流稳定后,读取校准室(13)中氦离子流信号数值I;
读取校准室(13)中氦离子流信号数值后,关闭阀门五(10),关闭吸气剂泵(15),打开阀门七(16)把校准室(13)抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六(14),维持并等待后续操作;同时打开阀门一(2)、阀门八(18)和阀门九(21),使用分子泵抽气机组二(20)抽空各管道和标准容积一(8)和标准容积二(19),真空度低于10-1Pa时,关闭阀门四(9)和阀门八(18);
Figure FDA0000115889890000032
打开阀门十(23),当电容薄膜规一(3)显示为一个标准大气压时,关闭阀门一(2),关闭阀门十(23);打开阀门八(18),真空度低于10-1Pa时,关闭阀门九(21),打开阀门一(2)和阀门四(9),压力平衡后关闭阀门一(2);
Figure FDA0000115889890000033
关闭阀门四(9),打开阀门九(21),抽空管道和标准容积二(19),当真空度低于10-1Pa时,关闭阀门八(18)和阀门九(21),等待后续操作准备进样;
Figure FDA0000115889890000034
关闭阀门七(16),使得分子泵抽气机组一(17)不再对校准室(13)抽气,启动吸气剂泵(15),打开阀门六(14),准备进样;
Figure FDA0000115889890000035
打开阀门四(9)和阀门五(10),将标准容积一(8)中的气体样品膨胀至校准室(13),吸气剂泵(15)选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计(12)显示氦离子流稳定后,读取系统氦本底离子流信号数值I0
Figure FDA0000115889890000036
读取系统氦本底离子流信号数值后,关闭阀门五(10),关闭吸气剂泵(15),打开阀门七(16)把校准室(13)抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六(14),维持并等待后续操作;同时打开阀门一(2)、阀门八(18)和阀门九(21),使用分子泵抽气机组二(20)抽空各管道、标准容积一(8)和标准容积二(19),真空度低于10-1Pa时,关闭阀门四(9)和阀门八 (18);
Figure FDA0000115889890000041
打开阀门二(5)和阀门三(7),使用电容薄膜规二(6)在标准体积一中配制已知压力Ps的纯氦气,关闭阀门二(5)和阀门三(7);打开阀门十(23),当电容薄膜规一(3)显示为一个标准大气压时,关闭阀门一(2),关闭阀门十(23),然后打开阀门八(18),真空度低于10-1Pa时,关闭阀门九(21),打开阀门一(2)和阀门四(9),使得配制的氦气和氮气充分混合后,关闭阀门一(2)和阀门四(9),打开阀门九(21),当真空度低于10-1Pa时,关闭阀门九(21)和阀门八(18),等待后续操作准备进样;
关闭阀门七(16),使得分子泵机组一不再对校准室(13)抽气,启动吸气剂泵(15),打开阀门六(14),准备进样;
Figure FDA0000115889890000043
打开阀门四(9)和阀门五(10),将标准体积一中的混合气体样品膨胀至校准室(13),吸气剂泵(15)选择抽除干燥氮气,此时对示漏气体氦气没有抽速,四极质谱计(12)显示氦离子流稳定后,读取此时校准室(13)中氦离子流信号Is
Figure FDA0000115889890000044
读取校准室(13)中氦离子流信号后,关闭阀门五(10),关闭吸气剂泵(15),打开阀门七(16)把校准室(13)抽至极限真空10-6Pa,当氦离子流接近IHe时关闭阀门六(14),然后关闭四极质谱计(12),关闭监测规(11),关闭阀门七(16),依次关闭分子泵机组抽气机组一的分子泵和前级泵;
与此同时打开阀门一(2)、阀门三(7)、阀门八(18)和阀门九(21),使用分子泵抽气机组二(20)抽空各管道、标准容积一(8)和标准容积二(19),真空度低于10-1Pa时关闭阀门九(21),打开阀门十(23),充入一个大气压干燥氮气后,关闭阀门一(2)、阀门三(7)、阀门四(9)、阀门八(18)和阀门十(23),依次关闭分子泵机组二的分子泵和前级泵,关闭循环水,关闭总电源;
Figure FDA0000115889890000046
根据测量数据,可以计算被校正压漏孔(1)的漏率。
4.根据权利要求3所述的一种静态进样正压漏孔校准装置的校准方法,其特征在于:所述管道小体积v1为10ml。 
CN 201110396697 2011-12-04 2011-12-04 一种静态进样正压漏孔校准装置及方法 Active CN102494741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110396697 CN102494741B (zh) 2011-12-04 2011-12-04 一种静态进样正压漏孔校准装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110396697 CN102494741B (zh) 2011-12-04 2011-12-04 一种静态进样正压漏孔校准装置及方法

Publications (2)

Publication Number Publication Date
CN102494741A true CN102494741A (zh) 2012-06-13
CN102494741B CN102494741B (zh) 2013-04-24

Family

ID=46186585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110396697 Active CN102494741B (zh) 2011-12-04 2011-12-04 一种静态进样正压漏孔校准装置及方法

Country Status (1)

Country Link
CN (1) CN102494741B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759906A (zh) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 基于静态膨胀法真空标准校准真空漏孔的装置及方法
CN104236813A (zh) * 2014-09-04 2014-12-24 兰州空间技术物理研究所 一种基于静态累积衰减比较法的正压漏孔校准装置及方法
CN106226000A (zh) * 2016-07-07 2016-12-14 中国科学院光电研究院 一种真空密封性能测量装置及方法
CN106840525A (zh) * 2017-03-29 2017-06-13 北京卫星环境工程研究所 挥发性液体的标准泄漏率对比装置
CN107389498A (zh) * 2017-07-07 2017-11-24 金华职业技术学院 一种测量甲烷透过率的方法
CN108318376A (zh) * 2017-12-19 2018-07-24 兰州空间技术物理研究所 一种判断密封铯束管材料出气率的方法
CN109443653A (zh) * 2018-11-28 2019-03-08 北京东方计量测试研究所 一种微小漏率正压漏孔校准的气体取样系统及方法
CN109459192A (zh) * 2018-12-06 2019-03-12 北京东方计量测试研究所 一种基于比较法校准正压漏孔的分子流进样系统及控制方法
CN110927240A (zh) * 2019-11-22 2020-03-27 南京理工大学 一种超高真空系统的高纯nf3进气控制装置及方法
CN111220326A (zh) * 2019-12-27 2020-06-02 兰州空间技术物理研究所 一种用一支真空漏孔校准真空计的校准装置及方法
CN113960248A (zh) * 2021-09-17 2022-01-21 奕瑞影像科技成都有限公司 一种痕量气体检测设备测试工装和样品配制方法
CN114624319A (zh) * 2022-04-02 2022-06-14 中国工程物理研究院材料研究所 一种基于热解析-四极质谱测量原理定量获取材料中ppm级氢同位素含量的方法
CN114674501A (zh) * 2021-12-25 2022-06-28 兰州空间技术物理研究所 一种静态漏率测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1901432A (en) * 1929-11-20 1933-03-14 Western Electric Co Pressure leak indicator
US4459843A (en) * 1982-07-06 1984-07-17 Durham La Moyne W Apparatus and method for testing containers
CN201203503Y (zh) * 2007-12-28 2009-03-04 中国航天科技集团公司第五研究院第五一〇研究所 一种恒压式正压漏孔校准装置变容室
CN101470044A (zh) * 2007-12-28 2009-07-01 中国航天科技集团公司第五研究院第五一〇研究所 一种正压漏孔漏率的测量方法
CN101470042A (zh) * 2007-12-28 2009-07-01 中国航天科技集团公司第五研究院第五一〇研究所 一种恒压式正压漏孔校准装置变容室
CN201318980Y (zh) * 2008-11-05 2009-09-30 北京中科科仪技术发展有限责任公司 用于检测产品总漏率的氦质谱检漏仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1901432A (en) * 1929-11-20 1933-03-14 Western Electric Co Pressure leak indicator
US4459843A (en) * 1982-07-06 1984-07-17 Durham La Moyne W Apparatus and method for testing containers
CN201203503Y (zh) * 2007-12-28 2009-03-04 中国航天科技集团公司第五研究院第五一〇研究所 一种恒压式正压漏孔校准装置变容室
CN101470044A (zh) * 2007-12-28 2009-07-01 中国航天科技集团公司第五研究院第五一〇研究所 一种正压漏孔漏率的测量方法
CN101470042A (zh) * 2007-12-28 2009-07-01 中国航天科技集团公司第五研究院第五一〇研究所 一种恒压式正压漏孔校准装置变容室
CN201318980Y (zh) * 2008-11-05 2009-09-30 北京中科科仪技术发展有限责任公司 用于检测产品总漏率的氦质谱检漏仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《宇航计测技术》 20101031 冯焱等 正压漏孔校准装置定容室容积测量方法研究 50-53 1-4 第30卷, 第5期 *
《真空》 20090731 冯焱等 正压漏孔校准装置优化设计 72-75 1-4 第46卷, 第4期 *
《计测技术》 20101231 冯焱等 正压漏孔校准方法研究 1-5 1-4 第30卷, 第2期 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759906B (zh) * 2013-12-24 2016-09-28 兰州空间技术物理研究所 基于静态膨胀法真空标准校准真空漏孔的装置及方法
CN103759906A (zh) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 基于静态膨胀法真空标准校准真空漏孔的装置及方法
CN104236813A (zh) * 2014-09-04 2014-12-24 兰州空间技术物理研究所 一种基于静态累积衰减比较法的正压漏孔校准装置及方法
CN104236813B (zh) * 2014-09-04 2016-07-20 兰州空间技术物理研究所 一种基于静态累积衰减比较法的正压漏孔校准装置及方法
CN106226000A (zh) * 2016-07-07 2016-12-14 中国科学院光电研究院 一种真空密封性能测量装置及方法
CN106840525A (zh) * 2017-03-29 2017-06-13 北京卫星环境工程研究所 挥发性液体的标准泄漏率对比装置
CN107389498B (zh) * 2017-07-07 2024-01-12 金华职业技术学院 一种测量甲烷透过率的方法
CN107389498A (zh) * 2017-07-07 2017-11-24 金华职业技术学院 一种测量甲烷透过率的方法
CN108318376A (zh) * 2017-12-19 2018-07-24 兰州空间技术物理研究所 一种判断密封铯束管材料出气率的方法
CN109443653A (zh) * 2018-11-28 2019-03-08 北京东方计量测试研究所 一种微小漏率正压漏孔校准的气体取样系统及方法
CN109459192A (zh) * 2018-12-06 2019-03-12 北京东方计量测试研究所 一种基于比较法校准正压漏孔的分子流进样系统及控制方法
CN110927240A (zh) * 2019-11-22 2020-03-27 南京理工大学 一种超高真空系统的高纯nf3进气控制装置及方法
CN111220326A (zh) * 2019-12-27 2020-06-02 兰州空间技术物理研究所 一种用一支真空漏孔校准真空计的校准装置及方法
CN113960248A (zh) * 2021-09-17 2022-01-21 奕瑞影像科技成都有限公司 一种痕量气体检测设备测试工装和样品配制方法
CN114674501A (zh) * 2021-12-25 2022-06-28 兰州空间技术物理研究所 一种静态漏率测量装置及方法
CN114624319A (zh) * 2022-04-02 2022-06-14 中国工程物理研究院材料研究所 一种基于热解析-四极质谱测量原理定量获取材料中ppm级氢同位素含量的方法
CN114624319B (zh) * 2022-04-02 2023-09-01 中国工程物理研究院材料研究所 一种基于热解析-四极质谱测量原理定量获取材料中ppm级氢同位素含量的方法

Also Published As

Publication number Publication date
CN102494741B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN102494741B (zh) 一种静态进样正压漏孔校准装置及方法
CN103759906B (zh) 基于静态膨胀法真空标准校准真空漏孔的装置及方法
CN102944358B (zh) 一种高低温真空校准装置及方法
CN105547956A (zh) 一种真空计测量薄膜气体渗透率的装置和方法
CN102445312B (zh) 一种塑胶气密性测试装置及方法
CN102928172B (zh) 一种将气体微流量校准下限延伸至10-14Pam3/s的系统及方法
CN106226000A (zh) 一种真空密封性能测量装置及方法
CN104345087B (zh) 一种磁偏转质谱计的校准装置及校准方法
CN102721515A (zh) 卫星整星漏率检测装置及检测方法
CN105136389B (zh) 10‑9Pa量级的真空分压力校准装置及校准系数获取方法
CN104502163B (zh) 一种可调深度土壤二氧化碳采集装置及其使用方法
CN106525683B (zh) 一种薄膜渗透率测量装置和测量方法
CN104155417B (zh) 一种超高纯气体中痕量水分分析的前处理系统及方法
CN105651854B (zh) 一种含氚老化样品中微量3He定量测定的系统及方法
CN109186864B (zh) 极小漏率真空标准漏孔
CN107543664A (zh) 多密封系统漏率测量方法和装置
CN105004479A (zh) 基于标准压力测量的电离真空计和质谱计校准装置及方法
CN116398421B (zh) 高真空泵抽速测试装置及其使用方法
CN107817200A (zh) 一种基于质谱分析的混合气体渗透率测量装置及方法
CN104236813B (zh) 一种基于静态累积衰减比较法的正压漏孔校准装置及方法
CN107843391A (zh) 一种小漏率正压漏孔校准装置及方法
CN109655372A (zh) 一种PdO吸气剂吸气量测试装置及方法
CN106679897A (zh) 一种漏孔漏率测量装置
CN103542988B (zh) 以内部气体质谱分析检测元器件密封性的方法
CN209783996U (zh) 一种基于动态稀释法的机动车尾气车载测试平台

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant